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Abstract. We present systems of logic programming agents (LPAS) to model the interactions
between decision-makers while evolving to a conclusion. Such a system consists of a number
of agents connected by means of unidirectional communication channels. Agents communi-
cate with each other by passing answer sets obtained by updating the information received
from connected agents with their own private information. We introduce a credulous answer
set semantics for logic programming agents. As an application, we show how extensive games
with perfect information can be conveniently represented as logic programming agent systems,
where each agent embodies the reasoning of a game player, such that the equilibria of the game
correspond with the semantics agreed upon by the agents in the LPAS.
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1. Introduction

In this paper we present a formalism for systems of logic programming agents.
Such systems are useful for modeling decision-problems, not just the solu-
tions of the problem at hand but also the evolution of the beliefs of and the
interactions between the agents.

A system of logic programming agents consists of a set of agents con-
nected by means of unidirectional communication channels. Each agent con-
tains an ordered choice logic program [12] representing her personal informa-
tion and reasoning skills. Agents use information received from their incom-
ing channels as input for their reasoning, where received information may
be overridden by other concerns represented in their programs. The resulting
model is communicated to the agents listening on the outgoing channels. The
semantics of the whole system corresponds to a stable situation where no
agent needs to change its output. To model a single agent’s reasoning, we
use ordered choice logic programs [12], an extension of logic programming
that provides facilities for the direct representation of preference between
rules and dynamic choice between alternatives. Unlike for other preference-
based extensions (see Section 6), alternatives in ordered choice programs, and
the related notion of defeat, are not based on negation (which would yield a
static approach), but depend on the interpretation at hand which may dynam-
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ically activate inconsistencies between atoms. Nevertheless, negation (both
classical and negation as failure) can be easily simulated (see Section 6.1).

Game theory [22] makes contributions to many different fields. In par-
ticular, there is a natural connection with multi-agent systems. In this paper
we illustrate the use of logic programming agent systems as convenient ex-
ecutable representations of games, where each player corresponds to exactly
one agent. We concentrate on so-called extensive games with perfect infor-
mation: a sequential communication structure of players taking decisions,
based on full knowledge of the past. We demonstrate that such games have
a constructive and intuitive translation to logic programming agent systems
where the agents/players are connected in a cyclic communication structure.
The game’s equilibria (Nash or subgame perfect, depending on the transfor-
mation used to construct the corresponding system) can then be retrieved
as the system’s answer set semantics. Moreover, its fixpoint computation
closely mirrors the actual reasoning of the players in reaching a conclusion
corresponding to an equilibrium.

All proofs can be found in the Appendix.

2. Choice Logic Programming

Choice logic programs [9, 10] represent decisions by interpreting the head of
a rule as an exclusive choice between alternatives.

Formally, a Choice Logic Program [10], CLP for short, is a countable set
of rules of the form A← B where A and B are finite sets of ground atoms.
Intuitively, atoms in A are assumed to be xor’ed together while B is read as
a conjunction (note that A may be empty, i.e. constraints are allowed). The
set A is called the head of the rule r, denoted Hr, while B is its body, denoted
Br. In examples, we often use “⊕” to denote exclusive or, while “,” is used to
denote conjunction.

The Herbrand base of a CLP P, denoted BP, is the set of all atoms that
appear in P. An interpretation is a consistent12 subset of BP ∪ ¬BP. For
an interpretation I, we use I+ to denote its positive part, i.e. I+ = I ∩BP.
Similarly, we use I− to denote the negative part of I, i.e. I− = ¬(I ∩¬BP).
An atom a is true (resp. false) w.r.t. to an interpretation I for a CLP P if
a ∈ I+ (resp. a ∈ I−). An interpretation is total iff I+∪ I− = BP. The positive
complement of an interpretation I, denoted I, equals BP \ I+.

A rule r in a CLP is said to be applicable w.r.t. an interpretation I if Br ⊆ I.
Since we are modeling choice, we have that r is applied3 when r is applicable

1 For a set of literals X , we use ¬X to denote {¬a | a ∈ X}, where ¬¬a = a for any atom
a. X is consistent iff X ∩¬X = /0.

2 In this paper, we use ¬ to denote negation-by-failure.
3 For a a set X , we use |X | do denote its cardinality.
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and |Hr∩ I|= 1. A rule is satisfied if it is applied or not applicable. A model
is defined in the usual way as a total interpretation that satisfies every rule.
A model M is said to be minimal or stable if there does not exist a model N
such that N+ ⊂M+.

EXAMPLE 1 (Eternal Enemies). One day two eternal enemies, the lions and
the hyaena’s, meet on the African plains. Today’s cause of argument is a juicy
piece of meat. Both the lions and the hyaena’s are keen on devouring it. To
obtain their share there are two possibilities: they can either divide the piece
or they can fight for it with the risk of getting injured. Both parties know
that they get the most meat without any risk if they are both willing to share.
Despite this, no pride is willing to take the risk of losing out on this free lunch.
The following simple choice logic program models this eternal feud.

sharelions ⊕ fightlions ←
sharehyaenas ⊕ fighthyaenas ←

fightlions ← sharehyaenas

fightlions ← fighthyaenas
fighthyaenas ← sharelions

fighthyaenas ← fightlions

The program from Example 1 has one stable model {fight lions,fighthyaenas},
which explains why the two species remain enemies: neither wants to give
sharing a try as they fear that the other will take advantage by attacking.

3. Ordered Choice Logic Programming

An ordered choice logic program (OCLP) [11] is a collection of choice logic
programs, called components, each representing a portion of information.
The relevance or preciseness of each component with respect to the other
components is expressed by a strict pointed partial order4.

