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Abstract. It is recognised that institutions are potentially powerfieans for
making agent interactions effective and efficient, butiingons will only really
be useful when, as in other safety-critical scenarios, jtassible to prove that
particular properties do or do not hold for all possible emters. In contrast
to symbolic model-checking, answer set programming perthi¢ statement of
problems and queries in domain-specific terms as executaeprograms, thus
eliminating the gap between specification and verificaimglage. Furthermore,
results are presented in the same terms. In this paper welzetite use of an-
swer set programs as an institutional modelling techniyfeedemonstrate that
our institutional model can be intuitively be mapped intcesiswer set program
such that the ordered event traces of the former can be ebtasthe answer sets
of the latter, allowing for an easy way to query propertiemoflels.

1 Introduction

The case for institutions as mechanisms to structure anoleagent interactions has
been made at length in numerous places over the last 10 yWratsably the most rel-
evant fact for this paper is the recognition that it is thstitutional norms[18] that
hold the key, where norms are statements that serve to guidegalate agent be-
haviour, ranging from the abstract (“treat others as youldaush to be treated your-
self”) through rules (“if this boat's catch of cod exceedsannual quota then a fine is
payable”) to protocols defining sequences of (typicallydesph acts.

This is not the place for a repetition of the arguments faitinsons, but for the sake
of making this paper self-contained, we give a brief intretthn to the literature for the
interested reader. The earliest presentation in the canpaience literature is perhaps
Noriega’s thesis [35], followed by Rodriguez [37] and VaegtSalceda [38]. Along-
side, there have been several attempts at finding tractglesentations of institutional
norms, starting from the original FishMarket paper [36]ngsautomata [22], process
algebra [29], symbolic model-checking with temporal Iagjt1], commitments [39],
social institutions [41] action languages [2] and answempsegramming [10]. Initial
approaches were bottom-up, starting from protocols, bdate creating a verifiable re-
lationship between protocols and higher level represimzbf norms has not proven
fruitful. Thus more recent approaches such as [1, 16, 42Jracidding our own, have



sought to address this problem by specifying normative Wiehaat a level which is
both easily expressed by designers and computationalguéxiele and verifiable.

In this paper a top-down approach to virtual institutiondéscribed, in which ex-
ternal normative concepts are represented in terms thia¢ aaime time designers may
analyse (off-line) and about which agents may reason (o#)-lising the answer set
programming paradigm. In formalising the ideas set out 0,[fhis paper makes two
further contributions: (i) a formal event-based model & $ipecification of institutions
that captures all the essential properties, namely empowrer, permission, violation
and obligation (ii) a verifiable translation to answer setgygamming, resulting in a
decidable and executable model for institutions.

2 Virtual Institutions

To provide some context for the theory that follows, thistisecbegins with a brief
overview of institutions and the terms that we use. As oatlim the introduction the
essential characteristics of an institution are captuneétsinorms with varying degrees
of specificity. What agents do or say is constrained by a ginstitutional context, so
that irrelevant actions or communications are filtered ant] relevant ones advance
the interaction, cause an agent to acquire an obligatiothrough a violation, invite
a sanction. But while that serves to capture the agent'st pdiview, what about the
(institutional) environment? How are actions to be obsgrew are obligations to be
recorded and their satisfaction enforced, and how aretisois.to be detected and the
corresponding sanctions to be applied?

The model we propose is based on the conce@ldervable Eventhat capture
notions of the physical world — “shoot somebody” — almgtitutional Eventghat
are those generated by society — “murder” — but which onlyeh@aeaning within a
given social context. While observable events are cledrbeovable, institutional ones
are not, so how do they come into being? Searle [28] desctiitzesreation of an in-
stitutional state of affairs througBonventional Generatigrwhereby an event in one
contextCounts Asghe occurrence of another event in a second context. Takegtys-
ical world as the first context and by defining conditions imrte of states, institutional
events may be created that count as the presence of staltesamcurrence of events in
the institutional world.

Thus, we model an institution as a setigtitutional stateghat evolve over time
subject to the occurrence efentswhere an institutional state is a setiostitutional
fluentsthat may be held to be true at some instant. Furthermore, wesegarate such
fluents intodomainfluents, that depend on the institution being modelled, sisctA
owns something”, andormative fluentthat are common to all specifications and may
be classified as follows:

— Institutional Power: This represents the institutional capability for an event t
be brought about meaningfully, and hence change some fliretits institutional
state. Without institutional power, the event may not beulgtd about and has no
effect; for example, a marriage ceremony will only bring abtthe married state, if
the person performing the ceremony is empowered so to do.



— Permission: Each permission fluent captures the property that some ewant
occur without violation. If an event occurs, and that evemat permitted, then a
violation evenis generated.

— Obligation: Obligation fluents are modelled as the dual of permission oBliga-
tion fluent states that a particular event is obliged to obedore a given deadline
event (such as a timeout) and is associated with a speciftgation. If an obli-
gation fluent holds and the obliged event occurs then theyatidin is said to be
satisfied. If the corresponding deadline event occurs therobligation is said to
be violated and the specified violation event is generated.

