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Abstract. It is recognised that institutions are potentially powerful means for
making agent interactions effective and efficient, but institutions will only really
be useful when, as in other safety-critical scenarios, it ispossible to prove that
particular properties do or do not hold for all possible encounters. In contrast
to symbolic model-checking, answer set programming permits the statement of
problems and queries in domain-specific terms as executablelogic programs, thus
eliminating the gap between specification and verification language. Furthermore,
results are presented in the same terms. In this paper we describe the use of an-
swer set programs as an institutional modelling technique.We demonstrate that
our institutional model can be intuitively be mapped into ananswer set program
such that the ordered event traces of the former can be obtained as the answer sets
of the latter, allowing for an easy way to query properties ofmodels.

1 Introduction

The case for institutions as mechanisms to structure and enable agent interactions has
been made at length in numerous places over the last 10 years.Probably the most rel-
evant fact for this paper is the recognition that it is theinstitutional norms[18] that
hold the key, where norms are statements that serve to guide or regulate agent be-
haviour, ranging from the abstract (“treat others as you would wish to be treated your-
self”) through rules (“if this boat’s catch of cod exceeds its annual quota then a fine is
payable”) to protocols defining sequences of (typically) speech acts.

This is not the place for a repetition of the arguments for institutions, but for the sake
of making this paper self-contained, we give a brief introduction to the literature for the
interested reader. The earliest presentation in the computer science literature is perhaps
Noriega’s thesis [35], followed by Rodriguez [37] and Vazquez-Salceda [38]. Along-
side, there have been several attempts at finding tractable representations of institutional
norms, starting from the original FishMarket paper [36] using automata [22], process
algebra [29], symbolic model-checking with temporal logics [11], commitments [39],
social institutions [41] action languages [2] and answer set programming [10]. Initial
approaches were bottom-up, starting from protocols, but todate creating a verifiable re-
lationship between protocols and higher level representations of norms has not proven
fruitful. Thus more recent approaches such as [1, 16, 42] andincluding our own, have



sought to address this problem by specifying normative behaviour at a level which is
both easily expressed by designers and computationally executable and verifiable.

In this paper a top-down approach to virtual institutions isdescribed, in which ex-
ternal normative concepts are represented in terms that at the same time designers may
analyse (off-line) and about which agents may reason (on-line) using the answer set
programming paradigm. In formalising the ideas set out in [10], this paper makes two
further contributions: (i) a formal event-based model of the specification of institutions
that captures all the essential properties, namely empowerment, permission, violation
and obligation (ii) a verifiable translation to answer set programming, resulting in a
decidable and executable model for institutions.

2 Virtual Institutions

To provide some context for the theory that follows, this section begins with a brief
overview of institutions and the terms that we use. As outlined in the introduction the
essential characteristics of an institution are captured in its norms with varying degrees
of specificity. What agents do or say is constrained by a giveninstitutional context, so
that irrelevant actions or communications are filtered out,and relevant ones advance
the interaction, cause an agent to acquire an obligation, orthrough a violation, invite
a sanction. But while that serves to capture the agent’s point of view, what about the
(institutional) environment? How are actions to be observed, how are obligations to be
recorded and their satisfaction enforced, and how are violations to be detected and the
corresponding sanctions to be applied?

The model we propose is based on the concept ofObservable Eventsthat capture
notions of the physical world — “shoot somebody” — andInstitutional Eventsthat
are those generated by society — “murder” — but which only have meaning within a
given social context. While observable events are clearly observable, institutional ones
are not, so how do they come into being? Searle [28] describesthe creation of an in-
stitutional state of affairs throughConventional Generation, whereby an event in one
contextCounts Asthe occurrence of another event in a second context. Taking the phys-
ical world as the first context and by defining conditions in terms of states, institutional
events may be created that count as the presence of states or the occurrence of events in
the institutional world.

Thus, we model an institution as a set ofinstitutional statesthat evolve over time
subject to the occurrence ofevents, where an institutional state is a set ofinstitutional
fluentsthat may be held to be true at some instant. Furthermore, we may separate such
fluents intodomainfluents, that depend on the institution being modelled, suchas “A
owns something”, andnormative fluentsthat are common to all specifications and may
be classified as follows:

– Institutional Power: This represents the institutional capability for an event to
be brought about meaningfully, and hence change some fluentsin the institutional
state. Without institutional power, the event may not be brought about and has no
effect; for example, a marriage ceremony will only bring about the married state, if
the person performing the ceremony is empowered so to do.
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– Permission: Each permission fluent captures the property that some eventmay
occur without violation. If an event occurs, and that event is not permitted, then a
violation eventis generated.

– Obligation: Obligation fluents are modelled as the dual of permission . Anobliga-
tion fluent states that a particular event is obliged to occurbefore a given deadline
event (such as a timeout) and is associated with a specified violation. If an obli-
gation fluent holds and the obliged event occurs then the obligation is said to be
satisfied. If the corresponding deadline event occurs then the obligation is said to
be violated and the specified violation event is generated.
Events can be classified into: (i) a set of observable events,being those events ex-

ternal to the institution which may be brought about independently from the institution
and (ii) a set ofinstitutional eventswhich may be broken down intoviolation eventsand
institutional actions; these events may only be brought about if they are generatedby
the institutional semantics. Finally we have a set of institutional rules which associate
the occurrence of events with some effects in the subsequentstate. These can be divided
into: (i) generation ruleswhich account for the conventional generation of events. Each
generation rule associates the satisfaction of some conditions in the current institutional
state and the occurrence of an (observed or institutional) event with a generated insti-
tutional event. For example: “A wedding ceremony counts as civil marriage only if the
couple have a licence”. The generating and generated eventsare taken by the institution
to have occurred simultaneously. (ii)consequence rules, each of which associates the
satisfaction of some conditions in the current institutional state and the occurrence of
an event in the institution or the world to the change in stateof one or more fluents
in the next institution state. For example: “Submitting a paper to a conference grants
permission for the paper to be redistributed by the conference organisers”.