DEFINITION 1. An Ordered Choice Logic Program, or OCLP, is a pair
P = 〈C ,≺〉 where C is a finite set of choice logic programs, called compo-
nents, and “≺” is a strict pointed partial order on C . We use P? to denote the
CLP obtained from P by joining all components, i.e. P? = ∪c∈C c. For a rule
r ∈ P?, c(r) denotes the component from which the rule was taken (i.e. we
assume that rules are labeled by the component)5 . The Herbrand base of an

4 A relation < on a set A is a strict partial order iff < is anti-reflexive, anti-symmetric and
transitive. < is pointed if there is an element a ∈ A such that a < b for all b ∈ A\{a}.

5 In fact, the same rule could appear in two components and thus P? should be a set of
labeled rules. We prefer to work with the present simpler notation and note that all results
remain valid in the general case.
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P2

P5

travel ←

London ←

London ← larger
Mexico ← larger
small⊕ larger ←

London⊕Mexico⊕Spain ← travel
P4

P3 Spain ←

Mexico ←

P1

Figure 1. The travel OCLP of Example 2

OCLP P is defined by BP = BP? . An interpretation of P is an interpretation of
P?. A rule r in an OCLP P is applicable, resp. applied, w.r.t. an interpretation
I, if it is applicable, resp. applied in P?, w.r.t. I.

For two components C1,C2 ∈ C , C1 ≺C2 implies that C2 contains more gen-
eral, or less preferred, information than C1. Throughout the examples, we will
often represent an OCLP P by means of a directed acyclic graph in which the
nodes represent the components and the arcs the ≺-relation, where arcs point
from more to less preferred components and represent the transitive reduction
of the ≺-relation.

EXAMPLE 2. This year, the choice for the holidays has been reduced to
a city trip to London or a fortnight stay in either Spain or Mexico. A city
trip to London is rather short and Mexico is expensive. With a larger budget
however, we could have both a holiday in Mexico and a trip to London. Given
these considerations, there are two possible outcomes: either we have a small
budget and we should opt for Spain, or with a larger budget, we can combine
Mexico and London.

This decision problem can be conveniently represented as an OCLP, as
displayed by Figure 1. The rules in the components P1 . . .P3, express the
preferences in case of a small budget. The rules in P4 explain that we want to
travel and, because of this, we need to make a decision concerning our desti-
nation. In component P5, the first rule states that there is also the possibility of
a larger budget. In this case, the two other rules in this component tell us that
we can have both London and Mexico. The following sets are interpretations
for this OCLP:

− I = {Mexico,small,¬Spain},
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− J = {travel,Mexico,small, ¬London,¬Spain,¬larger},

− K = {travel,Spain,small, ¬larger,¬London,¬Mexico}, and

− L = {travel,London,Spain, Mexico,larger,¬small}

The interpretation I makes the rule small⊕ larger← applied while the rule
London← is applicable but not applied. While J, K and L are total, I is not.

When it is clear from the context that only total interpretations are considered,
we will omit the negative part.

A decision involves a choice between several alternatives. In a CLP, de-
cisions are generated by so-called choice rules, i.e. rules with multiple head
atoms. Thus, for an interpretation I of a CLP, a and b are alternatives if they
appear together in the head of an applicable rule. For an ordered program,
we will use a similar notion which takes the preference order into account.
Intuitively, for a component C, a and b are alternatives w.r.t. an interpretation
I if there is an applicable choice rule containing a and b in the head, in a
component that is at least as preferred as C.

DEFINITION 2. Let P = 〈C ,≺〉 be an OCLP, let I be an interpretation of P
and let C ∈ C . The set of alternatives in C for an atom a∈BP w.r.t. I, denoted
ΩI

C(a), is defined as6:

ΩI
C(a) = {b | ∃r ∈ P? · c(r) 4 C ∧ Br ⊆ I ∧ a,b ∈Hr with a 6= b} .

EXAMPLE 3. Reconsider the interpretations I and J from Example 2. The
alternatives for Mexico in P2 w.r.t. J are ΩJ

P2
(Mexico) = {Spain,London}.

With respect to I we obtain ΩI
P2

(Mexico) = /0, since the choice rule in P3 is not
applicable. When we take P5 instead of P2, we obtain w.r.t. J: ΩJ

P5
(Mexico) =

/0.

Atoms that are each others’ alternative w.r.t. a certain interpretation I will
continue to be so in any extension J ⊇ I. In this sense, ΩP is a monotonic
operator.

Although rules do not contain negations, they can still conflict. E.g. one
rule could force a choice between a and b while other rules could force a and
b separately. More generally, a conflict exists for a rule r, which is applicable
w.r.t. an interpretation I, if for all a∈Hr, there exists another rule ra such that
Hra ⊆ ΩI

c(r)(a). As in [17], we use the preference relation among the com-
ponents to ignore rules that are defeated by rules that are not less preferred,
forcing different alternatives.

6 4 is the reflexive closure of ≺.
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DEFINITION 3. Let I be an interpretation of an OCLP P. A rule r ∈ P? is
defeated w.r.t. I iff

∀a ∈ Hr · ∃r
′ ∈ P? · c(r) 6≺ c(r′) ∧ r′ is applied w.r.t. I ∧ Hr′ ⊆ΩI

c(r)(a) .

The rule r′ is called a defeater w.r.t. I. I is a model of P iff every rule in P? is
either not applicable, applied or defeated w.r.t. I. A model M is minimal iff
no model N of P exists such that N+ ⊂M+.

The above definition is credulous in the sense that a decision is made even
if the alternatives are equally preferred or unrelated. In a skeptical approach
[13], one would demand that a defeater is strictly preferred over the defeated
rule, i.e. c(r′)≺ c(r).

EXAMPLE 4. Reconsider the interpretations J and L defined in Example 2.
The rule London← is defeated w.r.t. J by the rule Mexico← . The com-
bination of the rules Mexico← larger and London← larger defeats the rule
London⊕Mexico⊕ Spain ← w.r.t. L. Only K and L are models. L is not
minimal due to the smaller model Z = {travel, larger,Mexico,London, travel,
¬Spain,¬small}. The minimal models K and Z correspond to the intuitive
outcomes of the problem.

