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Abstract. We introduce choice logic programs as negation-free datalog
programs that allow rules to have exclusive-only (possibly empty) dis-
junctions in the head. Such programs naturally model decision problems
where, depending on a context, agents must make a decision, i.e. an ex-
clusive choice out of several alternatives. It is shown that such a choice
mechanism is in a sense equivalent with negation as supported in semi-
negative (“normal”) datalog programs. We also discuss an application
where strategic games can be naturally formulated as choice programs:
it turns out that the stable models of such programs capture exactly the
set of Nash equilibria. We then consider the effect of choice on “negative
information” that may be implicitly derived from a program. Based on
an intuitive notion of unfounded set for choice programs, we show that
several results from (seminegative) disjunctive programs can be streng-
thened; characterizing the position of choice programs as an intermediate
between simple positive programs and programs that allow for the ex-
plicit use of negation in the body of a rule.
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1 Choice Logic Programs for Modeling Decision Making

When modeling agents using logic programs, one often has to describe a situation
where an agent needs to make a decision, based on some context. A decision
can be thought of as a single choice between several competing alternatives,
thus naturally leading to a notion of nondeterminism. Using seminegative (also
called “normal”) programs, such a choice can be modeled indirectly by using
stable model semantics, as has been argued convincingly before [10,8]. E.g. a
program such as

p<q

q<p
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has no (unique) total well-founded model but it has two total stable models,
namely {p,~q} and {—p, ¢}, representing a choice between p and ¢ (note that
his choice is, however, not exclusive, as e.g. p may very well lead to ¢ in a larger
program).

In this paper, we simplify matters by providing for explicit choice sets in the
head of a rule. Using p @ q to denote an exclusive choice between p and ¢, the
example above can be rewritten as

pPOq

Intuitively, @ is interpreted as “exclusive or”, i.e. either p or ¢, but not both,
should be accepted in the above program.

Definition 1. A choice logic program is a finite set of rules ! of the form
A < B where A, the head, and B, the body, are finite sets of atoms.

Intuitively, atoms in A are assumed to be xor’ed together while B is read as
a conjunction. In examples, we often use & to denote exclusive or, while “,” is
used to denote conjunction. If we want to single out an atom in the head of a
rule we sometimes write A @ a to denote AU {a}.

The semantics of choice logic programs can be defined very simply.

Definition 2. Let P be a choice logic program. The Herbrand base of P,
denoted Bp, is the set of all atoms occurring in the rules of P. A set of atoms
I C Bp is model of P if for every rule A<+ B, B C I implies that I N A is
a singleton, i.e. |[ANI| = 12. A model of P is called stable iff it is minimal
(according to set inclusion).

Note that the above definitions allow for constraints to be expressed as rules
where the head is empty.

Ezample 1 (Graph 3-colorability). Given a graph assign each node one of three
colors such that no two adjacent nodes have the same color. This problem is
know as graph 3-colorability and can be easily transformed in the following
choice program:

col(X,r) @ col(X, g) ® col(X,b) + node(X)
+ edge(X,Y),col(X,C),col(Y,C)

The first rule states that every node should take one and only one of the three
available colors (r, g or b). The second demands that two adjacent nodes have
different colors. To this program we only need to add the facts (rules with empty
body) that encode the graph to make sure that the stable models for this program
reflect the possible solutions for this graph’s 3-colorability. The facts look either
as node(a) + or edge(a,b) «.

! In this paper, we identify a program with its grounded version, i.e. the set of all
ground instances of its clauses. This keeps the program finite as we do not allow
function symbols (i.e. we stick to datalog).

2 We use | X| to denote the cardinality of a set X.



Does not confess Confess
Does not confess 3,3 0,4
Confess 4,0 1,1

Fig. 1. The prisoner’s dilemma (Ex. 2)

The following example shows how choice logic programs can be used to represent
strategic games|[6].