Events can be classified into: (i) a set of observable evbeiag those events ex-
ternal to the institution which may be brought about indej@rtly from the institution
and (ii) a set ofnstitutional eventsvhich may be broken down intaolation eventand
institutional actionsthese events may only be brought about if they are genebsgted
the institutional semantics. Finally we have a set of insitihal rules which associate
the occurrence of events with some effects in the subsegtagat These can be divided
into: (i) generation rulesvhich account for the conventional generation of eventshEa
generation rule associates the satisfaction of some ¢onslih the current institutional
state and the occurrence of an (observed or institutionaltevith a generated insti-
tutional event. For example: “A wedding ceremony countsisroarriage only if the
couple have a licence”. The generating and generated emertigken by the institution
to have occurred simultaneously. (@pnsequence rulegach of which associates the
satisfaction of some conditions in the current institusibstate and the occurrence of
an event in the institution or the world to the change in stdtene or more fluents
in the next institution state. For example: “Submitting gg@ato a conference grants
permission for the paper to be redistributed by the confexemganisers”.

Violation and sanction play an important role in the speatfan of institutions.
Violations may arise either from explicit generation, frdhe occurrence of a non-
permitted event, or from the failure to fulfil an obligatidn.these cases sanctions that
may include obligations on violating agents or other agant¥/or changes in agents’
permission to do certain actions, may then simply be exprkas consequences of the
occurrence of the associated violation event in the sulesgdgustitutional state.

2.1 The Institutional Model

From the introduction above, it can be seen that a definiti@anmstitution is a quintuple
I := (&, F,C,G,Sp) consisting of institutional eventg’), fluents (F), a consequence
relation (), an event generation relatiof)and an initial stateS). We now describe
each of these in more detail.

Institutional Events Each institution defines a set of event signatuie® denote the
types of events that may occdrcomprises two disjoint subset$,,s denotingobserv-
able eventand¢;,; denotinginstitutional eventsWe break institutional events down
further into the disjoint subsetisistitutional actionse;,, st..: @andviolation events,;,; .
We define€,;,; such thatve € Eipsiact U Eops - viol(e) € Eyin (i.€. €ach institutional
action has a corresponding violation eveitl(e) in &£,;,, which may arise from the
performance o when it is not permitted).



Institutional Fluents Each institution comprises the union of four distinguiskets$ of
fluents: one defines a setbbmain FluentglenotedD that account for the description
of the domain the institution operates, while the remairadersets of boolean fluents
indicating different types afiormative fluents

W A set of institutional powers of the formow(e) : e € Einsiact Where each power
fluent denotes the capability of some evetd be brought about (generated) in the
institution.

M A set of event permissiongerm(e) : e € Einstact U Eops Where each permission
fluent denotes that it is permitted for an everto be brought about. An event is
not explicitly forbidden, instead this is implicitly remented by the absence of
permission for that event to be brought about.

O A set of obligations, of the formbl(e,d,v) : e € £,d € £,v € 5+ Where each
obligation fluent denotes that everghould be brought about before the occurrence
of eventd or be subject to the violation.

Together, these disjoint sets of domain fluents and noredtients form thénstitu-

tional FluentsF (F = WU MU OUD).

The state of an institution at a certain time is determinethloge institutional flu-
ents that are valid at that time. The set of all possibdgitutional statess denoted as
X with ¥ = 27 It is important to appreciate that not all those states agtually be
used in an institution.

Events can have the same effect on multiple of states, nbbjus Borrowing a
book from a library will result in the obligation to bring itlgk regardless of how many
books have been borrowed in the past. To facilitate this,ntr@duce the concept of
State Formulaas a collection of states that satisfy certain propertighanthey either
contain certain fluents or they do not. The set of all statsfdae is denoted a¥ with
X = 27Y7F  where-F is the negation of each fluent JA.

Consequences Each institution defines a functighthat describes which fluents are
initiated and terminated by the occurrence of a certain tevea state matching some
criteria. The function is expressed @s: X x £ — 27 x 2¥. GivenX € X and

e € events, C(X,e) = (CT(X,e),C*(X,e)) with CT(X, e) containing those fluents
which areinitiated by the event in any state matching andC*(X, e) collecting those
fluents which argerminatedby evente in any state matching.

Event Generation Each institution defines an event generation func@iomhich de-
scribes when the occurrence of one ewanints ashe occurrence of other events inside
the institution:G : X x & — 2&inst,

As a consequence there could be a cascading of events. Asliwsewiilater, we
require the transitive closure to obtain all generated &svigEam one initial observable
event.

Initial State Each institution defines the s8¢ C F that denotes the set of fluents that
hold when the institution is created.



2.2 Semantics

During the lifetime of an institution, its state changes tluevents taking place. Each
observable event possibly generates more events whichriinctwld create further
events. Each of these events could affect the current sthiks their confluence de-
termines the next state.

States We define the semantics of an institution over a set of stategach state
comprises a set of fluents JAwhich are held to be true at a given time (see for example
Figure 7). We say that a stafe € X satisfies fluenff € F, denotedS |= f, when

f € S. It satisfies its negation f, whenf ¢ S. This notation can be extended to sets
X C Xinthe followingway:S = X iff Ve € X - S |= z.

Event Generation In order to account for event generation we define a functian t
describes which events to generated in a given stidte: ¥ x 2 — £ (£ is the set of
all institutional events). In some stafesubject to a set of evenits, GR(S, E) includes
all of the events which must be generated by the occurreneeenitsE in stateS and
is defined as follows:

GR(S,E)={e€f|e€c E or
Je' e E,p € X,e € G(p,e')-SEpow(e) NS = ¢or
Je' e E,pe X,ec G(p,e') e€&i NSE @ or
Jde' € E-e =viol(e'),S = —perm(e) or
de' € £,de E- S |=obl(e,d,e)}

=

. The first condition ensures that events remain generatedig).