For ordered programs, the minimal semantics sometimes yields unintuitive
results, as demonstrated in the following example.

EXAMPLE 5. Consider the program P = 〈{c1,c2,c3},≺〉 where c1 = {a←
}, c2 = {b←}, c3 = {a⊕b← c} and c3 ≺ c2 ≺ c1. The minimal models are
{a,b}, where no choice between a and b is forced, and {c,b}. The latter is
not intuitive due to the gratuitous assumption of c.

Unwarranted assumptions as in Example 5 can be avoided by adopting an
answer set semantics, employing a reduction technique as in [19] to filter out
minimal models with undesirable assumptions.

DEFINITION 4. Let I be an interpretation of an OCLP P. The reduct of P
w.r.t. I, denoted PI , is the choice logic program obtained from P? by deleting
every defeated rule w.r.t I.
A total interpretation M is a answer set for P iff M is a stable model of the
CLP PM .

EXAMPLE 6. The program P from Example 5 does not admit N = {c,b} as
an answer set, since PN = {b←, a⊕ b← c} which has only {b} 6= N as a
minimal model. M = {a,b} is an answer set because PM = P? has a minimal
model M. The minimal models K and Z of Example 4 are both answer sets.
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ghost⊕demon ←
ghost⊕poltergheist ←
poltergheist⊕demon ←

ghost ←A1

A2

Figure 2. The ghost OCLP of Example 8

Obviously, the answer set semantics is a generalization of the stable model
semantics for choice logic programs, where a CLP can be seen as an OCLP
with a single component.

THEOREM 1. Let P be a choice logic program. M is a stable model for P if
M is an answer set of the corresponding OCLP Po = 〈{P}, /0〉.

The reverse of the above theorem does not hold, as demonstrated by the
following simple example.

EXAMPLE 7. Consider the following simple set of rules:

a⊕b ←
a ←
b ←

Considered as the rules of a CLP, we do no obtain any stable model. The
last two rules make that the first can never be satisfied. On the other hand, if
one considers these rules to belong to an OCLP with a single component, the
set {a,b} comes up as an answer set. This result is due to the two last rules
defeating the first, overruling the exclusive decision.

As for extended disjunctive logic programs [19], an answer set of an OCLP
is not necessarily minimal.

EXAMPLE 8. Consider the OCLP depicted in Figure 2 modeling the con-
siderations of an exorcist. The interpretations:

I = {ghost,¬poltergeist,¬demon} ,
J = {ghost,poltergeist,¬demon}

are both answer sets of the Ghost OCLP with the reducts as shown below.

PI PJ

ghost ← poltergeist⊕demon ←
ghost⊕poltergeist ← ghost⊕demon ←
ghost⊕demon ←
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Although answer sets are in general not minimal, they are still models.

THEOREM 2. Let M be an answer set of an OCLP P. Then, M is a model
of P.

In [11], an algorithm is provided for the computation of the answer sets of
OCLP, using the implicit negation present in the program.

4. Logic Programming Agents

In this section we consider systems of communicating agents where each
agent is represented by an OCLP that contains knowledge about itself and
other agents.

Agents communicate via unidirectional communication channels through
which the conclusions derived by the agent at the source of the channel are
passed on to the agents at the other end.

DEFINITION 5. A logic programming agent system, or LPAS, is a pair F =
〈A,C〉 where A is a set of agents a and C ⊂ A×A is a relation representing
the communication channels between agents. Moreover, each agent a ∈ A is
associated with an ordered choice logic program Fa = 〈Ca,≺a〉.

We will use a more convenient graph-like notation in our examples.

EXAMPLE 9. Two witnesses discover a body lying in the park. The first
witness tells the local police that she saw hair near the victim and that she
did not see any blood. The second witness testifies that she saw blood and
that the victim had strange bite marks. The sheriff states that this situation
is a clear case of murder and passes it to the FBI. Because of the strange
appearance of bite-marks and hair, the FBI passes the case to the special
X-cell. In addition, the FBI states that, if the X-cell reports that a werewolf
is involved, the case should be classified. Given the evidence, the X-file team
has no choice but to decide that the killing was indeed done by a werewolf.
This situation is represented by the LPAS depicted in Figure 3.

The Herbrand base of a LPAS is the union of all the Herbrand bases of the
ordered choice logic programs used by the agents. An interpretation assigns
a set of literals to each agent in the system. These literals may be concluded
by the agent itself, based on input received through an input channel, or they
may simply be accepted from other agents via an input channel.

DEFINITION 6. Let F = 〈A,C〉 be an LPAS. The Herbrand base of F,
denoted BF , equals BF =

�
A∈A BA. An interpretation of F is a function

I : A→ 2(BF ∪ ¬BF ) that associates a consistent set of literals (beliefs) to each

amai03.tex; 15/09/2003; 14:29; p.8



Extending Answer Sets for Logic Programming Agents 9

FBI

sheriff

murder ←

witness1

X_file ← hair,bite_marks
classified ← werewolf

X_cell

blood ←
bite_marks ←

witness2

← blood
hair ←

werewolf ← X_file,hair,bite_marks

Figure 3. The werewolf-killing of Example 9

agent.
Given an interpretation I, the inputs and outputs of each agent are defined by
InI(a)= cons(∪(b,a)∈CI(b)) and OutI(a)= I(a), respectively, where cons(X)=
X+ \ (X+∩X−), i.e. the maximal positive consistent part of X.

Thus, an agent sends its full set of beliefs over all outgoing communication
channels. On the other hand, an agent receives as input, the beliefs of all
agents connected to its incoming channels. If two agents send conflicting
information to a receiving agent, the conflicts are removed.

EXAMPLE 10. Consider the Werewolf LPAS F of Example 9. We define two
interpretations I1 and I2 of F.