Violation and sanction play an important role in the specification of institutions.
Violations may arise either from explicit generation, fromthe occurrence of a non-
permitted event, or from the failure to fulfil an obligation.In these cases sanctions that
may include obligations on violating agents or other agentsand/or changes in agents’
permission to do certain actions, may then simply be expressed as consequences of the
occurrence of the associated violation event in the subsequent institutional state.

2.1 The Institutional Model

From the introduction above, it can be seen that a definition of a institution is a quintupleI := hE ;F ; C;G;S0i consisting of institutional events (E), fluents (F), a consequence
relation (C), an event generation relation (G) and an initial state (S0). We now describe
each of these in more detail.

Institutional Events Each institution defines a set of event signaturesE , to denote the
types of events that may occur.E comprises two disjoint subsets,Eobs denotingobserv-
able eventsandEinst denotinginstitutional events. We break institutional events down
further into the disjoint subsets:institutional actions, Einstat andviolation eventsEviol.
We defineEviol such that8e 2 Einstat [ Eobs � viol(e) 2 Eviol (i.e. each institutional
action has a corresponding violation eventviol(e) in Eviol which may arise from the
performance ofe when it is not permitted).

3



Institutional Fluents Each institution comprises the union of four distinguishedsets of
fluents: one defines a set ofDomain FluentsdenotedD that account for the description
of the domain the institution operates, while the remainderare sets of boolean fluents
indicating different types ofnormative fluents:W A set of institutional powers of the formpow(e) : e 2 Einstat where each power

fluent denotes the capability of some evente to be brought about (generated) in the
institution.M A set of event permissions:perm(e) : e 2 Einstat [ Eobs where each permission
fluent denotes that it is permitted for an evente to be brought about. An event is
not explicitly forbidden, instead this is implicitly represented by the absence of
permission for that event to be brought about.O A set of obligations, of the formobl(e; d; v) : e 2 E ; d 2 E ; v 2 Einst where each
obligation fluent denotes that evente should be brought about before the occurrence
of eventd or be subject to the violationv.

Together, these disjoint sets of domain fluents and normative fluents form theInstitu-
tional FluentsF (F =W [M[O [ D).

The state of an institution at a certain time is determined bythose institutional flu-
ents that are valid at that time. The set of all possibleinstitutional statesis denoted as� with � = 2F . It is important to appreciate that not all those states willactually be
used in an institution.

Events can have the same effect on multiple of states, not just one. Borrowing a
book from a library will result in the obligation to bring it back regardless of how many
books have been borrowed in the past. To facilitate this, we introduce the concept of
State Formulaas a collection of states that satisfy certain properties inthat they either
contain certain fluents or they do not. The set of all state formulae is denoted asX withX = 2F[:F , where:F is the negation of each fluent inF .

Consequences Each institution defines a functionC that describes which fluents are
initiated and terminated by the occurrence of a certain event in a state matching some
criteria. The function is expressed asC : X � E ! 2F � 2F . GivenX 2 X ande 2 events, C(X; e) = (C"(X; e); C#(X; e)) with C"(X; e) containing those fluents
which areinitiatedby the evente in any state matchingX andC#(X; e) collecting those
fluents which areterminatedby evente in any state matchingX .

Event Generation Each institution defines an event generation functionG which de-
scribes when the occurrence of one eventcounts asthe occurrence of other events inside
the institution:G : X � E ! 2Einst .

As a consequence there could be a cascading of events. As we will see later, we
require the transitive closure to obtain all generated events from one initial observable
event.

Initial State Each institution defines the setS0 � F that denotes the set of fluents that
hold when the institution is created.
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2.2 Semantics

During the lifetime of an institution, its state changes dueto events taking place. Each
observable event possibly generates more events which in turn could create further
events. Each of these events could affect the current state,while their confluence de-
termines the next state.

States We define the semantics of an institution over a set of states�. Each state
comprises a set of fluents inF which are held to be true at a given time (see for example
Figure 7). We say that a stateS 2 � satisfies fluentf 2 F , denotedS j= f , whenf 2 S. It satisfies its negation:f , whenf 62 S. This notation can be extended to setsX � X in the following way:S j= X iff 8x 2 X � S j= x.