Ezample 2 (The Prisoner’s Dilemma). Two suspects of a crime (they jointly
committed) are arrested and interrogated separately. The maximum sentence for
their crime is four years of prison. But if one betrays the other while the latter
keeps quiet, the former is released while the silent one receives the maximum
penalty. If they both confess they are both convicted to three years of prison.
In case they both remain silent, they are convicted for a minor felony and sent
to prison for only a year. In game theory this problem can be represented as
a strategic game with a graphical notation as in Fig. 1. One player’s actions
are identified with the rows and the other player’s with the columns. The two
numbers in the box formed by row r and column ¢ are the players’ payoff (e.g.,
the years gained with respect to the maximum sentence). When the row player
chooses r and the column player chooses ¢, the first component represents the
payoff of the row player. It is easy to see that the best action for both suspects is
to confess because otherwise there is a possibility that they obtain the full four
years. This is called a Nash equilibrium.

This game can be easily transformed to the following choice logic program where
d; stands for “suspect ¢ does not confess” and ¢; means “suspect ¢ confesses”:

di ®c1
ds @ ca
¢ + dsy
C1 < Cy
C2(—d1
Cy < C1

The first two rules express that both suspects have to decide upon a single
action. The last four indicate which action is the most appropriate given the
other suspect’s actions.

This program has a single stable model corresponding to the Nash equilibrium
of the game, namely {c1,cz2}.

In [3], it was shown that every finite strategic game can be converted to
a choice logic program whose stable models correspond with the game’s Nash
equilibria.
Definition 3 ([6]). A strategic game is a tuple (N, (A;)ien, (Zi)ien) where

1. N is a finite set of players;



Head Tail
Head | 1,0 | 0,1
Tail | 0,1 ]| 1,0

Fig. 2. Matching Pennies (Ex. 3)

2. for each player i € N, A; is a nonempty set of actions that are available to
her (we assume that A; N A; = () whenever i # j) and
3. for each player i € N, >; is a preference relation on A = XjcnA;

An element a € A is called o profile. For a profile a we use a; to denote
the component of a in A;. For any player i € N, we define A_; = Xjen\{i}4;-
Similarly, an element of A_; will often be denoted as a_;. Fora_; € A_; and
a; € A; we will abbreviate as (a_;,a;) the profile a’ € A which is such that
a'; =a; and a’'; = a; for all j #1i.

A Nash equilibrium of a strategic game (N, (A;)icn, (Zi)ien) is a profile
a* satisfying

Va; € A; - (a;,a]) >; (a%;, a;)

Intuitively, a profile a* is a Nash equilibrium if no player can unilaterally

improve upon his choice. Put in another way, given the other players’ actions

a* ., a’ is the best player i can do’.

—i7 9
Not every strategic game has a Nash equilibrium as demonstrated by the

next example.

Ezample 38 (Matching Pennies). Two persons are tossing a coin. Each of them
has to choose between Head or Tail. If the choices differ, person 1 pays person
2 a Euro; if they are the same, person 2 pays person 1 a Euro. Each person
cares only about the amount of money that she receives. The game modeling
this situation is depicted in Fig. 2. This game does not have a Nash equilibrium.
The corresponding choice logic program would look like:

h1 ®t;

ho @ty
hi < ho
t1 « to
hy + t1
ta < h1

This program has no stable model as the game has no Nash equilibrium. No-
tice that this would not have been the case if we would have used inclusive
disjunctions instead of exclusive ones.

Theorem 1. For every strategic game G = (N, (A;)ien, (Zi)ien) there ezists a
choice logic program Pg such that the set of stable models of Pg coincides with
the set of Nash equilibria of G.

3 Note that the actions of the other players are not actually known to i.



The choice logic program Pg obtained for a game, as one can see form the
examples, consists of rules expressing that each player has to make a single choice
out of her action set and rules expressing the best action for a player given the
different actions of the other players.

2 Negation in Choice Logic Programs

While negation is not explicitly present in choice logic programs, it does appear
implicitly. E.g. deciding on a in a rule a @ b + implicitly excludes b from any
model; which can be read as “—b is true”. A similar effect can be observed for
constraints: if e.g. a is true, then the presence of a rule < a,b implies that b
must be false.