I1(sheriff ) = {murder}
I1(witness1) = {hair,¬blood}
I1(witness2) = {blood,¬bite_marks}
I1(FBI) = {hair,bite_marks}
I1(X_cell) = {werewolf }

I2(sheriff ) = {murder}
I2(witness1) = {murder,hair,¬blood}
I2(witness2) = {murder,blood,¬bite_marks}
I2(FBI) = {murder,hair,bite_marks,werewolf .X_file,classified}
I2(X_cell) = {murder,hair,bite_marks,werewolf ,X_file,classified}

The input of agent FBI w.r.t. I1 equals InI1(FBI) = {hair}. The output given
by the witness1-agent w.r.t. I2 is OutI2(witness1) = {murder,hair,¬blood}.

An agent reasons on the basis of positive information that is received from
other agents (its input) and its own program that may be used to draw further
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FBI{hair}

classified ← werewolf
X_file ← hair,bite_marks

hair ←

Figure 4. The updated version of the FBI from Example 11

conclusions, possibly overriding incoming information. Hence, agents attach
a higher preference to their own rules rather than to suggestions coming from
outside. This can be conveniently modeled by extending an agent’s ordered
program with an extra “top” component containing the information gathered
from its colleagues. This way, the OCLP semantics will automatically allow
for defeat of incoming information that does not fit an agent’s own program.

DEFINITION 7. Let F = 〈A,C〉 be a LPAS. The updated version of an agent
a ∈A, with program Fa = 〈Ca,≺a〉, w.r.t. a set of atoms U ⊆ BF , denoted aU ,
is defined by aU = 〈Ca∪{cU},≺a ∪{c < cU | c∈Ca}〉 with cU = {l←| l ∈U}.

EXAMPLE 11. The updated version of the FBI-agent w.r.t. {hair} is shown
in Figure 4.

For an interpretation to be a model, it suffices that each agent produces a
local model (output) that is consistent with its input.

DEFINITION 8. Let F = 〈A,C〉 be a LPAS. An interpretation I of F is a
model of F iff ∀a ∈ A ·OutI(a) is an answer set of aInI(a).

EXAMPLE 12. Reconsider the Werewolf LPAS of Example 9 and its inter-
pretations I1 and I2 from Example 10. Given the updated version of agent FBI
w.r.t. InI1(FBI) shown in Figure 4, it is easy to see that I1 is not a model.
The interpretation I2 on the other hand, is a model.

For systems without cycles the above model semantics will generate rational
solutions for the represented decision-problems. The next example demon-
strates that systems that do have cycles may have models that contain too
much information, because assumptions made by one agent may become
justified by another agent.

EXAMPLE 13. Two children have been listening to a scary story about
vampires and zombies. Suddenly, they think something moved in the room and
they start fantasizing about the story they just heard. They come up with the
description presented as the LPAS in Figure 5. This system has three models
with:
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walking ← zombi
dead ← zombi
dead ← vampire
walking ← vampire

child2

child1 zombi⊕ vampire ← dead,walking

Figure 5. The imagination LPAS of Example 13

M1(child1) = M1(child2) = {¬vampire,¬zombie,¬walking,¬dead},

M2(child1) = M2(child2) = {zombie,walking,dead,¬vampire},

M3(child1) = M3(child2) = {vampire,walking,dead,¬zombie} .
The last two models are not realistic, since the children are just given a
description and literals such as zombie are not justified.

To avoid such self-sustaining propagation of assumptions, we will demand
that a model be the result of a fixpoint procedure which mimics the evolution
of the belief set of the agents over time.

DEFINITION 9. Let F = 〈A,C〉 be a LPAS. A sequence I0, . . . , In of inter-
pretations is an evolution of F if for any i ≥ 0, a ∈ A, Ii+1(a) is an answer
set of aInIi(a).
An interpretation I is an evolutionary fixpoint of F w.r.t. an interpretation I0

iff there exists an evolution I0, . . . and an integer i∈N such that I j = Ii = I for
all j > i. An answer set of F is an evolutionary fixpoint of F w.r.t. the empty
interpretation I /0 (which associates the empty set with each agent).

Thus, in an evolution, the agents evolve as more information becomes avail-
able: at each phase of the evolution, an agent updates her program to reflect
input from the last phase and computes a new set of beliefs. An evolution
thus corresponds to the way decision-makers try to get a feeling about the
other participants. The process of reaching a fixpoint boils down to trying
to get an answer to the question “if I do this, how would the other agents
react”, while trying to establish a stable compromise. Note that the notion of
evolution is nondeterministic since an agent may have several local models.
For a fixpoint, it suffices that each agent can maintain the same set of beliefs
as in the previous stage.

Not every LPAS has an evolutionary fixpoint. Consider e.g. a system de-
scribing two children that have to make a choice from two objects a and
b. The first child always wants the object chosen by the other child, while
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the second child is happy to take whatever the other child does not want.
Formally, this can be represented as an LPAS with two interconnected agents
A1 (the difficult child) and A2, both being single component OCLP’s with
rules {a1← a2 b1← b2 a1⊕b1←} for A1 and {a2← b1 b2← a1 a2⊕b2←}
for A2, where ai (bi) stands for “agent i claims object a (b)”. Clearly, this
system alternates between states, without ever reaching a fixpoint.

However, the mechanism of evolutionary fixpoints does allow agents to
agree to disagree, since it is not required that the stable models, corresponding
to the fixpoint, of each agent in the system should be equal.

