Truth table invariant

cylindrical algebraic decomposition

Matthew England
The University of Bath

With: Russell Bradford, James Davenport & David Wilson (Bath), Scott McCallum (Macquarie), Changbo Chen (CIGIT) and Marc Moreno Maza (Western Ontario)

International Congress of Mathematicians
Seoul, South Korea
13–21 August 2014

Supported by EPSRC Grant EP/J003247/1.
Outline

1 Background
 - What is a CAD?
 - How do you build a CAD?

2 Truth table invariance
 - TTICAD
 - TTICAD via complex cylindrical decompositions
Outline

1. **Background**
 - What is a CAD?
 - How do you build a CAD?

2. **Truth table invariance**
 - TTICAD
 - TTICAD via complex cylindrical decompositions
A Cylindrical Algebraic Decomposition (CAD) is:

- a decomposition meaning a partition of \mathbb{R}^n into connected subsets called cells;
- (semi)-algebraic meaning that each cell can be defined by a sequence of polynomial equations and inequations.
- cylindrical meaning the cells are arranged in a useful manner - their projections are either equal or disjoint.
A CAD of \mathbb{R}^2 is given by the following collections of 13 cells:

$$[x < -1, y = y],$$
$$[x = -1, y < 0], [x = -1, y = 0], [x = -1, y > 0],$$
$$[-1 < x < 1, y^2 + x^2 - 1 > 0, y > 0],$$
$$[-1 < x < 1, y^2 + x^2 - 1 = 0, y > 0],$$
$$[-1 < x < 1, y^2 + x^2 - 1 < 0],$$
$$[-1 < x < 1, y^2 + x^2 - 1 = 0, y < 0],$$
$$[-1 < x < 1, y^2 + x^2 - 1 < 0],$$
$$[x = 1, y < 0], [x = 1, y = 0], [x = 1, y > 0],$$
$$[x > 1, y = y]$$
A CAD of \mathbb{R}^2 is given by the following collections of 13 cells:

- $x < -1$ \{ $[x < -1, y = y]$,
- $x = -1$ \{ $[x = -1, y < 0], [x = -1, y = 0], [x = -1, y > 0]$,
 \{ $[-1 < x < 1, y^2 + x^2 - 1 > 0, y > 0]$,
 \{ $[-1 < x < 1, y^2 + x^2 - 1 = 0, y > 0]$,
- $-1 < x < 1$ \{ $[-1 < x < 1, y^2 + x^2 - 1 < 0]$,
 \{ $[-1 < x < 1, y^2 + x^2 - 1 = 0, y < 0]$,
 \{ $[-1 < x < 1, y^2 + x^2 - 1 < 0, y < 0]$,
- $x = 1$ \{ $[x = 1, y < 0], [x = 1, y = 0], [x = 1, y > 0]$,
- $x > 1$ \{ $[x > 1, y = y]$
Sign-invariance

Traditionally a CAD is produced from a set of polynomials such that each polynomial has constant sign (positive, zero or negative) in each cell. Such a CAD is said to be **sign-invariant**.

The example from the previous slide was a sign-invariant CAD for the polynomial $x^2 + y^2 - 1$.
Sign-invariance

Traditionally a CAD is produced from a set of polynomials such that each polynomial has constant sign (positive, zero or negative) in each cell. Such a CAD is said to be sign-invariant.

The example from the previous slide was a sign-invariant CAD for the polynomial $x^2 + y^2 - 1$.
Traditionally a CAD is produced from a set of polynomials such that each polynomial has constant sign (positive, zero or negative) in each cell. Such a CAD is said to be sign-invariant.

The example from the previous slide was a sign-invariant CAD for the polynomial $x^2 + y^2 - 1$.
Traditionally a CAD is produced from a set of polynomials such that each polynomial has constant sign (positive, zero or negative) in each cell. Such a CAD is said to be sign-invariant.

The example from the previous slide was a sign-invariant CAD for the polynomial $x^2 + y^2 - 1$.
Traditionally a CAD is produced from a set of polynomials such that each polynomial has constant sign (positive, zero or negative) in each cell. Such a CAD is said to be sign-invariant.

The example from the previous slide was a sign-invariant CAD for the polynomial $x^2 + y^2 - 1$.
Traditionally a CAD is produced from a set of polynomials such that each polynomial has constant sign (positive, zero or negative) in each cell. Such a CAD is said to be sign-invariant.

The example from the previous slide was a sign-invariant CAD for the polynomial $x^2 + y^2 - 1$.

Sign-invariance means we need only test one sample point per cell to determine behaviour of the polynomials. Various applications: quantifier elimination, optimisation, theorem proving, ...
1. Background
 - What is a CAD?
 - How do you build a CAD?