Still, there is a difference with seminegative programs because, although im-
plicitly implied negative information may prevent the further application of cer-
tain rules, such information can never be used to enable the inference of further
atoms. The latter is possible e.g. in seminegative logic programs or disjunctive
logic programs where the body of a rule may contain negated atoms. Hence
choice logic programs can be regarded as an interesting intermediate system in
between purely positive logic programs, where a model can be computed with-
out taking into account any negative information? and systems that allow for
explicit negation in (the body of) a rule. In the remainder of this paper we will
compare the role of negation in choice logic programs with both seminegative
logic programs and seminegative disjunctive logic programs.

2.1 Simulating Seminegative Logic Programs

It turns out that choice logic programs can simulate semi-negative datalog pro-
grams, using the following transformation, which resembles the one used in [9]
or [7] for the transformation of general disjunctive programs into negation-free
disjunctive programs.

Definition 4. Let P be a semi-negative logic program. The corresponding choice
logic program Pg can be obtained from P by replacing each rule r : a + B,—-C
from P with BUC C Bp and C # 0, by

ar ® Ko + B (r])
a <« ap (rh)
Vee C - Ko +c (r})

where a, and K¢ are new atoms that are uniquely associated with the rule r.
A model M for Pg is called rational iff:

VKceM-MNC#0

4 Of course, as a last step, the complement of the positive interpretation can be de-
clared false as a consequence of the closed world assumption.



Intuitively, K¢ is an “epistemic” atom which stands for “the (non-exclusive)
disjunction of atoms from C' is believed”. If the positive part of a rule in the
original program P is true, Pg will choose (rules r]) between accepting the
conclusion and K¢ where C'is the negative part of the body; the latter preventing
rule application. Each conclusion is tagged with the corresponding rule (r4), so
that rules for the same conclusion can be processed independently. Finally, the
truth of any member of C implies the truth of K¢ (rules r3).

Intuitively, a rational model contains a justification for every accepted K¢.

Proposition 1. Let P be a semi-negative datalog program. M is a rational sta-
ble model of Pg iff M N Bp is a (total) stable model of P.

The rationality restriction is necessary to prevent K¢ from being accepted
without any of the elements of C being true. For positive-acyclic programs, we
can get rid of this restriction.

Definition 5. A semi-negative logic program P is called positive-acyclic ® iff
there is an assignment of positive integers to each element of Bp such that the
number of the head of any rule is greater than any of the numbers assigned to
any non-negated atom appearing in the body.

Proposition 2. Let P be a semi-negative positive-acyclic logic program. There
exists a choice logic program P, such that M is a stable model of P, iff M N Bp
is a stable model of P.

The reverse transformation is far less complicated.

Proposition 3. Let Pg be a choice program. There exists a semi-negative da-
talog program P (containing constraints) such that M is a stable model of Pg
iff M is a stable model of P.

2.2 Unfounded Sets and Seminegative Disjunctive Programs

In this section, we formalize implicit negative information by defining an appro-
priate notion of “unfounded set” for choice logic programs and we investigate
its properties and usefulness for the computation of stable models.

It turns out that many of the results of [5] remain valid or can even be
strengthened:

1. For choice logic programs, the greatest unfounded set is defined on any in-
terpretation, which is not the case for disjunctive programs.

2. Contrary to disjunctive programs, the results for choice programs remain
valid in the presence of constraints.

3. For choice logic programs, the Rp (see Definition 9) operator, when re-
peatedly applied to Bp, always yields the greatest unfounded set w.r.t. I.

® In [5] a similar notion is called “head-cycle free”.



4. Because of (1) above, the Wp (see Definition 8) operator can be used in
the computation of a stable model. For disjunctive programs, this is not
possible because there is no guarantee that an intermediate interpretation
has a greatest unfounded set.

Definition 6. Let P be a choice logic program . An interpretation is any con-
sistent® subset of (Bp U—Bp). We use Ip to denote the set of all interpretations
of P. An interpretation I is total ifff IT UI~ = Bp. A total interpretation M
is called a (stable) model iff M is a (stable) model of P. A set X C Bp is an
unfounded set for P w.r.t. an interpretation I iff for each p € X one of the
following three conditions holds:

1. Ir : Adp+ Be P suchthat ANI#Q and BC I, or

2. dr: < B,p€ P such that BC 1, or

3. Vr: A®p <+ B € P at least one of the following conditions is satisfied:
(o) BN=I#0, or
(b)) BNX #0, or
(c) ANB#0

The set of all unfounded sets for P wrt I is denoted Up(I). The greatest un-
founded set wrt I, denoted GUSp(I), is defined by GUSP(I) = Uxcypny X - 1
is called unfounded-free iff I N GUSp(I) = 0.