EXAMPLE 14. Consider the Werewolf LPAS of Example 9. The interpre-
tation I2 described in Example 10 is an answer set of the LPAS. The corre-
sponding evolution7 looks like:

V1(sheriff ) = {murder}
V1(witness1) = {hair}
V1(witness2) = {blood,bite_marks}
V1(FBI) = /0
V1(X_cell) = /0

V2(sheriff ) = {murder}
V2(witness1) = {murder,bite_marks}
V2(witness2) = {murder,blood,bite_marks}
V2(FBI) = {X_file,bite_marks,hair}
V2(X_cell) = /0

V3(sheriff ) = {murder}
V3(witness1) = {murder,bite_marks}
V3(witness2) = {murder,blood,bite_marks}
V3(FBI) = {murder,X_file,bite_marks,hair}
V3(X_cell) = {X_file,bite_marks,hair,werewolf}

V4(sheriff ) = {murder}
V4(witness1) = {murder,bite_marks}
V4(witness2) = {murder,blood,bite_marks}
V4(FBI) = {murder,X_file,bite_marks,hair,werewolf ,classified}
V4(X_cell) = {murder,X_file,hair,bite_marks,werewolf }

V5(sheriff ) = {murder}
V5(witness1) = {murder,bite_marks}
V5(witness2) = {murder,blood,bite_marks}
V5(FBI) = {murder,X_file,bite_marks,hair,werewolf ,classified}
V5(X_cell) = {murder,X_file,hair,bite_marks,werewolf ,classified}

V6 = V5

7 For brevity, we left out negative information.
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The vampire-zombie LPAS of Example 13 has one answer set, namely:
I(child1) = I(child2) = {¬zombie,¬vampire,¬walking,¬dead} .

THEOREM 3. Let F = 〈A,C〉 be a LPAS. An interpretation I is a model of
F iff it is an evolutionary fixpoint of F w.r.t. I.

COROLLARY 1. Let F = 〈A,C〉 be a LPAS. Every answer set of F is a
model of F.

The reverse of the above corollary does not hold in general. A counter
example is given in Example 13. However, for acyclic LPAS a one-to-one
mapping does exist.

THEOREM 4. Let F = 〈A,C〉 be a LPAS without cycles. An interpretation
M is an answer set iff I is a model of F.

5. LPAS and Game Theory

In this section we demonstrate that extensive games with perfect information
have a natural formalization as logic programming agent systems. The equi-
libria of such games can be obtained as the answers sets of the system, where
each agent represents a player, and the evolution mimics the mechanism play-
ers can use in order to come to a decision. The following section contains a
brief overview of the relevant game theory background.

5.1. GAME THEORY AND EXTENSIVE GAMES WITH PERFECT

INFORMATION

Game Theory is a growing field of science with roots in mathematics, eco-
nomics and philosophy. It provides analytical tools designed to improve the
understanding of the phenomena observed when decision-makers interact.
Modeling such interactions always starts from the assumption that the decision-
makers are rational, i.e. the actions they undertake serve a well-defined ob-
jective, and that they take into account their knowledge or expectations of
the other decision-makers’ behavior (e.g. the players of the game act strate-
gically). This way, game theoretic models can anticipate the outcomes of
complex interactions with multiple players/actors.

The first publications in the area date back to 1944 ([26]), when game
theory was used to examine complex economic behavior. The models of game
theory are highly abstract mathematical representations of classes of real-
life situations. Their abstractness allows them to be used for the study of
a wide spectrum of phenomena. In computer science, game theory has been
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14 M. De Vos and D. Vermeir

helpful in obtaining a large number of theoretical results. One of the examples
of this is the full abstractness of lazy lambda calculus ([1]). Game theory
also contributes to more practical areas of computer science. E.g. the use
of evolutionary stable strategies for resource allocation in modern network
management improves the utilization significantly [21].

In this paper we restrict our attention to extensive games with perfect
information. An extensive game is a detailed description of a sequential struc-
ture representing the decision problems encountered by agents (called play-
ers) in strategic decision making. Players have a preference for certain out-
comes over others. This preference is often represented as a payoff function.
Each player associates a natural number to each outcome. The larger the num-
ber the more preferred is the outcome. The agents in the game are informed
of all events that occurred previously. Therefore, they can decide upon their
action(s) using information about the actions which have already taken place.
This is done by means of passing histories of previous actions to the deciding
agent. Terminal histories are obtained when all the agents/players have made
their decision(s).

A good example of an extensive game with perfect information could be
a court case where the lawyers of both parties try to win the case. Each party
will try to be prepared for every possible move of the other party. However,
court cases can be unpredictable; for example the opposing party might come
up with some unexpected witness. In such a case the other party will change
its course of action. The sequential structure of the game is set by the court
system that alternates between the defense and prosecution. Since both parties
will closely monitor each other’s actions, we can regard this as an extensive
game with perfect information.

DEFINITION 10. An extensive game with perfect information is a tuple
〈N,H,P,(ui)i∈N〉 with the following components:

− A set N of players, we assume that N = {1 . . .n} for some n ∈ N.

− A prefix-closed8 set H of finite9 sequences. Each element of H is called
a history; each component of a history is an action chosen by a player.
A history h is terminal if 6 ∃ak+1 · (h,ak+1) ∈ H. We use Z to denote the
set of terminal histories.

− A function P that assigns to each nonterminal history from H \ Z a
member of N. (P is the player function, P(h) being the player making a
decision after history h).

8 A set X of sequences is prefix-closed if ∀s ∈ X ,∀x · (x,y) = s · x ∈ X .
9 We restrict ourselves to so-called games with a finite horizon, i.e. games for which all

histories are finite.
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Figure 6. The Sharing-an-Object game of Example 15.

− For each player i ∈ N, a payoff function ui : Z → N for expressing
their personal preference over the various terminal histories.

If h is a history of length k then we denote by (h,a) the history of length
k +1 consisting of h followed by a. Playing the game works as follows: after
any nonterminal history h player P(h) chooses an action from the set

A(h) = {a | (h,a) ∈ H} .

The empty history is the starting point of the game; we sometimes will refer
to it as the initial history. At this point player P( /0) chooses a member of A( /0).
For each possible choice a0 from this set, player P(a0) subsequently chooses
a member of the set A(a0); this choice determines the next player’s move, and
so on. A history after which no more choices have to be made is terminal.