Event Generation In order to account for event generation we define a function that
describes which events to generated in a given state.GR : � � 2E ! E (E is the set of
all institutional events). In some stateS subject to a set of eventsE,GR(S;E) includes
all of the events which must be generated by the occurrence ofeventsE in stateS and
is defined as follows:GR(S;E) = fe 2 E j e 2 E or9e0 2 E; � 2 X ; e 2 G(�; e0) � S j= pow(e) ^ S j= � or9e0 2 E; � 2 X ; e 2 G(�; e0) � e 2 Eviol ^ S j= � or9e0 2 E � e = viol(e0); S j= : perm(e0) or9e0 2 E ; d 2 E � S j= obl(e0; d; e)g
1. The first condition ensures that events remain generated (inertia).
2. The second condition defines event generation to be explicitly specified by the in-

stitutional relationG. One event generates another event in a given state, when
(i) the generation was specified by the institution, (ii) thecurrent state satisfies the
conditions for the generation and (iii) the generated eventis empowered.

3. The third condition deals with violations generated as specified by the institution
rather that violations resulting from events that were not permitted. Violations do
not require empowerment.

4. The fourth condition considers the generation of violation events as the result of
the occurrence of non-permitted events.

5. The last condition deals with the generation of violationevents as the result of
the failure to bring about an obliged event. For all assertedobligation fluents, the
occurrence of the deadline eventd generates the corresponding violation evente.
The parallel generation of events, means it is possible for an event which fulfils

an obligation to be generated simultaneously with the obligation’s deadline (that is,
the deadline counts as the fulfilment of the obligation or theobligation counts as the
fulfilment of the deadline or another action counts as both the fulfilment of the deadline
and the fulfil lent of the obligation). While we consider thissituation undesirable we do
not prohibit its specification, but say that when it does occur the obligation is considered
as not to have been fulfilled.
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It is easy to see thatGR(S;E) is a monotonic function. This implies that for any
given state and a set of events, we can obtain a fixpointGR!(S;E). In our institutional
model, generated events come about from the performance of one observable eventeobs 2 Eobs in a given stateS. So, to obtain all events that originate from this one event
in this state, we simply needGR!(S; feobsg).
Event Effects Each fluent inF may either be asserted or not in each state inS. The
status of these fluents changes over time according to which generated events have
occurred in the previous transition.

Events can have two sorts of effects: fluents can be initiated(they become true in
the next state) or they can be terminated (they cease to be true in the next state). The
combination of all effects generated in a state defines the state transition. The state
transition function captures inertia, so all fluents that are not affected in the current
state remain valid in the next state.

As mentioned above, given an observable eventeobs all events that could have an
effect on the stateS, are obtained byGR!(S; feobsg).

The set of allinitiated fluentsINIT(S; eobs) � F for some stateS 2 � and an
observable eventeobs 2 Eobs is defined as:INIT(S; eobs) = fp 2 F j 9e 2 GR!(S; feobsg); X 2 X � p 2 C"(X; e) ^ S j= Xg

A fluent will be initiated if an event is generated in the current state for whichC
specifies, that in current state, this event has the consequence that the fluent is initiated.

We go on to define which fluents are terminated in a given state by the occurrence
of a given event:TERM(S; eobs) = fp 2 F j 9e 2 GR!(S; feobsg); X 2 X � p 2 C#(X; e); S j= X orp = obl(e; d; v) ^ p 2 S ^ e 2 GR!(S; feobsg) orp = obl(e; d; v) ^ p 2 S ^ d 2 GR!(S; feobsg)g

A fluent is terminated if an event is generated in the current state for whichC spec-
ifies that it needs terminating. Furthermore, an obligationfluent is terminated if either
its deadline or the obliged event are in the set of generated events.

Now that we know which fluents need adding or deleting we can define the transi-
tion functionTR : � � Eobs ! � as:TR(S; eobs) = fp 2 F j p 2 S; p =2 TERM(S; eobs) orp 2 INIT(S; eobs)g

The first condition models inertia: all fluents which are asserted in the current state
persist into the next state, unless they are terminated. Thesecond condition includes
fluents which are initiated in the current state.

Ordered Traces Now that we have defined how states may be generated from a pre-
vious state and a single observable event, we are able to define traces and their state
evaluations:
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Eobs = fshoot; startwar; delaretrue; allup; provokeg (1)Einstat = fonsript; murderg (2)Eviol = fviol(shoot); viol(startwar); viol(delaretrue);viol(allup); viol(provoke); viol(onsript); viol(murder)g (3)D = fatwarg (4)W = fpow(onsript); pow(murder)g (5)M = fperm(shoot); perm(startwar); perm(delaretrue);perm(allup); perm(provoke); perm(onsript); perm(murder)g (6)O = fobl(startwar; shoot; murder)g (7)C"(X ; E) : hf:atwarg; startwari ! fatwarg (8)hf:atwarg; provokei ! fobl(startwar; shoot; murder)g (9)h;; onsripti ! fperm(shoot)g (10)h;; startwari ! fpow(onsript)g (11)C#(X ; E) : hfatwarg; delaretruei ! fatwarg (12)h;; delaretruei ! fperm(shoot)g (13)h;; delaretruei ! fpow(onsript)g (14)G(X ; E) : h;; allupi ! fonsriptg (15)h;; viol(shoot)i ! fmurderg (16)S0 = fperm(allup);perm(startwar);perm(onsript); perm(provoke);pow(murder);perm(murder)g (17)

Fig. 1. The War Institution

– An ordered traceis defined as a sequence of observable eventshe0; e1; : : : ; eni ei 2 Eobs; 0 � i � n
– The evaluation of an ordered tracefor a given starting stateS0 is a sequencehS0; S1; : : : Sn+1i such thatSi+1 = TR(Si; ei)
– Ordered traces and their evaluations allow us to monitor or investigate the evolution

of an institution over time. They also provide us with the data necessary to answer
most queries one might have about the dynamic evolution of institutional state.