2. Truth table invariance
 - TTICAD
 - TTICAD via complex cylindrical decompositions
Collins gave the first algorithm to build CADs. It had 2 stages:

- **Projection**: to derive a set of polynomials from the input which can define the decomposition.
Collins gave the first algorithm to build CADs. It had 2 stages:

- **Projection**: to derive a set of polynomials from the input which can define the decomposition
- **Lifting** to incrementally build CADs by dimension.
Collins gave the first algorithm to build CADs. It had 2 stages:

- **Projection**: to derive a set of polynomials from the input which can define the decomposition
- **Lifting** to incrementally build CADs by dimension.
Collins gave the first algorithm to build CADs. It had 2 stages:

- **Projection**: to derive a set of polynomials from the input which can define the decomposition
- **Lifting** to incrementally build CADs by dimension.
Collins gave the first algorithm to build CADs. It had 2 stages:

- **Projection**: to derive a set of polynomials from the input which can define the decomposition
- **Lifting**: to incrementally build CADs by dimension.

![Graphical representation of a CAD]

Matthew England

Truth table invariant CAD
Collins gave the first algorithm to build CADs. It had 2 stages:

- **Projection**: to derive a set of polynomials from the input which can define the decomposition
- **Lifting** to incrementally build CADs by dimension.
Collins gave the first algorithm to build CADs. It had 2 stages:
- **Projection**: to derive a set of polynomials from the input which can define the decomposition
- **Lifting** to incrementally build CADs by dimension.
The nature of CAD means it will always have **doubly exponential complexity** in the number of variables. However:

1. It is still the best known (generic) algorithm for quantifier elimination.
The nature of CAD means it will always have **doubly exponential complexity** in the number of variables. However:

1. It is still the best known (generic) algorithm for quantifier elimination.
2. There have been many improvements and extensions to Collins algorithm which make a big difference in practice.
 - Improvements to the sub-algorithms used;
 - New projection operators;
 - CAD tailored to specific problems;
 - Results and algorithms on the adjacency of CAD cells;
 - Symbolic-numeric computation in the lifting phase.
The nature of CAD means it will always have **doubly exponential complexity** in the number of variables. However:

1. It is still the best known (generic) algorithm for quantifier elimination.
2. There have been many improvements and extensions to Collins algorithm which make a big difference in practice.
 - Improvements to the sub-algorithms used;
 - New projection operators;
 - CAD tailored to specific problems;
 - Results and algorithms on the adjacency of CAD cells;
 - Symbolic-numeric computation in the lifting phase.
Outline

1. Background
 - What is a CAD?
 - How do you build a CAD?

2. Truth table invariance
 - TTICAD
 - TTICAD via complex cylindrical decompositions
A CAD is truth-invariant with respect to a formula if the formula has constant truth value on each cell. Sign-invariant (for polynomials in formula) \Rightarrow truth invariant but will usually require far more cells.
A CAD is truth-invariant with respect to a formula if the formula has constant truth value on each cell. Sign-invariant (for polynomials in formula) \rightarrow truth invariant but will usually require far more cells.

- First introduced by Brown to simplify sign-invariant CADs;
- In 1999 McCallum developed a projection operator to use in the presence of an equational constraint (EC): an equation logically implied by a formula. The CAD produced was sign-invariant for the polynomial defining the EC, and for any others only when the EC is satisfied.
Given a sequence of quantifier free formulae (QFF) we define a truth table invariant CAD (TTICAD) as a CAD such that each formulae has constant truth value on each cell.

The Bath team together with Scott McCallum defined and verified a new projection operator to build TTICADs. First in the case where each QFF had an EC (ISSAC 2013) and now for arbitrary QFFs (submitted 2014).
Truth-table invariant CAD

Given a sequence of quantifier free formulae (QFF) we define a truth table invariant CAD (TTICAD) as a CAD such that each formulae has constant truth value on each cell.

The Bath team together with Scott McCallum defined and verified a new projection operator to build TTICADs. First in the case where each QFF had an EC (ISSAC 2013) and now for arbitrary QFFs (submitted 2014).

- Implemented in Maple (and available for free from authors);
- Generally far more efficient than a sign-invariant CAD (savings if at least one EC present);
- Output closer to the underlying application;
- Competitive with state of the art in CAD.
Why build a TTICAD?

A TTICAD can be useful for:

- An application providing a sequence of separate formulae

One such application: decomposing complex space according to the branch cuts of multi-valued functions for the purposes of algebraic simplification.
Why build a TTICAD?