2. The second condition defines event generation to be @kpBpecified by the in-
stitutional relationG. One event generates another event in a given state, when
() the generation was specified by the institution, (i) tugrent state satisfies the
conditions for the generation and (iii) the generated eisgeainpowered.

3. The third condition deals with violations generated asc#j@d by the institution
rather that violations resulting from events that were reshptted. Violations do
not require empowerment.

4. The fourth condition considers the generation of violatevents as the result of
the occurrence of non-permitted events.

5. The last condition deals with the generation of violatewents as the result of
the failure to bring about an obliged event. For all asseotedyation fluents, the
occurrence of the deadline evehgjenerates the corresponding violation event
The parallel generation of events, means it is possible rioe\veent which fulfils

an obligation to be generated simultaneously with the aliligp’s deadline (that is,
the deadline counts as the fulfilment of the obligation ordbggation counts as the
fulfilment of the deadline or another action counts as bogtulfilment of the deadline
and the fulfil lent of the obligation). While we consider tBituation undesirable we do
not prohibit its specification, but say that when it does otlee obligation is considered
as not to have been fulfilled.



It is easy to see thd&R (S, E) is a monotonic function. This implies that for any
given state and a set of events, we can obtain a fixgoiit (S, E). In our institutional
model, generated events come about from the performanceebluservable event
eors € Eops IN @ given states. So, to obtain all events that originate from this one event
in this state, we simply needR“ (S, {eops}).

Event Effects Each fluent inF may either be asserted or not in each stat§.ifhe
status of these fluents changes over time according to whedergted events have
occurred in the previous transition.

Events can have two sorts of effects: fluents can be initiéitesy become true in
the next state) or they can be terminated (they cease to ééntithe next state). The
combination of all effects generated in a state defines e $tansition. The state
transition function captures inertia, so all fluents tha aot affected in the current
state remain valid in the next state.

As mentioned above, given an observable evgpt all events that could have an
effect on the staté, are obtained b%R“ (S, {eops})-

The set of allinitiated fluentsINIT(S, e,5s) C F for some stateés € ¥ and an
observable evert,,s € &5 is defined as:

INIT(S, eops) = {p € F | Je € GR*(S,{eos}), X € X -peCT(X,e)AS = X}

A fluent will be initiated if an event is generated in the cuatrstate for whichC
specifies, that in current state, this event has the coneequleat the fluent is initiated.

We go on to define which fluents are terminated in a given stateédoccurrence
of a given event:

TERM(S, eops) = {p € F | Je € GRY(S, {ems}), X € X -pe C+H(X,e),S |= X or
p=obl(e,d,v) Ape SAeec GRY(S,{ews}) or
p=obl(e,d,v) Ape SAde GRY(S,{ews})}

A fluent is terminated if an event is generated in the currettiégor whichC spec-
ifies that it needs terminating. Furthermore, an obligatioent is terminated if either
its deadline or the obliged event are in the set of generaiedte

Now that we know which fluents need adding or deleting we cdimel¢he transi-
tion functionTR : ¥ x £, — X as:

TR(S,e0ps) ={p € F|p€S,p¢ TERM(S,e,s) or
p € INIT(S, e0p5) }

The first condition models inertia: all fluents which are agskin the current state
persist into the next state, unless they are terminated s€ébend condition includes
fluents which are initiated in the current state.

Ordered Traces Now that we have defined how states may be generated from a pre-

vious state and a single observable event, we are able tcededices and their state
evaluations:



Eobs = {shoot,startwar,declaretruce, callup, provoke} 1)

Einstact = {conscript, murder} 2
Eviol = {viol(shoot), viol(startwar), viol(declaretruce),

viol(callup), viol(provoke), viol(conscript), viol(murder)} 3)

D = {atwar} 4)

W = {pow(conscript), pow(murder)} (5)

M = {perm(shoot), perm(startwar), perm(declaretruce),

perm(callup), perm(provoke), perm(conscript), perm(murder)} (6)

O = {obl(startwar, shoot, murder)} @)
C'(x,8): {({~atwar}, startwar) — {atwar} (8)
({—atwar}, provoke) — {obl(startwar, shoot,murder)} 9)

(0, conscript) — {perm(shoot)} (10)

(0, startwar) — {pow(conscript)} (11)

CH(x,€): ({atwar},declaretruce) — {atwar} (12)
(0, declaretruce) — {perm(shoot)} (13)

(0, declaretruce) — {pow(conscript)} (14)

G(X,E): (@, callup) — {conscript} (15)
(0, viol(shoot)) — {murder} (16)

So = {perm(callup), perm(startwar), perm(conscript), perm(provoke),

pow(murder), perm(murder)} (17)

Fig. 1. The War Institution

— An ordered traces defined as a sequence of observable events
<60761:"':en> e; € gobs:O S i S n

— The evaluation of an ordered tracéor a given starting staté, is a sequence
<So, Sl, L Sn+1> such thaSH_l = TR(SZ €i)

— Ordered traces and their evaluations allow us to monitanastigate the evolution
of an institution over time. They also provide us with theadag&cessary to answer
most queries one might have about the dynamic evolutionstititional state.

2.3 Anexample: War

A country is constantly swinging between war and peace wstheighbour. The coun-
tries have agreed that when they are at peace, the act ofancdf the first shooting a
citizen of the second counts as murder. But, when they araiaamd a citizen has been
conscripted into the army it is permitted to shoot. When omentry is provoked, it is
obliged to start war first before it is allowed to shoot.