2.3 An example: War

A country is constantly swinging between war and peace with its neighbour. The coun-
tries have agreed that when they are at peace, the act of a citizen of the first shooting a
citizen of the second counts as murder. But, when they are at war and a citizen has been
conscripted into the army it is permitted to shoot. When one country is provoked, it is
obliged to start war first before it is allowed to shoot.

The institutional model is depicted in Figure 1. (1) shows that a country can observe
a shooting, that either party has started the war or declareda truce, that the citizenry have
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been called up and that a country has been provoked, while theinstitution as a whole
can acknowledge that conscription has taken place and somebody has been murdered,
as stated by (2). (3) indicates all the violations that couldoccur. (4) contains one do-
main fluent stating that the country is at war, while (5–7) indicate the empowerments,
permissions and obligation the countries can hold.

The decision to start a war in time of peace results in the institutional state changing
to war, as shown in (8). (9) generates the obligation to starta war first before shoot-
ing to avoid committing a murder whenever being provoked during a period of peace.
(10) provides the permission to shoot whenever conscription has taken place, which is
empowered when a war is started, as indicated by (11). Declaring a truce will end the
state of war (12) when at war and revoke the permission to shoot (13) and the power to
conscript (14). When a country issues thecallupcommand, the institution will generate
conscription when empowered (15). When a shooting violation occurs, the institution
will raise the murder event (16). Initially (17), the institution declares a number of per-
missions and empowerments.

3 Modelling Institutions using Answer Set Programming

By encoding institutions as declarative specifications it becomes possible to reason
computationally about the consequences of “real world” actions such as message ex-
changes, on social states. This allows agents participating in an institution to take ac-
count of events up to given point in time and to execute the specification in order to
determine the social state at that time. Similarly agents may reason about the social
effects of future actions and act accordingly.

In this section we discuss the use of answer set programming (ASP) [4] to model and
reason about institutions, the agents that participate in them and the norms that govern
them. ASP is a logic programming language that has the advantage that specification
and implementation are identical, the language is easy to understand yet very powerful
and expressive, it comes with efficient algorithms, called solvers, to provide the solution
to the encoded problem and the availability of different types of negation: classical
negation and negation-as-failure1, the latter giving rise to non-deterministic outcomes.

3.1 Answer Set Programming

In answer set programming([4, 24]) a logic program is used to describe the require-
ments that must be fulfilled by the solutions of a certain problem. The answer sets
of the program, usually defined through (a variant/extension of) the stable model se-
mantics [24], then correspond to the solutions of the problem. This technique has been
successfully applied in domains such as planning [20, 33], configuration and verifi-
cation [40], super-optimisation [6], diagnosis [19], gametheory [14] and multi-agent
systems[5, 8, 15, 7, 10] where [7, 10] use answer set programming to reason about the
behaviour of a group of agents, while [5, 8, 15] use the formalism to model the reason-
ing capabilities, knowledge and beliefs of a single agent within a multi-agent system.

1 For classical negation one expects a proof that something isindeed false, while for negation-
as-failure it is sufficient that no proof exists that something is true.
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guilty  evidene:evidene  trusted witness:trusted witness  not lying; witness:witness:believe  not disbelieve:disbelieve  not believe:lying  disbelieve:
Fig. 2. Program for jury example

The smallest building block of an answer set program is an atom or predicate, e.gowns(X; Y) stating thatX ownsY . X andY are variables which can be grounded with
constants, e.g.owns(me; book). Each ground atom can be assigned the truth valuetrue
or false. Answer set programs uses two types of negation:: andnot. The former is
classical negation, indicating that something is know to befalse because a proof exists.
The latter denotes negation as failure, stating that something should be assumed false
due to the failure of proving it to be true. A literal is an atoma or its negation:a. An
extendedliteral is either a literall or its negationnot l.

An answer set programs consist of a set of statements, calledrules. Each rulel  B
is made of two parts namely the bodyB, which is a set of extended literals, and a head
literal l. It should be read as: ”if all the elements ofB are true, so is the headl” or “ l” is
supportedif all elements ofB are considered to be true. An assignment of truth values
to all literals in the program, without causing contradiction, is called an interpretation.
Often only those literals that are considered true are mentioned, as all the others are
false by default (negation as failure).

Obviously, we only assume those literals to be true that are actually supported. This
form of reasoning is referred to as the minimal model semantics. Unfortunately, in the
presence of negation-as-failure this approach is insufficient. Negation-as-failure gives
us no guarantee that something is indeed false and that information derived from it
is actually correct. To obtain intuitive solutions, we needto verify this. This is done
by reducing the program to a simpler program containing no instances of negation-as-
failure. Given an interpretation, all rules that containnot l that are considered false
are removed while the remaining rules only retain their literals. This reduction is often
referred to as the Gelfond-Lifschitz transformation. Whenthis program gives the same
supported literals as the ones with which we began, we have found an answer set.

Definition 1. LetP be a ground program.
The Gelfond-Lifschitz transformation ofP w.r.t S, a set of ground literals, is the pro-
gramPS containing the rulesl  B such thatl  B;not C 2 P with C \ S = ;,
withB andC sets of literals.
A set of ground literalsS is an answer set ofP iff S is the minimal model ofPS .