EXAMPLE 15. Two people use the following procedure to share two desir-
able identical objects. One of them proposes an allocation, which the other
either accepts or rejects. In the event of rejection, neither person receives
either of the objects.
An extensive game with perfect information that models the individuals’ predica-
ment is 〈N,H,P,(ui)i∈N〉 where

− N = {1,2} ;

− H consists of ten histories /0,(2,0),(1,1),(0,2),((2,0),y1),((2,0),n1),
((1,1),y2),(1,1),n2),((0,2),y3),((0,2),n3) ;

− P( /0)= 1 and P(h)= 2 for the non-terminal histories (2,0),(1,1),(0,2) ;

− u1(((2,0),y1)) = 2, u1(((1,1),y2)) = 1, u1(((0,2),y3)) =
u1(((2,0),n1)) = u1(((1,1),n2)) = u1(((0,2),n2)) = 0 and
u2(((0,2),y3)) = 2, u2(((1,1),y2)) = 1, u2(((2,0),y1)) =
u2(((2,0),n1)) = u2(((1,1),n2)) = u2(((0,2),n3)) = 0 .

A more convenient representation of this game is shown in Fig. 6. The small
circle at the top represents the initial history /0. The 1 above this circle indi-
cates that P( /0) = 1 (player 1 makes the opening move). The three lines that
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Figure 7. The Cake-game of Example 16.

emanate from the circle correspond to the three members of A( /0) (the possible
actions of player 1 at the initial history); the labels beside these line segments
are the names of the actions. The rest of the tree is constructed in a similar
way. Each path in the tree starting at the root represents a history while a
node is a choice point for the player whose turn it is after the history formed
by the path from the root to this node. The numbers next to nodes represent
the players while the labels of the arcs represent actions. The numbers below
a terminal history are the payoffs representing the players’ preferences (The
first number is the payoff of the first player and the second number is the
payoff of the second player).

A strategy of a player in an extensive game is a plan that specifies the actions
chosen by the player when it is her turn to move.

DEFINITION 11. Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with per-
fect information. A strategy for a player i ∈ N is a function that assigns an
action of A(h) to each non-terminal history h ∈ (H \Z) for which P(h) = i .

A strategy profile s is a set containing a strategy for each player i∈N, i.e.
s = (si)i∈N .

The outcome O(s) for a strategy profile s is defined as the terminal history
which is reached when each player i ∈ N follows the precepts of si. That is,
O(s) is the history (a1, . . . ,ak) ∈ Z such that, for 0≤ l < k,
sP((a1,...,al))((a1, . . . ,al)) = al+1 .

Notice that a strategy of a player i in an extensive game with perfect in-
formation does not depend on the payoff function. Looking at the graphical
representation of a game, one could say that a strategy solely depends on the
structure of the tree, without taking the contents of the leafs into account.

The following example illustrates that a strategy for a player specifies an
action for every history after which it is her turn to move, even for histories
that, if the strategy is followed are never reached.

EXAMPLE 16. The game depicted in Figure 7 models the following situa-
tion: two ladies have decided that they want fruit cake for dessert. There are
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two possibilities: they either bake a cake or they buy one. At the bakery shop
one can choose between strawberry and cherry cake. For strawberry cake
there is the possibility to have whipped cream on top. They agree that the first
lady will decide on how to get the cake and, if necessary, whether a topping
is wanted or not. The second lady will be picking the type of fruit cake. In
this game, the first lady has four strategies {bake,cream}, {bake,no_cream},
{buy,cream} and {buy,no_cream}. This means that her strategy even spec-
ifies an action for the history (buy,strawberries) when she decided to go for
the action bake in the first place. In this sense, a strategy differs from what
we would consider to be a plan of action. Consider now the strategy profile
{{buy,cream},cherries}. This profile produces the outcome (buy,cherries)
which yields a payoff 2 to the first lady and 1 to the second.

Playing a game 〈N,H,P,(ui)i∈N〉 consists of each player i ∈ N selecting a
single strategy. Since players are thought to be rational, it is assumed that a
player will select a strategy that leads to some “preferred” profile and corre-
sponding outcome. The problem, of course, is that a player needs to make a
decision not knowing precisely what the other players will do.

EXAMPLE 17. Reconsider the Cake-game from Example 16 and the strat-
egy profile s = {{buy,cream},{cherries}}. If the second lady would have
known that the first one was thinking of having cream on top of the cake,
she would have chosen strawberries instead of the cherries. So s cannot
be considered as a good solution to the game. On the other hand, with the
strategy {{buy,cream},
{strawberries}}, no lady can benefit from making another decision.

DEFINITION 12. A Nash Equilibrium of an extensive game with perfect
information 〈N,H,P,(ui)i∈N〉 is a strategy profile s∗ such that for every player
i ∈ N we have10 ui(O((s∗−i,s

∗
i )))≥ ui(O((s∗−i,si))) for every strategy si of i .

Notice that this first solution concept for an extensive game with perfect
information ignores the sequential structure of the game; it treats the strate-
gies as choices that are made once and for all, before the actual game starts.
Intuitively, a strategy profile s∗ is a Nash equilibrium if no player can uni-
laterally improve upon her choice. In other words, given the other players’
actions s∗−i, s∗i is the best player i can do11.

EXAMPLE 18. The game of Example 15 has nine Nash equilibria:
{{(2,0)},{y1 ,y2,y3,}}, {{(2,0)},{y1 ,y2,n3}}, {{(2,0)},{y1 ,n2,y3}},

10 (s−i,si) is the abbreviation for the strategy profile s′ which is such that si = s′i and s j = s′j
for all j ∈ N and j 6= i.

11 Note that the strategies of the other players are not actually known to i, as the choice for
a strategy has been made before the play starts. As stated before, no advantage is drawn from
the sequential structure.
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18 M. De Vos and D. Vermeir

{{(2,0)},{y1 ,n2,n3}}, {{(1,1)},{n1 ,y2,y3}}, {{(1,1)},{n1 ,y2,n3}},
{{(0,2)},{n1 ,n2,y3}}, {{(2,0)},{n1 ,n2,y3}}, {{(2,0)},{n1 ,n2,n3}} .