The institutional model is depicted in Figure 1. (1) shovet thcountry can observe
a shooting, that either party has started the war or dectatrete, that the citizenry have



been called up and that a country has been provoked, whilestigution as a whole
can acknowledge that conscription has taken place and smiyidtas been murdered,
as stated by (2). (3) indicates all the violations that caaddur. (4) contains one do-
main fluent stating that the country is at war, while (5-7)c¢atk the empowerments,
permissions and obligation the countries can hold.

The decision to start a war in time of peace results in théiniginal state changing
to war, as shown in (8). (9) generates the obligation to stavar first before shoot-
ing to avoid committing a murder whenever being provokedrdpa period of peace.
(10) provides the permission to shoot whenever conscrigitas taken place, which is
empowered when a war is started, as indicated by (11). Deglartruce will end the
state of war (12) when at war and revoke the permission totgi@pand the power to
conscript (14). When a country issues tialup command, the institution will generate
conscription when empowered (15). When a shooting viataticcurs, the institution
will raise the murder event (16). Initially (17), the instiibn declares a number of per-
missions and empowerments.

3 Modelling Institutions using Answer Set Programming

By encoding institutions as declarative specificationseitdmes possible to reason
computationally about the consequences of “real worldioast such as message ex-
changes, on social states. This allows agents particgpatian institution to take ac-
count of events up to given point in time and to execute theipation in order to
determine the social state at that time. Similarly agentg nreason about the social
effects of future actions and act accordingly.

In this section we discuss the use of answer set programiBig)[4] to model and
reason about institutions, the agents that participatedmtand the norms that govern
them. ASP is a logic programming language that has the aagarihat specification
and implementation are identical, the language is easydenstand yet very powerful
and expressive, it comes with efficient algorithms, caltddess, to provide the solution
to the encoded problem and the availability of differentetypf negation: classical
negation and negation-as-failtiréhe latter giving rise to non-deterministic outcomes.

3.1 Answer Set Programming

In answer set programmin(f4, 24]) a logic program is used to describe the require-
ments that must be fulfilled by the solutions of a certain fob The answer sets
of the program, usually defined through (a variant/extensi) the stable model se-
mantics [24], then correspond to the solutions of the problEhis technique has been
successfully applied in domains such as planning [20, 33jfiguration and verifi-
cation [40], super-optimisation [6], diagnosis [19], gatheory [14] and multi-agent
systems|[5, 8, 15, 7, 10] where [7, 10] use answer set progragtm reason about the
behaviour of a group of agents, while [5, 8, 15] use the foismato model the reason-
ing capabilities, knowledge and beliefs of a single agetitiwia multi-agent system.

! For classical negation one expects a proof that somethiimgléed false, while for negation-
as-failure it is sufficient that no proof exists that someghis true.



guilty < evidence.
evidence < trusted_witness.
trusted_witness < not lying,witness.
witness.
believe < not disbelieve.
disbelieve ¢ not believe.
lying < disbelieve.

Fig. 2. Program for jury example

The smallest building block of an answer set program is amaiopredicate, e.g
owns(X, Y) stating thatX ownsY . X andY are variables which can be grounded with
constants, e.ghwns(me, book). Each ground atom can be assigned the truth vialiee
or false Answer set programs uses two types of negatioandnot. The former is
classical negation, indicating that something is know tdeltee because a proof exists.
The latter denotes negation as failure, stating that sdngethould be assumed false
due to the failure of proving it to be true. A literal is an atanor its negation-a. An
extendediteral is either a literal or its negatiomot /.

An answer set programs consist of a set of statements, calkesi Each rulé < B
is made of two parts namely the bo@y which is a set of extended literals, and a head
literal [. It should be read as: "if all the elementsBfare true, so is the heddor “1” is
supportedf all elements ofB are considered to be true. An assignment of truth values
to all literals in the program, without causing contradiatiis called an interpretation.
Often only those literals that are considered true are roeet, as all the others are
false by default (negation as failure).

Obviously, we only assume those literals to be true thatexealy supported. This
form of reasoning is referred to as the minimal model sermantinfortunately, in the
presence of negation-as-failure this approach is insafftciNegation-as-failure gives
us no guarantee that something is indeed false and thaniaf@n derived from it
is actually correct. To obtain intuitive solutions, we ndedverify this. This is done
by reducing the program to a simpler program containing staimces of negation-as-
failure. Given an interpretation, all rules that contaiot | that are considered false
are removed while the remaining rules only retain theirdite This reduction is often
referred to as the Gelfond-Lifschitz transformation. Whtgs program gives the same
supported literals as the ones with which we began, we havadfan answer set.

Definition 1. Let P be a ground program.

The Gelfond-Lifschitz transformation &f w.r.t S, a set of ground literals, is the pro-
gram P° containing the rule$ < B such thatl «+ B,not C € PwithC N S = 0,
with B andC' sets of literals.

A set of ground literalsS is an answer set aP iff S is the minimal model oP*.

The uncertain nature of negation-as-failure gives riseetesal answer sets, which
are all acceptable solutions to the problem that has beereltedd |t is in this non-
determinism that the strength of answer set programmisg lie



Example 1.Consider the following situation. A jury member has to decidthe ac-
cused is guilty or not based on evidence provided by a witriEss only problem for
the jury member is to decide whether they trust this witnegsob. This situation can
be represented by the following program shown in Figure 2¢lwhas two answer sets:
— {guilty,evidence, trusted witness,witness,believe}
— {witness, 1lying,disbelieve}
These two answer sets indicate clearly that the jury memdetdidecide on the credi-
bility of the witness and her decision is vital for her judgamof the accused.