The uncertain nature of negation-as-failure gives rise to several answer sets, which
are all acceptable solutions to the problem that has been modelled. It is in this non-
determinism that the strength of answer set programming lies.
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Example 1.Consider the following situation. A jury member has to decide if the ac-
cused is guilty or not based on evidence provided by a witness. The only problem for
the jury member is to decide whether they trust this witness or not. This situation can
be represented by the following program shown in Figure 2, which has two answer sets:

– fguilty; evidene; trusted witness; witness; believeg
– fwitness; lying; disbelieveg

These two answer sets indicate clearly that the jury member has to decide on the credi-
bility of the witness and her decision is vital for her judgement of the accused.

Algorithms and implementations for obtaining answer sets of logic programs are re-
ferred to asanswer set solvers. The most popular and widely used solvers are DLV[21]
and SMODELS[34]. An alternative is CMODELS[26], a solver based on translating the
program to a SAT problem.

Each solver has two phases. First the program is grounded, that is the variables
are substituted for constants. Within this phase, rules which are obviously leading to
nothing are eliminated. Take for example the program:ifluent(atwar):event(shoot):holdsat(P; 2) holdsat(P; 1);not terminated(P; 1); ifluent(P):
this last rule has two grounded instances:holdsat(atwar; 2) holdsat(atwar; 1);not terminated(atwar; 1); ifluent(atwar)holdsat(shoot; 2) holdsat(shoot; 1);not terminated(shoot; 1); ifluent(shoot).

The parser will eliminate the second ground instance as no rules are provided to de-
riveifluent(shoot). The second phase is the actual solver where a grounded program
is taken and the set of its answer sets is produced.

For this paper we have opted to use SMODELS as our solver and hence we use
the SMODELS syntax in the examples that follow. This will also allow us touse the
distributed PLATYUS solver[27], which uses SMODELS as a back-end, for larger imple-
mentations of institutions.

3.2 Translation into Answer Set Programs

In order to reason about traces over a given institution, we define the following trans-
lation from the institutionI = hE ;F ; C;G;S0i into an answer set program. We use
instances of time to indicate the state transitions of an institution.

The mapping uses the following atoms:ifluent(P) to identify fluents,evtype(E; T)
to describe the type of an event,event(E) to denote the events,instant(I) for time
instances,final(I) for the last time instance in a trace,next(I1; I2) to establish time
ordering,ourred(E; I) to indicate that the event happened at time I,observed(E; I)
that the event was observed at that time,holdsat(P; I) to state that the institutional
fluent holds at I,initiated(P; I) andterminated(P; I) for fluents that are initiated
and terminated at I.

Since we are using SMODELS, we can take advantage of some of its syntactic con-
structs. In our mapping we use their choices syntax, symbolic functions and the built-in
compute statement:
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ourred(E; I)  observed(E; I): (18)holdsat(P; I2)  holdsat(P; I1);not terminated(P; I1);next(I1; I2); instant(I1; I2);ifluent(P): (19)holdsat(P; I2)  initiated(P; I1);ifluent(P);next(I1; I2); instant(I1; I2); (20)ourred(viol(E); I)  ourred(E; I);not holdsat(perm(E); I);event(E); event(viol(E)); instant(I): (21)ourred(V; I)  holdsat(obl(E; D; V); I); ourred(D; I);event(E; D; V); instant(I): (22)terminated(obl(E; D; V); I)  ourred(E; I);holdsat(obl(E; D; V); I);event(E; D; V); instant(I): (23)terminated(obl(E; D; V); I)  ourred(D; I);holdsat(obl(E; D; V); I);event(E; D; V); instant(I): (24)

Fig. 3. The institution base program

– Choices writtenLfl1; : : : lngM are a convenient construct to express that any num-
ber of literals betweenL andM from the setfl1 lng need to be true in order to
satisfy the construct. When omittedL is considered 0 andM to ben.

– A symbolic functionf(X; Y) defines a new constant that is the value of the function.
It is used as a shorthand to group sets of variables together in a meaningful way.
We use this represent obligationsobl(E; D; V) and violationsviol(R).

– The compute statement is used to generate only those answer sets that satisfy cer-
tain properties. The statementomputenumberfl1; : : : lng: makes sure that only
answer sets that satisfy every extended literalli for 1 � i � n are computed. The
number of generated answers is controlled bynumber.

– We also use facility for passing multiple argument lists to literals: when used in the
body of a rulea(args1; : : : ; argsn) is replaced byfa(args1); : : : ; a(argsn)g.
Each mapping of each institutionI consists of two parts:Pbase which is identical

for each interpretation andP �I specific for the institution being modelled. Together they
form the programPI .