EXAMPLE 19. The game of Example 16 has two Nash equilibria:
{{buy,cream},{strawberries}} and {{buy,no_cream},{cherries}} .

Although the Nash equilibria for an extensive game with perfect informa-
tion have an intuitive definition, they have, in some situations, undesirable
properties due to not exploiting the sequential structure of the game. These
undesirable properties are illustrated by the following examples.

EXAMPLE 20. In Example 19 we have seen that the Cake game of Exam-
ple 16 has two Nash equilibria of which {{buy,no_cream},{cherries}} is
one. This strategy profile is unintuitive since it is sustained by the threat that
the first lady would opt for no_cream when strawberries are chosen as top-
ping. However, this would never happen (payoff 1) since the first lady prefers
cream in this situation (payoff 3).

Unintuitive equilibria as in the above example may appear because the strate-
gies contributing to a Nash equilibrium are chosen once and for all at the
start of game. Players are not allowed to change them during the game. Fur-
thermore, these strategies just have to be optimal as far as the outcome is
concerned. The definition does not specify anything about the choices during
the game.

These shortcomings can be eliminated by considering subgame perfect
equilibria, for which a strategy is required to be optimal after each history,
i.e. at each stage of the game.

DEFINITION 13. A subgame of the extensive game Γ = 〈N,H,P,(ui)i∈N〉
that follows the history h is the extensive game Γ(h) = 〈N,H|h,P|h,(uh,i)i∈N〉,
where H|h is the set of sequences h′ of actions for which (h,h′) ∈ H, P|h is
defined by P|h(h′) = P((h,h′)) for each h′ ∈H|h, and uh,i(h′) = ui((h,h′)).

A subgame perfect equilibrium requires that the actions prescribed by each
player’s strategy are optimal, given the other player’s strategies, and this after
every history. Given a strategy si of player i and a history h in the extensive
game Γ, si|h denotes the strategy that si induces in the subgame Γ(h) (i.e.
si|h(h′) = si((h,h′))). We will use Oh to denote the outcome function of Γ(h).

DEFINITION 14. A subgame perfect equilibrium of an extensive game with
perfect information Γ = 〈N,H,P,(ui)i∈N〉 is a strategy profile s∗ such that for
every player i∈N and every non-terminal history h∈H \Z for which P(h) = i
we have: uh,i(Oh(s∗−i|h,s

∗
i |h))≥ uh,i(Oh((s∗−i|h,si|h)) , for every strategy si of

player i in the subgame Γ(h).
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Equivalently, we can say that a subgame perfect equilibrium needs to be a
Nash equilibrium in every subgame. Because subgames start from the bottom
of the tree and then working themselves up to the top, this mechanism is
often called backward induction. Every subgame can be seen as that part of
the game that is still uncertain, i.e. the future. The part above this subgame
is common knowledge to all players, since we are dealing with an extensive
game with perfect information. Thus, these decisions are already something
from the past. So the player that has to make a decision at the bottom of
the game tree does not have to make any assumption on the behavior of the
other players. Consequently, she only has to worry about her own benefit. The
player who made the previous decision can anticipate this choice and can take
it into account. This process works its way back to the top. Another way of
looking at this is that the players revise their strategy after every choice made
by any player.

Subgame perfect equilibria eliminate Nash equilibria in which the players’
threats are not credible.

EXAMPLE 21. The Cake-game of Example 16 admits only one subgame
perfect equilibrium: {{buy,cream},{strawberries}}.
The Object-game from Example 15 has only two subgame perfect equilibria,
namely {{(2,0),{y1y2y3}} and {{(1,1)},{n1y2y3}}. The other seven Nash
equilibria are based on implausible threats.

Since subgame perfect equilibria are Nash equilibria for every subgame,
the following theorem should not be surprising.

THEOREM 5 ([22]). Let Γ = 〈N,H,P,(ui)i∈N〉 be an extensive game with
perfect information. Then, every subgame perfect equilibrium for Γ is also a
Nash equilibrium.

5.2. PLAYING GAMES

We demonstrate that extensive games with perfect information have a natural
formulation as multi-agent systems with a particularly simple information-
flow structure between the agents. We introduce the mapping in three steps,
each with more emphasis on the players and their interactions. For our map-
pings, we assume that an action can only appear once12. This is not really a
restriction, since one can simply use different names for these actions since
they are not related. This will just have an effect on the syntax, and not on the
semantics, of the game.

12 Formally, for any two histories h1,h2 ∈ H : A(h1)∩A(h2) = /0.
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Figure 8. The game of Example 22

Phase 1 – games as OCLP’s
Extensive games can be represented as ordered choice logic program in such
a way that, depending on the transformation, either the Nash or subgame
perfect equilibria can be retrieved as the answer sets of the program [11].

EXAMPLE 22. Consider the extensive game depicted in Figure 8. This game
has six Nash equilibria: {{b,e},{c}}, {{b, f},{c}}, {{b,e},{d}},{{b, f },
{d}}, {{a,e},{d}},{{a, f},{d}} . Three of these Nash equilibria are also
subgame perfect equilibria: {{b,e},{c}},{{b,e},{d}},{{a,e},{d}} .

The following transformations will be used to retrieve the Nash and subgame
perfect equilibria of a game as the answer sets of the corresponding OCLPs
PN and PS, respectively.

DEFINITION 15. Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game with
perfect information. Then, the program PN is defined as follows:

1. C = {Ct}∪{Cu | ∃i ∈ N,h ∈ Z ·u = ui(h)} ;

2. Ct ≺Cu for all Cu ∈ C ;

3. ∀Cu,Cw ∈ C ·Cu ≺Cw iff u > w ;

4. ∀h ∈ (H \Z) · (A(h)← ) ∈Ct ;

5. ∀h = h1ah2 ∈ Z · (a← B) ∈Cu with B = {b ∈ [h]13 | h = h3bh4,P(h3) 6=
P(h1)} and u = uP(h1)(h) .