Algorithms and implementations for obtaining answer sétsgic programs are re-
ferred to asanswer set solver§he most popular and widely used solvers are DLV[21]
and S10DELS[34]. An alternative is ®ODELS[26], a solver based on translating the
program to a SAT problem.

Each solver has two phases. First the program is groundadistithe variables
are substituted for constants. Within this phase, ruleslvhare obviously leading to
nothing are eliminated. Take for example the program:

ifluent(atwar).

event(shoot).

holdsat(P,2) + holdsat(P, 1), not terminated(P, 1), ifluent(P).

this last rule has two grounded instances:

holdsat(atwar, 2) < holdsat(atwar, 1), not terminated(atwar, 1), ifluent(atwar)
holdsat(shoot, 2) « holdsat(shoot, 1), not terminated(shoot, 1), ifluent(shoot).

The parser will eliminate the second ground instance asles ase provided to de-
rive ifluent(shoot). The second phase is the actual solver where a groundedpmnogr
is taken and the set of its answer sets is produced.

For this paper we have opted to usei@ELS as our solver and hence we use
the SVODELS syntax in the examples that follow. This will also allow ususe the
distributed RATYUS solver[27], which usesODELS as a back-end, for larger imple-
mentations of institutions.

3.2 Translation into Answer Set Programs

In order to reason about traces over a given institution, &fand the following trans-
lation from the institutionZ = (£, F,C,G,S) into an answer set program. We use
instances of time to indicate the state transitions of atitirti®n.

The mapping uses the following atoms1uent (P) to identify fluentsevtype(E, T)
to describe the type of an eveerent (E) to denote the eventspstant(I) for time
instancesfinal(I) for the last time instance in a traassxt(I1, I2) to establish time
orderingoccurred(E, I) to indicate that the event happened at timsbkerved(E, I)
that the event was observed at that timeldsat(P, I) to state that the institutional
fluent holds at Iinitiated(P, I) andterminated(P, I) for fluents that are initiated
and terminated at I.

Since we are usingNBODELS, we can take advantage of some of its syntactic con-
structs. In our mapping we use their choices syntax, syrolfuatictions and the built-in
compute statement:

10



occurred(E, I) < observed(E, I). (18)
holdsat(P,I2) < holdsat(P,I1), not terminated(P, I1),
next(I1,I2),instant(I1;I2),

ifluent(P). (19)
holdsat(P,I2) « initiated(P, I1),ifluent(P),
next(I1,I2),instant(I1;I2), (20)

occurred(viol(E), I) < occurred(E, I),
not holdsat(perm(E), I),

event(E), event(viol(E)), instant(I). (21)
occurred(V,I) « holdsat(obl(E,D,V),I), occurred(D,I),
event(E;D; V), instant(I). (22)

terminated(obl(E,D, V), I) + occurred(E, I),

holdsat(obl(E,D,V), I),

event(E;D;V), instant(I). (23)
terminated(obl(E,D, V), I) « occurred(D, I),

holdsat(obl(E,D, V), I),

event(E;D; V), instant(I). (24)

Fig. 3. The institution base program

— Choices written.{l,, .. .1,,} M are a convenient construct to express that any num-
ber of literals betweerl. and M from the set{l, I,,} need to be true in order to
satisfy the construct. When omittddis considered 0 and/ to ben.

— A symbolic functionf (X, Y) defines a new constant that is the value of the function.
It is used as a shorthand to group sets of variables togethemeaningful way.
We use this represent obligatiosisl (E, D, V) and violationsriol(R).

— The compute statement is used to generate only those anstsehat satisfy cer-
tain properties. The statemetimputenumber{1;,...1,}. makes sure that only
answer sets that satisfy every extended literédr 1 < i < n are computed. The
number of generated answers is controllechiyber.

— We also use facility for passing multiple argument listsit@rals: when used in the
body of a rulea(args;;...;args,) is replaced by{a(args,),...,a(argsn)}.

Each mapping of each institutiah consists of two partsP;,;. which is identical
for each interpretation anél; specific for the institution being modelled. Together they
form the progranP;.

The base program,,s. (Figure 3) consists of rules responsible for the occurrence
of observed events and dealing with obligations and in€eftig first rule (18) assures
that each observed evenbgerved(E, I)) will be marked as occurred, as all observable
events are valid events. Rules (19) encode standard inesiray negation as failure: any
fluent which is currently validHoldsat(I;)) and will not be terminated in this state
(not terminated(P, I;)) needs still to be valid in the next staie(dsat (P, I,)). The
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{observed(E, I)} « evtype(E, obs),event(E), instant(I), not final(I). (25)

ev(I) « observed(E, I),event(E), instant(I). (26)
+ not ev(I),instant(I), not final(I). (27)
< observed(E1, I), observed(E2,I),E1l = E2,

instant(I), event(E1l), event(E2). (28)

Fig. 4. Rules for ensuring observable traces

atomsnext(Iy, I,) andinstant(Iy;I,) are responsible for obtaining the next time
instance and for restricting the grounding domain. The (209 ensures that fluents that
are initiated {nitiated(P, I;)) become validfoldsat(P, I,)) in the next state. Rule
(21) is responsible for the generation of violations that eaused by non-permitted
events. Whenever an event occussdurred(E, I)) for which no permission exists in
that state ot holdsat(perm(E), I)) a violation is raised dccurred(viol(E), I)).
The last three rules deal with obligations. (22) is respaasior raising a violation
(occurred(V,I)) whenever the deadline expiresccurred(D, I)). The other atoms
in the body of this rule guarantee appropriate groundinchi tule. The rules (23)
and (24) regulate the end of obligationgfminated(obl(E,D, V), I)) when either the
obligation is fulfilled pccurred(E, I)) or the deadline expire®{curred(D, I)).