The base programPbase (Figure 3) consists of rules responsible for the occurrence
of observed events and dealing with obligations and inertia. The first rule (18) assures
that each observed event (observed(E; I)) will be marked as occurred, as all observable
events are valid events. Rules (19) encode standard inertia, using negation as failure: any
fluent which is currently valid (holdsat(I1)) and will not be terminated in this state
(not terminated(P; I1)) needs still to be valid in the next state (holdsat(P; I2)). The
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fobserved(E; I)g  evtype(E; obs); event(E); instant(I);not final(I): (25)ev(I)  observed(E; I); event(E); instant(I): (26) not ev(I); instant(I); not final(I): (27) observed(E1; I); observed(E2; I); E1! = E2;instant(I); event(E1); event(E2): (28)

Fig. 4. Rules for ensuring observable traces

atomsnext(I1; I2) andinstant(I1; I2) are responsible for obtaining the next time
instance and for restricting the grounding domain. The rule(20) ensures that fluents that
are initiated (initiated(P; I1)) become valid (holdsat(P; I2)) in the next state. Rule
(21) is responsible for the generation of violations that are caused by non-permitted
events. Whenever an event occurs (ourred(E; I)) for which no permission exists in
that state (not holdsat(perm(E); I)) a violation is raised (ourred(viol(E); I)).
The last three rules deal with obligations. (22) is responsible for raising a violation
(ourred(V; I)) whenever the deadline expires (ourred(D; I)). The other atoms
in the body of this rule guarantee appropriate grounding of this rule. The rules (23)
and (24) regulate the end of obligations (terminated(obl(E; D; V); I)) when either the
obligation is fulfilled (ourred(E; I)) or the deadline expires (ourred(D; I)).

To constrain the answer set to those containing observable traces we add the rules in
Figure 4 toPbase . Rule (25) is responsible for the generation ofobserved(E; I) atoms.
For each combination of an event (event(E)) which is observable (evtype(E; obs))
and non-final (not final(I)) at time instance (instane(i)) anfobserved(E; I)g-
choice is created, indicating that you can either use thisobserved(E; I) atom or not.
(26) creates for each choice ofobserved(E; I) atom anev(I) atom, which will be used
by (27) to restrict the answer sets to observable traces, that is an observable event occurs
at each time instance. The last constraint (28) assures thateach answer set has only one
observable event at every time instance.

To make the programP �I more readable we introduce the shorthandEX( ; I) to
denote the translation of expressionX 2 X into the body of an ASP rule referring
to timeI . EX(x1 ^ x2 ^ : : : xn; I), with xi 2 X , is translated into an ASP conjunc-
tion EX(x1; I); EX(x2; I); : : : , EX(xn; I). EX(:p; I) is translated using negation
as failure intonot EX(p; I). EX(p; I) is translated intoholdsat(p; I).

With these syntactic rulesP �I becomes the program shown in Figure 5. By (29),
all the fluents are encoded as factsifluent(p) in the program. The main purpose
of these facts is to facilitate grounding. Each evente in the institution is responsible
for the creation of two facts: (30) generatesevent(e): facts while (31–33) record the
types of events with facts of the formevtype(e; X) with X equal toobs; at; viol
to indicate observable, institutional actions and violations. (34) and (35) produce the
rules for consequence generation. Whenever a fluent needs tobe initiated/terminated a
rule will be created with the occurrence of the responsible event (ourred(e; I)) and
the conditions on the state (EX(X; I) in the body and the initiation/termination atom in
the head (initiated(p; I)/terminated(p; I)). Event generation is dealt with by (36).
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p 2 F , ifluent(p): (29)e 2 E , event(e): (30)e 2 Eobs , evtype(e; obs): (31)e 2 Einstat , evtype(e; at): (32)e 2 Eviol , evtype(e; viol): (33)C"(X; e) = P , 8p 2 P � initiated(p; I) ourred(e; I);EX(X; I): (34)C#(X; e) = P , 8p 2 P � terminated(p; I) ourred(e; I);EX(X; I): (35)G(X; e) = E , g 2 E; ourred(g; I) ourred(e; I);holdsat(pow(e); I);EX(X; I): (36)p 2 S0 , holdsat(p; i0): (37)

Fig. 5. Rules for translation into SMODELS

For each event that could be generated a rule is produced containing the occurrence of
the triggering event (ourred(e; I)), the permission to execute this triggering event
(holdsat(pow(e); I)) and the conditions for the generation in the body and the occur-
rence of the generated event in the head (ourred(g; I)). Finally, the encoding of the
initial state is taken care of by (37), each fluentp in the initial state is transformed into
a factholdsat(p; i0):

Note thatP �i is only ungrounded with respect to the time instances. The constants
for these are provided by a third programPn. It is this program that determines the
length of the traces. This modularisation into three programs allows for easy reuse.0 < k < n : instant(ik): (38)0 < k < n� 1 : next(ik; ik+1): (39)final(in): (40)

The facts produced by (38) provide the program with all available time instances,
while the facts from (39) give order time necessary to go fromone state to the other.
Since we cannot have an observable event occurring at the final time instance, we need
a fact indicating the final state. This fact is produced by (40).

TogetherPbase , P �I andPn generatePnI , an answer set program capable of provid-
ing all ordered traces of lengthn for the institutionI.

Theorem 1. Let I = hE ;F ; C;G;S0i be an institution withPnI its corresponding an-
swer set program. Then, a one-to-one mapping exists betweenthe ordered traces of
lengthn and the answer sets ofPnI .