Condition (1) above expresses the fact that choice is exclusive and thus, alterna-
tives to the actual choice are to be considered false. Condition (2) implies that
any atom that would cause a constraint to be violated may be considered false.
Condition (3) resembles the traditional definition of unfounded set by expressing
when a rule cannot be used to infer a new atom: in case (a), the rule is “blocked”
by the current interpretation; in case (b), the rule’s application depends on an
unfounded literal while case (c) indicates that the rule is useless[2] since the
body contains one of the choices in the head.

The next proposition shows that the name “greatest unfounded set” is well-
chosen for the union of all unfounded sets, GUS p(I).

Proposition 4. Let I be an interpretation for the choice logic program P. Then,
GUSp(I) € Up(I). Moreover, GUSp is a monotonic operator; i.e. if I; C I,
then QZ,{SP(Il) g ngSp(IQ)

Note that the above proposition is false for disjunctive logic programs [5]. In fact,
for such programs, GUSp(I) € Up(I) is only guaranteed if I is unfounded-free
or d-unfounded-free[2].

Proposition 5. Let M be o model for the choice logic program P. Then M~ €
Up(I).

5 For X a set of literals, we use =X to denote {-p|p € X} where ~—a = a for any
atom a. X is consistent iff X N =X = 0.
7 For a subset X C (Bp U-Bp), we define XT = X NBp and X~ = ~(X N-Bp).



Unfortunately, the converse does not hold, as can be seen from the interpretation
{a,b} of the single-rule program a @ b + which is not a model, although its
complement (the empty set) is trivially unfounded. For seminegative disjunctive
logic programs, the converse does hold[5].

Proposition 6. Let P be a choice logic program . A total interpretation is a
stable model iff it is unfounded-free.

Combining Propositions 5 and 6 yields a characterization of stable models in
terms of unfounded sets which also holds for disjunctive programs.

Corollary 1. Let P be a choice logic program. An interpretation M is o stable
model for P iff GUSp(M) = M.

Definition 7. Let P be a choice logic program. The immediate consequence
operator, Tp : 2(BpU—Bp) _, 287 s defined by

Te(I)={a€Bp|3A®a+ BeP-AC-INBCI}

This operator adds those atoms that are definitely needed in any model extension
of I. It is clearly monotonic.

The Wp operator, which uses the same intuition as the one defined in [4],
uses Tp to extend IT and GUSP to extend I

Definition 8. Let P be a choice logic program. The operator Wp : Ip —
9(BpU=Bp) defined by

We(I) = Tp(I) U~GUS p(I)

Note that Wp is monotonic and skeptical as it only adds literals that must
be in any model extension of I. The following result also holds for disjunctive
programs (without constraints).

Proposition 7. Let P be a choice logic program and let M be a total interpre-
tation for it. M is a stable model iff M is a fixpoint of Wp.

The least fixpoint W% (@) of Wp can, if it exists®, be regarded as the “kernel” of
any stable model.

Proposition 8. Let P be a choice logic program . If W§(0) exists then Wg(0) C
M for each stable model M. If WE(0) does not exist then P has no stable models.

Because Wp is deterministic, and contrary to the case of e.g. seminegative
(disjunctive-free) programs, W¥(0) may not be a model, even if it is consistent.

Corollary 2. Let P be a choice logic program . If WE(0) is a total interpreta-
tion, then it is the unique stable model of P.

& The fixpoint may not exist because W3 (I) may not be consistent, i.e. outside of the
domain of Wp, for some n > 0.



The following monotonically decreasing operator can be used to check the
unfounded-free property of total interpretations.

Definition 9. Let P be a choice logic program and let I be an interpretation for
it. The operator Rp, : 2Br 5 98P s defined by

Ir:A®a<~ BeP-ANT#ODABCIor
Rpr(X) = anlH(—B,aEP-BgI or
’ Vr:A@a« B- BOCIUX)# D or
(Au{a})NnB#10
Intuitively, Rp,(J) gathers all atoms that are contained in both J and some
unfounded set of I.