To constrain the answer set to those containing observaties we add the rules in
Figure 4 toPy,s.. Rule (25) is responsible for the generatiombierved(E, I) atoms.
For each combination of an everivent(E)) which is observableeytype(E, obs))
and non-final fiot £inal(I)) at time instanceilnstance(i)) an {observed(E, I)}-
choice is created, indicating that you can either usedbig:rved(E, I) atom or not.
(26) creates for each choiceafserved(E, I) atom arev(I) atom, which will be used
by (27) to restrict the answer sets to observable tracetdstha observable event occurs
at each time instance. The last constraint (28) assuresdlchtanswer set has only one
observable event at every time instance.

To make the progran®; more readable we introduce the shorthdnd (-, I) to
denote the translation of expressidh € A’ into the body of an ASP rule referring
totimel. EX(z1 Axa A...xzp, I), with z; € X, is translated into an ASP conjunc-
tion EX (z1,1), EX (x2,1),..., EX(xy,I). EX(-p,I) is translated using negation
as failure intonot EX (p, I). EX (p,I) is translated inthioldsat(p, I).

With these syntactic rule®; becomes the program shown in Figure 5. By (29),
all the fluents are encoded as fadtluent(p) in the program. The main purpose
of these facts is to facilitate grounding. Each eveim the institution is responsible
for the creation of two facts: (30) generatesnt(e). facts while (31-33) record the
types of events with facts of the forewvtype(e,X) with X equal toobs, act, viol
to indicate observable, institutional actions and violasi. (34) and (35) produce the
rules for consequence generation. Whenever a fluent neédsinitiated/terminated a
rule will be created with the occurrence of the responsitée(occurred(e, I)) and
the conditions on the stat&X(X, I) in the body and the initiation/termination atom in
the head{nitiated(p, I)/terminated(p, I)). Event generation is dealt with by (36).
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p € F < ifluent(p). (29)

e € £ & event(e). (30)

e € Eops & evtype(e, obs). (31)

€ € Einstact < evtype(e, act). (32)

€ € Eyiol & evtype(e, viol). (33)
C'(X,e) = P & Vp € P-initiated(p, I)¢ occurred(e, I),EX (X, I). (34)

C*(X,e) = P & Vp € P - terminated(p, I)¢ occurred(e, I),EX(X,I).  (35)
G(X,e) =E & g € E,occurred(g, I)<occurred(e, I),

holdsat(pow(e), I),EX(X,I). (36)

p € So < holdsat(p, io). (37)

Fig. 5. Rules for translation into BODELS

For each event that could be generated a rule is producedinmg the occurrence of
the triggering eventdccurred(e, I)), the permission to execute this triggering event
(holdsat(pow(e), I)) and the conditions for the generation in the body and themcc
rence of the generated event in the heattrred(g, I)). Finally, the encoding of the
initial state is taken care of by (37), each flugrih the initial state is transformed into
afactholdsat(p, i¢)-

Note thatP;* is only ungrounded with respect to the time instances. Thetents
for these are provided by a third prograft. It is this program that determines the
length of the traces. This modularisation into three prograllows for easy reuse.

0 <k <n:instant(iy). (38)
0<k<n-—1:next(ix,ixt1). (39)
final(i,). (40)

The facts produced by (38) provide the program with all aldé time instances,
while the facts from (39) give order time necessary to go fam state to the other.
Since we cannot have an observable event occurring at theifireeinstance, we need
a fact indicating the final state. This fact is produced by)(40

TogetherP,,s., P; andP™ generatd’}, an answer set program capable of provid-
ing all ordered traces of lengthfor the institutionZ.

Theorem 1. LetZ = (£, F,C,G,Sy) be an institution withP} its corresponding an-
swer set program. Then, a one-to-one mapping exists bettheeardered traces of
lengthn and the answer sets &f;'.

Given such a mapping we can add the necessary rules thatualtmproduce those
traces that fulfil certain requirements. We will demonsgtrdiis in the next section by
means of our war institution.
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ifluent(atwar). ifluent(obl(startwar, shoot, murder)).

evtype(shoot, obs).
evtype(startwar, obs).
evtype(declaretruce, obs).

event(shoot).
event(startwar).
evtype(callup, obs).
evtype(conscript, inst).
evtype(murder, inst).

event(declaretruce).
event(callup).
event(conscript).
event(murder). evtype(provoke, obs).

event(viol(shoot)). evtype(viol(startwar), viol).

event(viol(startwar)).
event(viol(declaretruce)).

event(viol(conscript)).

evtype(viol(declaretruce), viol).
evtype(viol(callup), viol).

evtype(viol(murder), viol).

(
( (
( (
( (
( (
( (
( (
event(provoke). evtype(viol(shoot), viol).
( (viol(
(viol( (viol(
(viol( (viol(
event(viol(callup)). evtype(viol(conscript), viol).
(viol( (viol(
(viol( (viol(

event(viol(provoke)). evtype(viol(provoke), viol).

initiated(obl(startwar, shoot, murder), I) + occurred(provoke, I), instant(I),
not holdsat(atwar, I).
initiated(atwar, I) - occurred(startwar, I), instant(I),
not holdsat(atwar, I).
initiated(perm(shoot), I) < occurred(conscript, I), instant(I).
initiated(pow(conscript), I) « occurred(startwar, I),instant(I).

terminated(atwar, I) ¢ occurred

,holdsat

terminated(perm(shoot), I) + occurred
terminated(pow(conscript), I) + occurred

declaretruce, I), instant(I)
atwar, I).

declaretruce, I),instant(I).
declaretruce, I), instant(I).