Given such a mapping we can add the necessary rules that allowus to produce those
traces that fulfil certain requirements. We will demonstrate this in the next section by
means of our war institution.
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ifluent(atwar): ifluent(obl(startwar; shoot; murder)):event(shoot):event(startwar):event(delaretrue):event(allup):event(onsript):event(murder):event(provoke):event(viol(shoot)):event(viol(startwar)):event(viol(delaretrue)):event(viol(allup)):event(viol(onsript)):event(viol(provoke)):
evtype(shoot; obs):evtype(startwar; obs):evtype(delaretrue; obs):evtype(allup; obs):evtype(onsript; inst):evtype(murder; inst):evtype(provoke; obs):evtype(viol(shoot); viol):evtype(viol(startwar); viol):evtype(viol(delaretrue); viol):evtype(viol(allup); viol):evtype(viol(onsript); viol):evtype(viol(murder); viol):evtype(viol(provoke); viol):initiated(obl(startwar; shoot; murder); I)  ourred(provoke; I); instant(I);not holdsat(atwar; I):initiated(atwar; I)  ourred(startwar; I); instant(I);not holdsat(atwar; I):initiated(perm(shoot); I)  ourred(onsript; I); instant(I):initiated(pow(onsript); I)  ourred(startwar; I); instant(I):terminated(atwar; I) ourred(delaretrue; I); instant(I); holdsat(atwar; I):terminated(perm(shoot); I) ourred(delaretrue; I); instant(I):terminated(pow(onsript); I) ourred(delaretrue; I); instant(I):ourred(onsript; I)  ourred(allup; I); instant(I);holdsat(pow(onsript); I):ourred(murder; I)  ourred(viol(shoot); I); instant(I):instant(i0; i1; i2; i3):next(i0; i1):next(i1; i2):next(i2; i3):final(i3): holdsat(perm(allup); i0):holdsat(perm(startwar); i0):holdsat(perm(onsript); i0):holdsat(perm(delaretrue); i0):holdsat(perm(murder); i0):holdsat(perm(provoke); i0):holdsat(pow(murder)); i0:

Fig. 6. War in ASP

3.3 An Example: War in ASP

When we translate the War institutionI from x2.3 for traces of length 3, we obtain
for P �I [ P 3 the program shown in Figure 6. From left to right and top to bottom, the
first two boxes encode the two non auto-generated facts produced by (29). For clarity,
we omit the encodings of permissions and power for each institutional event. The two
following boxes show the encodings of the events and the event types, as prescribed by
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(30–33). The initiating consequence generation rules of (34) are in box five, while box
six has the terminating consequence rules of (35). The eventgeneration rules (36) are
in the next box. The programP 3 is in box eight and box nine has the initial state (37).

Once we have this basic programPI we can start to query for specific results, like
“Is it possible to have a wartime murder?”, “Will provocation always lead to shooting?”.
In order to do this, two rules have to be added to the program: one to represent the query
and one to indicate to the solver that we are only interested in those ordered traces that
satisfy the condition. The following ASP rules encode the query “Will the country ever
have the obligation to start the war before shooting?”:ondition holdsat(obl(startwar; shoot; murder); I); instant(I):ompute all fonditiong:

The Figures 7 and 8 provide a graphical representation of twoof the answer sets
from running the program with this query. The former demonstrates that the obligation
can be satisfied while the latter shows that there exists at least one trace in which the
obligation is broken. The circles represent the time instances. The observable events
are given in bold above the arrows linking the time instancestogether with the result of
event generation. Below the circles, we list all the institutional fluents that hold in the
current state with the new fluents in bold.

4 Related Work

Much recent and contemporary work on modelling norms and violations has chosen
temporal logics as a starting point, as we now discuss.

Colombetti et al in [12] outline an abstract model for agent institutions based on
social commitments, where institutions comprise a set ofregistration rulesthat cap-
ture agents’ entry into and exit from institutions, a set ofinteraction rulesthat govern
commitment creation and satisfaction, a set ofauthorisationsthat describe agents’ ca-
pabilities and aninternal ontologythat describes a model for the interpretation of terms
relevant to the institution. Their approach (outlined in [23, 13, 41]) builds on the CTL�
extension of CTL[9], which includes past tense modalities for reasoning about actions
which have already occurred. Dignum in [17] also uses an extension of CTL to describe
her language for representing contracts in the building of agent organisations.

The Event Calculus (EC) [31, 32] is a declarative logic that reinterprets the Situ-
ation Calculus to capture when and how states change in response to external events.
EC has been used to model both the behaviour of commitments [42] among agents in
order to build interaction protocols, corresponding to theregulatory aspects of the work
described above, as well as more general social models such as those described in [30].
From a technical point of view, our approach essentially hasa kind of duality com-
pared to EC, in that the basis for the model is events rather than states. In itself, this
offers no technical advantage although we believe that being able to express violations
in terms of events rather than states better captures their nature. More significant are the
consequences of the grounding in ASP:

– For the most part the state and event models are equivalent with respect to properties
such as induction and abduction, but non-monotonicity is inherent in ASP and so
resort to the tricky process of circumscription is avoided.
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i0 i1 i2 i3perm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(murder) obl(startwar; shoot;murder)perm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(murder) atwarperm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(onsript)pow(murder) atwarperm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(shoot)perm(startwar)pow(onsript)pow(murder)
provokeprovoke startwarstartwar allupalluponsript

i0: The initial state, wherein all the initial fluents are initiated. The institution observes that a
country is provoked. From the event generation function (15and 16) we know that no further
events are generated. The consequence relation (9) is responsible for initiating the obligationobl(startwar; shoot; murder) in the next state.i1: As of this state the obligationobl(startwar; shoot; murder) holds. The institution ob-
serves startwar event. This event does not generate any further events. Since the obligation
has been fulfilled it can be terminated in the next state. The consequence relation (8 and 11)
indicate thatatwar andpow(onsript) have to be initiated in the next state.i2: In this state the obligation no longer holds andatwar andpow(onsript) have been ini-
tiated. The institution now observes theallup event. The event generation function (15)
thus generates the conscription event, since conscriptionis now empowered. This results in
the consequence relation (10) to orderperm(shoot) to be initiated in the next state.i3: This leads us to the final state in which the institution has the permission to shoot.