Proposition 9. Let I be a total interpretation for a choice logic program P.
Then, R ;(It) = 0 iff I is unfounded-free.

Moreover R p ; can be used to compute the greatest unfounded sets GUS p(I).

Proposition 10. Let P be a choice logic program and let I be an interpretation
for it. Then, R} [(Bp) = GUSP(I).

The above result does not hold for disjunctive logic programs.

3 Computing Stable Models

With the help of the above results, an intuitive and relatively efficient “back-
tracking fixpoint” algorithm can be designed to compute the stable models of a
choice logic program.

Essentially, the algorithm of Fig. 3 keeps a “current interpretation” (which
is initialized to the empty set) and a stack of choice points (initially empty). It
consists of a loop which itself consists of two stages:

1. In the first stage, Wp is applied on the current interpretation until a fixpoint
interpretation is reached or an inconsistency is detected. In the latter case,
the algorithm backtracks to the previous choice point (if any) and tries a
different choice.

2. In the second stage, a choice is made from the applicable rules (that have a
true body in the current interpretation) that are not yet applied. If there are
no such rules, the current interpretation is a stable model. For the selected
rule, a choice is made for a literal from the head to be added to the current
interpretation, thus making the rule applied (the choice must be such that the
new interpretation remains consistent). The other literals are immediately
assumed false. Such a combination of literals is called is a ”possibly-true
conjunction” [5]. We use PTp(I) to denote the set of such choices that are
available, given the interpretation 1.

Given the results of the previous section, it is clear that this algorithm will
find all stable models of a given choice logic program. It generalizes on a cor-
responding algorithm in [5] because it also handles constraints. In addition, it
can afford to be more skeptical than the algorithm in [5] (checking consistency
at each step in stage 1) because of Proposition 4.



Input: A choice logic program P.
Output: The stable models of P.

Procedure Compute-Stable(I,:SetOfLiterals);
var X, I, I}, : SetOfLiterals;
begin
if PTp(I,) = 0 (* no choices available *)
then output "I, is a stable model of P”;
else for each X € PTp(I,) do
I,y :=I, U X; (* Assume the truth of a
possibly-true conjunction *)
repeat
I7’z = I7’z+1;
1 = Te(I,) U=RE 1 (Bp); (* = We(I,) *)
until I,y = I, or I,y N =T,y #£
if I, ,N=I, ;=0 (* I,y is consistent *)
then Compute-Stable(I;, 1)
end-if
end-for
end-if
end-procedure

var I,J : SetOfLiterals;
G : SetOfAtoms;
begin (*Main *)

I:=0;

repeat (* Computation of Wg(0) if it exists *)
J =1
G :=GUSp(J); (* by means of R% ;(Bp) *)
if GNJ #0 (* J not unfounded-free *)
exit
end-if;
I:=Tp(J)U-G; (*=Wp(J) *)

until I = J;

if PTp(I)=10

then output ”I is the unique stable model of P”;
else Compute-Stable(I)
end-if

end.

Fig. 3. Algorithm for the Computation of Stable Models for choice logic programs.

4 Conclusions and Directions for Further Research

We introduced choice logic programs as a convenient and simple formalism for
modeling decision making. Such programs can e.g. be used to model strategic
games. We investigated the implicit support for negation that is present in such
programs, due to the exclusive nature of the choices and the support for con-
straints. It turns out that choice programs can reasonably simulate seminegative



logic programs. On the other hand, many results that are known for (semi-
negative) disjunctive programs (without constraints) can be carried over (or
even strengthened) to choice programs (with constraints), resulting in a simple
algorithm to compute the stable models of a choice program.

It is worth noting that, although [1] introduces constraints for disjunctive
logic programs, these are checked only after the usual algorithm (for programs
without constraints) finishes, while our algorithm uses constraints directly, which
should result in a more eager pruning of candidate interpretations.

Future research will attempt to extend the notion of choice programs to
allow for the expression of epistemic restrictions. At present, all the knowledge
of decision making agents is stored in a single program which is visible to each
agent (this fact lies at the basis of Theorem 1); an assumption which is often
not realistic.
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