—~ =~ =

occurred(conscript, I) « occurred(callup, I),instant(I),
holdsat(pow(conscript), I).
occurred(murder, I) « occurred(viol(shoot), I), instant(I).

holdsat(perm(callup), i0).
instant(i0;i1;i2;i3). holdsat(perm(startwar), i0).
next(i0,i1). holdsat(perm(conscript), i0).
next(il,i2). holdsat(perm(declaretruce), i0).
next(i2,1i3). holdsat(perm(murder), i0).
final(i3). holdsat(perm(provoke), i0).

holdsat(pow(murder)), i0.

Fig. 6. War in ASP

3.3 An Example: War in ASP

When we translate the War institutidhfrom §2.3 for traces of length 3, we obtain
for Py U P? the program shown in Figure 6. From left to right and top tadiot the
first two boxes encode the two non auto-generated facts pealdoy (29). For clarity,
we omit the encodings of permissions and power for eachtiisthal event. The two
following boxes show the encodings of the events and thetaypes, as prescribed by
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(30-33). The initiating consequence generation rules ¥ §Be in box five, while box
six has the terminating consequence rules of (35). The ga@dration rules (36) are
in the next box. The prografi? is in box eight and box nine has the initial state (37).

Once we have this basic prografa we can start to query for specific results, like
“Is it possible to have a wartime murder?”, “Will provocatialways lead to shooting?”.
In order to do this, two rules have to be added to the programt@represent the query
and one to indicate to the solver that we are only interestéiddse ordered traces that
satisfy the condition. The following ASP rules encode therguWill the country ever
have the obligation to start the war before shooting?”:

condition«+holdsat(obl(startwar, shoot,murder), I), instant(I).
compute all {condition}.

The Figures 7 and 8 provide a graphical representation ofdfitbe answer sets
from running the program with this query. The former demratss that the obligation
can be satisfied while the latter shows that there existsaat e trace in which the
obligation is broken. The circles represent the time ingtanThe observable events
are given in bold above the arrows linking the time instartogsther with the result of
event generation. Below the circles, we list all the insittuial fluents that hold in the
current state with the new fluents in bold.

4 Related Work

Much recent and contemporary work on modelling norms anthtians has chosen
temporal logics as a starting point, as we now discuss.

Colombetti et al in [12] outline an abstract model for agerstitutions based on
social commitments, where institutions comprise a seegfstration rulesthat cap-
ture agents’ entry into and exit from institutions, a setrméraction rulesthat govern
commitment creation and satisfaction, a seaothorisationghat describe agents’ ca-
pabilities and atfnternal ontologythat describes a model for the interpretation of terms
relevant to the institution. Their approach (outlined i8,[23, 41]) builds on the CT+
extension of CTL[9], which includes past tense modalit@sréasoning about actions
which have already occurred. Dignum in [17] also uses amside of CTL to describe
her language for representing contracts in the buildinggeh&organisations.

The Event Calculus (EC) [31, 32] is a declarative logic ttenterprets the Situ-
ation Calculus to capture when and how states change inmesgo external events.
EC has been used to model both the behaviour of commitme2isifdong agents in
order to build interaction protocols, corresponding torégulatory aspects of the work
described above, as well as more general social models subbse described in [30].
From a technical point of view, our approach essentially &&énd of duality com-
pared to EC, in that the basis for the model is events rattear $tates. In itself, this
offers no technical advantage although we believe thatgeire to express violations
in terms of events rather than states better captures thtirer More significant are the
consequences of the grounding in ASP:

— For the most part the state and event models are equivalémtagpect to properties
such as induction and abduction, but nhon-monotonicity ieiant in ASP and so
resort to the tricky process of circumscription is avoided.
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i0:

i1:

izi

i3:

i0:
i1:

i9:

i3:

callup
provake startwar callup

provoke startwar conscript
atwar atwar
perm(caliup) obl(startwar, shoot, murder) DTV perm(callup)
) perm(callup) ) perm(conscript)
perm(consenript) ) perm(conseript)
perm(conscript) perm(declaretruce)
perm(declaretruce) perm(declaretruce)
perm(declaretruce) perm(murder)
perm(murder) perm(murder)
perm(murden) perm(provoke)
perm(provoke) perm(provoke)
P v (ot ar) perm(provoke) perm(shoot)

perm(startwar)
pow (conscript)
pow(murder)

perm(startwar)

perm(startwar)
pow(murder)

pow(conseript)
pow(murder)

pow(murder)

The initial state, wherein all the initial fluents are inigd. The institution observes that a
country is provoked. From the event generation functiorgfi® 16) we know that no further
events are generated. The consequence relation (9) isy@bfgofor initiating the obligation
obl(startwar, shoot, murder) in the next state.

As of this state the obligatioabl(startwar, shoot, murder) holds. The institution ob-
serves startwar event. This event does not generate amgflavents. Since the obligation
has been fulfilled it can be terminated in the next state. Dmseguence relation (8 and 11)
indicate thaktwar andpow(conscript) have to be initiated in the next state.