A TTICAD can be useful for:

- **An application providing a sequence of separate formulae**

One such application: decomposing complex space according to the branch cuts of multi-valued functions for the purposes of algebraic simplification.

- **Finding a truth-invariant CAD for a parent formula**

A TTICAD for the defining sub-formula is truth-invariant for the parent. TTICAD can be the most efficient known approach (especially if there is no EC for the parent formula).
Consider $\sqrt{z^2 - 1}\sqrt{z^2 + 1} = \sqrt{z^4 - 1}$. Most software takes $\sqrt{\cdot}$ to be the positive root, in which case the identity is not always true.

The functions involved have branch cuts:

\begin{align*}
\varphi_1 &:= 2xy = 0 \land x^2 \mathbin{-} y^2 < 1, \\
\varphi_2 &:= 2xy = 0 \land x^2 \mathbin{-} y^2 < -1, \\
\varphi_3 &:= 4x^3y - 4xy^3 = 0 \land x^4 \mathbin{-} 6x^2y^2 + y^4 < 1.
\end{align*}

Either a TTICAD for $\{\varphi_1, \varphi_2, \varphi_3\}$ or a sign-invariant CAD for the polynomials involved would decompose \mathbb{R}^2 according to these cuts. We then need to test the truth at a finite number of sample points.
TTICAD: Algebraic Simplification Example II
Consider the polynomials

\[f_1 := x^2 + y^2 - 1 \quad \quad g_1 := xy - \frac{1}{4} \]
\[f_2 := (x - 4)^2 + (y - 1)^2 - 1 \quad \quad g_2 := (x - 4)(y - 1) - \frac{1}{4} \]

forming the single formula

\[\Phi := (f_1 = 0 \land g_1 < 0) \lor (f_2 = 0 \land g_2 < 0) \]

We aim to determine where \(\Phi \) is true. A sign-invariant CAD for \(\{f_1, g_1, f_2, g_2\} \) has 317 cells but a TTICAD only 105.
TTICAD: Disjunction Example II

Graphs of the polynomials
The sign-invariant CAD identifies 20 points on \mathbb{R}.
The TTICAD identifies only 12 points on \mathbb{R}.
In this example Φ does have an (implicit) EC: $f_1 f_2 = 0$. Using this alone produces more cells than a TTICAD and 16 points on \mathbb{R}.
In this example Φ does have an (implicit) EC: $f_1 f_2 = 0$. Using this alone produces more cells than a TTICAD and 16 points on \mathbb{R}.
TTICAD: Disjunction Example IV

All three approaches together.
TTICAD: Disjunction Example IV

TTICAD only
Outline

1. Background
 - What is a CAD?
 - How do you build a CAD?

2. Truth table invariance
 - TTICAD
 - TTICAD via complex cylindrical decompositions
< 2009 All CAD research broadly within Collin’s projection and lifting framework.
< 2009: All CAD research broadly within Collin’s projection and lifting framework.

ISSAC 2009: Chen, Moreno Maza, Xia & Yang give new approach.
From RC-CAD to RC-TTICAD

CCDs calculated using triangular decomposition by regular chains:

- **ISSAC 2009**: Uses existing algorithms
- **ASCM 2012**: Using custom built algorithms

The latter algorithms work *incrementally*: refining a tree one polynomial at a time.
CCDs calculated using triangular decomposition by regular chains:

ISSAC 2009: Uses existing algorithms

ASCM 2012: Using custom built algorithms

The latter algorithms work incrementally: refining a tree one polynomial at a time. Allows for the implementation of simplification in the presence of equational constraints: If an EC is not satisfied on a branch then no need for further refinement.

CASC 2014: Algorithm presented to produce TTICADs in the RC-CAD framework through incremental triangular decomposition $= \text{RC-TTICAD}$.

Combines the advantages of TTICAD with those from proceeding via complex cylindrical decompositions.
Further Information

Cylindrical algebraic decompositions for Boolean combinations

Truth table invariant cylindrical algebraic decomposition by Regular Chains

Contact Details

M. England@bath.ac.uk
http://www.cs.bath.ac.uk/~me350/
RC-CAD starts with a complex cylindrical decomposition (CCD). The tree below represents a sign-invariant CCD for \(p := x^2 + bx + c \) under variable ordering \(c \prec b \prec x \).
RC-CAD starts with a complex cylindrical decomposition (CCD). The tree below represents a sign-invariant CCD for \(p := x^2 + bx + c \) under variable ordering \(c \prec b \prec x \).

The key advantage is case distinction: the polynomial \(b \) is not sign-invariant for the whole decomposition, only when required.