Fig. 7.Answer set illustrating the obligation satisfiedi0 i1 i2 i3perm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(murder) obl(startwar; shoot;murder)perm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(murder) perm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(murder) perm(allup)perm(onsript)perm(delaretrue)perm(murder)perm(provoke)perm(startwar)pow(murder)
provokeprovoke shootmurdershootviol(shoot) allupallup

i0: As for i0 of Figure 7i1: As of this state the obligationobl(startwar; shoot; murder) holds. The institution ob-
serves the eventshoot. The events indicates that the deadline of the obligation has passed,
so event generation will produce the corresponding violation, in this casemurder. Further-
more, since the event shoot was not permitted, the violationviol(shoot) is generated,
which in turn is responible for the eventmurder by (17). Since the obligation is violated, it
will be terminated in the next state. None of the events causeany state change.i2: After the violation of the obligation, the institution is returned to its original state. In this
state the institution observes the callup event. Because the institution is not empowered to
conscript, no other events are generated and no state changes are considered.i3: The institution has not changed.

Fig. 8. Answer set illustrating the obligation violated
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– Likewise, reasoning about defaults requires no special treatment in ASP.
– The consequence rules of our specification have equivalentsin EC, but the event

generation rules do not.
– The state of a fluent is determined by its truth-value in the ASP interpretation,

whereas EC (typically) has to encode this explicitly using two predicates.
– Inertia in EC is axiomatic, whereas in our approach it follows from the applica-

tion of the TR operator—although there is a strong syntacticsimilarity (perhaps
compounded by using the same terminology!) the philosophy is different.

– ASP allows a wider variety of queries than is typically provided in EC implemen-
tations but space constraints do not allow the full illustration of this aspect here.
Artikis et al. in [1, 2, 3, 30] describe a system for the specification of normative so-

cial systems in terms of power, empowerment and obligation.This is formalized using
both the event calculus [31] and a subset of the action languageC+ [25]. The notions
of power and empowerment are equivalent in both systems, butadditionally we intro-
duces violation as events and our modelling of obligations differs in that (i) they are
deadline-sensitive, and (ii) can raise a violation if they are not met in time. Violations
greatly improve the capacity to model institutions, but it should be remembered that
institutional modelling was (apparently) not Artikis’s goal. Likewise, although the in-
terpretation ofC+ using the CCalc tool gives rise to similar reasoning capabilities (with
similar complexity) to ASP, we believe our approach, including violations, provides a
more intuitive and natural way of expressing social constraints involving temporal as-
pects. A further advantage is in the formulation of queries,where ASP makes it possible
to encode queries similar to those found in (bounded) temporal logic model checking,
whereas, as noted above, queries on action languages are constrained by the action lan-
guage implementation. The other notable difference is onceagain, our focus on events
rather than states, which we have discussed at some length above.

In [7], Buccafurri et al. address the problem of specifying normative properties
through the use ofSocial Logic Programswhich discriminate between states considered
to be acceptable or unacceptable by particular agents. For agiven society and situation
these social logic programs can be combined and solved underthe stable models se-
mantics to give the set of states which are considered to be socially acceptable by group
as a whole. In our work we intentionally view the internal models of agents’ attitudes
as unknown (and hence that all actions whichmightbe chosen by are included in possi-
ble models of our programs). From the perspective of our work, in the case where it is
known that for instance some actions will never be performedby some agents because
those actions are considered unacceptable by the agent performing them, it would be
desirable to remove these actions from the set of possible models for a given institution.
Resolving this automatically represents an interesting area for future research.

5 Conclusions and Directions for Future Research

We have described a formal specification for institutions for the purpose of modelling
obligations, permissions and violations, while interactions between agents create traces
that record their actions. We demonstrate how the specification may be translated into
ASP and subsequently executed producing an answer set. Through the careful specifica-
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tion of the institutional state manipulation operations, this answer set has a one-to-one
relationship with the institutional event traces of the formal model. In consequence, we
arrive at an executable institutional specification that agents may dynamically compute
and query to establish both how the current institutional state was reached and which ac-
tions will have what consequences in the future of the current state. Tools are currently
being prototyped to automate these processes and aid in their visualization.

The ability to reason about and query time-related information is a strong point for
using ASP. In our current model of time is discrete, yet we would also like to reason
about durations, for examples when dealing with obligations. The DLV[21] system
already provides a limited set of aggregates, which would appear to offer a solution and
we will experiment with them in the near future.

The current approach does not deal with the effectiveness ofsanctions since we
do not encode the agent’s utility. One solution to this problem would be to encode
it as an atomutility(Agent;X; T ) and to use an extension of the ASP language we
currently use that allows preference. In such a language onewould be able to express
thatutility(Agent; 10; T ) is more preferred thanutility(Agent; 5; T ) for any given
Agent at any time.
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