In this state the obligation no longer holds astdiar andpow(conscript) have been ini-
tiated. The institution now observes thellup event. The event generation function (15)
thus generates the conscription event, since conscrifginaw empowered. This results in
the consequence relation (10) to orgeem(shoot) to be initiated in the next state.

This leads us to the final state in which the institution hasgérmission to shoot.

Fig. 7. Answer set illustrating the obligation satisfied

shoot
murder
provake shoot callup

provoke viol(shoot) callup
(i) G

12 13

io
obl(startwar, shoot, murder)

perm(callup)
perm(conscript)

perm(callup)

perm(callup) perm(callup)
perm(conseript)

perm(con seript) perm(conseript)
perm(declaretruce) perm(declaretruce)
perm(murder) perm(murder)
perm(provoke) perm(provoke)
perm(startwar) perm(startwar)
pow(murder) pow (murder)

perm(declaretruce)
perm(murder)
perm(provoke)
perm(startwar)
pow (murder)

perm(declaretruce)
perm(murden)
perm(provoke)
perm(startwar)
pow(murder)

As forig of Figure 7

As of this state the obligatioabl(startwar, shoot, murder) holds. The institution ob-
serves the eventhoot. The events indicates that the deadline of the obligatienpassed,
so event generation will produce the corresponding viohtin this casewrder. Further-
more, since the event shoot was not permitted, the violatiosl (shoot) is generated,
which in turn is responible for the eventirder by (17). Since the obligation is violated, it
will be terminated in the next state. None of the events caungestate change.

After the violation of the obligation, the institution isteened to its original state. In this
state the institution observes the callup event. Becaws@gtitution is not empowered to
conscript, no other events are generated and no state chargeonsidered.

The institution has not changed.

Fig. 8. Answer set illustrating the obligation violated
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— Likewise, reasoning about defaults requires no speciatrtrent in ASP.
— The consequence rules of our specification have equivale®€, but the event
generation rules do not.
— The state of a fluent is determined by its truth-value in thé® Asterpretation,
whereas EC (typically) has to encode this explicitly using predicates.
— Inertia in EC is axiomatic, whereas in our approach it fokofnom the applica-
tion of the TR operator—although there is a strong syntagitidlarity (perhaps
compounded by using the same terminology!) the philosopljfierent.
— ASP allows a wider variety of queries than is typically paed in EC implemen-
tations but space constraints do not allow the full illustra of this aspect here.
Artikis et al. in [1, 2, 3, 30] describe a system for the speaifion of normative so-
cial systems in terms of power, empowerment and obligafibis is formalized using
both the event calculus [31] and a subset of the action lageyUa [25]. The notions
of power and empowerment are equivalent in both systemsdilitionally we intro-
duces violation as events and our modelling of obligatiaifferd in that (i) they are
deadline-sensitive, and (ii) can raise a violation if theg mot met in time. Violations
greatly improve the capacity to model institutions, buthibsld be remembered that
institutional modelling was (apparently) not Artikis's gloLikewise, although the in-
terpretation of”+ using the CCalc tool gives rise to similar reasoning cajtadsl(with
similar complexity) to ASP, we believe our approach, inghggviolations, provides a
more intuitive and natural way of expressing social comstsanvolving temporal as-
pects. A further advantage is in the formulation of quenidsgre ASP makes it possible
to encode queries similar to those found in (bounded) teaipogic model checking,
whereas, as noted above, queries on action languages ateatoed by the action lan-
guage implementation. The other notable difference is ageén, our focus on events
rather than states, which we have discussed at some length.ab

In [7], Buccafurri et al. address the problem of specifyimgymative properties
through the use ddocial Logic Programsvhich discriminate between states considered
to be acceptable or unacceptable by particular agents. gigea society and situation
these social logic programs can be combined and solved uhédestable models se-
mantics to give the set of states which are considered todallyoacceptable by group
as a whole. In our work we intentionally view the internal ratsdof agents’ attitudes
as unknown (and hence that all actions whitightbe chosen by are included in possi-
ble models of our programs). From the perspective of our yiarthe case where it is
known that for instance some actions will never be perforimedome agents because
those actions are considered unacceptable by the agentmper§ them, it would be
desirable to remove these actions from the set of possibietaéor a given institution.
Resolving this automatically represents an interestieg &or future research.

5 Conclusions and Directions for Future Research

We have described a formal specification for institutionsti@ purpose of modelling
obligations, permissions and violations, while interaict between agents create traces
that record their actions. We demonstrate how the spedificatay be translated into
ASP and subsequently executed producing an answer setidttioe careful specifica-
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tion of the institutional state manipulation operatioss answer set has a one-to-one
relationship with the institutional event traces of thenfiat model. In consequence, we
arrive at an executable institutional specification thatrdg may dynamically compute
and query to establish both how the currentinstitutioregbsivas reached and which ac-
tions will have what consequences in the future of the ctistte. Tools are currently
being prototyped to automate these processes and aid irvibigalization.

The ability to reason about and query time-related inforomas a strong point for
using ASP. In our current model of time is discrete, yet we Ma@lso like to reason
about durations, for examples when dealing with obligatiofrhe DLV[21] system
already provides a limited set of aggregates, which woufzapto offer a solution and
we will experiment with them in the near future.

The current approach does not deal with the effectivenessaindtions since we
do not encode the agent’s utility. One solution to this peablwould be to encode
it as an atomutility(Agent, X, T) and to use an extension of the ASP language we
currently use that allows preference. In such a languagevondd be able to express
thatutility(Agent, 10,T) is more preferred thantility(Agent,5,T) for any given
Agent at any time.
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