Furthermore, the program PS is defined like PN , except that item 5 is replaced
with 5’:

5’. ∀h = h1ah2 ∈ Z · (a← B) ∈Cu with B = {b ∈ [h2] | h = h3bh4,
P(h3) 6= P(h1)} and u = uP(h1)(h) .

13 We use [h] to denote the set of actions appearing in a sequence h.
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Figure 9. The OCLP’s of Example 22

Intuitively, PN contains a component Ct containing all the decisions that need
to be considered and a component Cu for each payoff u. The order among
the components follows the expected payoff (higher payoffs correspond to
more specific components) with the decision component at the bottom of the
hierarchy (the most specific component). Since Nash equilibria do not take
into account the sequential structure of the game, players have to decide upon
their strategy before starting the game, leaving them, for each decision, to
reason about both past and future. This is reflected in the rules of PN (item 5):
each rule in a payoff component is made out of a terminal history (path from
top to bottom in the tree) where the head represents the action taken when
considering the past and future created by the other players according to this
history. The component of the rule corresponds to the payoff the deciding
player would receive in case the history was actually followed.

The construction of PS is quite similar to the one for PN . The only differ-
ence between the two is in the history-dependent rules of PS (item 5’): since
subgame perfect equilibria take the sequential structure into account, players
no longer need to reason about what happened before they have to make their
decision. They can focus solely on the future.

EXAMPLE 23. Figure 9 depicts the corresponding OCLPs PN and PS, con-
structed according to Definition 15 from the game of Example 22. Notice that
the answer sets of PN and PS coincide exactly with respectively the Nash and
subgame perfect equilibria of the game.

The following theorem demonstrates that OCLPs can indeed be used to
retrieve the equilibria of extensive games.

THEOREM 6 ([11]). Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game
with perfect information and let PN and PS be its corresponding OCLPs
according to Definition 15. Then, s∗ is a Nash equilibrium (resp. subgame
perfect equilibrium) for G iff s∗ is a answer set of PN (resp. PS).
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Phase 2 – players as sets of components
The above transformations ignore the natural player structure of a game. It is
however fairly simple to adapt PN and PS such that each player is associated
with her own set of components. Instead of having a payoff component for
every payoff in the game, we introduce payoff components corresponding to
the distinct payoffs of each player (e.g. if two players i and j have a payoff 0
then we now have two components Ci

0 and C j
0, instead of the single compo-

nent C0). Rules made out of a terminal history are now put in the component
corresponding to the player taking the associated decision and her perceived
payoff.

The order among the components is established, first among components
of the same player, according to their payoff (lower payoff is more general)
and, secondly, according to the position of the players in N.

DEFINITION 16. Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with per-
fect information. The program Pp

N is defined by

1. C = {Ci
u | ∃h ∈ Z ·u = ui(h)∧ i ∈ N} ;

2. ∀Ci
u,C

j
w ∈ C ·Ci

u ≺C j
w iff i > j ;

3. ∀Ci
u,C

i
w ∈ C ·Ci

u ≺Ci
w iff u > w ;

4. ∀h ∈ (H \Z) · (A(h)← ) ∈Ci
w,P(h) = i,∀Ci

n,n 6= w ·Ci
w ≺Ci

n ;

5. ∀h = h1ah2 ∈ Z · (a← B) ∈Ci
u with P(h1) = i,

B = {b ∈ [h] | h = h3bh4, P(h3) 6= i} and u = uP(h1)(h) .

The definition of Pp
S is similar, it suffices to replace condition 5 by:

5′. ∀h = h1ah2 ∈ Z · (a← B) ∈Ci
u with P(h1) = i, B = {b ∈ [h2] |

h = h3bh4,P(h3) 6= i} and u = uP(h1)(h) .

EXAMPLE 24. The programs Pp
N and Pp

S for the game of Example 22 are
shown in Figure 10. Notice that the answer sets of Pp

N match the Nash equi-
libria of the game, while the answer sets of Pp

S are the subgame perfect
equilibria.

THEOREM 7. Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information and let Pp

N and Pp
S be its corresponding OCLP’s. Then, s∗ is a

Nash equilibrium (resp. subgame perfect equilibrium) for 〈N,H,P,(ui)i∈N〉
iff s∗ is an answer set of Pp

N (resp. Pp
S ).

Phase 3 – games as LPASs
The ordered programs of Definition 16 can be transformed into equivalent
cyclic agent systems where there is a one-to-one correspondence between
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Figure 10. OCLP’s for Example 24

agents and players. Intuitively, the OCLPs of phase 2 are divided into smaller
OCLPs, each describing the reasoning skill of a single player. Each of them
will be used to create an agent. Agents are connected in a single directed
cycle.

DEFINITION 17. Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with per-
fect information. The corresponding Nash LPAS SN = 〈{Ai | i ∈N},C〉 where
Ai = 〈{CAi},≺i〉 is constructed as follows:

1. CAi = {Ci
u | ∃h ∈ Z ·u = ui(h)} ;

2. ∀Ci
u,C

i
w ∈ CAi ·Ci

u ≺i Ci
w iff u > w ;

3. ∀h ∈ (H \Z),P(h) = i · (A(h)← ) ∈Ci
w,∀Ci

n,n 6= w ·Ci
w ≺i Ci

n ;

4. ∀h = h1ah2 ∈ Z,P(h1) = i ·a← B ∈Ci
u with

B = {b ∈ [h] | h = h3bh4, P(h3) 6= i} and u = uP(h1)(h) ,

5. C(Ai) = {Ai+1} for i ∈ N, i < maxN ,

6. C(AmaxN) = {A1} .

The LPAS SS can be obtained in a similar way by replacing 4 by:

4′. ∀h = h1ah2 ∈ Z,P(h1) = 1 · (a← B) ∈Ci
u with B = {b ∈ [h2] |

h = h3bh4,P(h3) 6= i} and u = uP(h1)(h) .

EXAMPLE 25. For the game of Example 22, the corresponding LPASs SN

and SS are displayed in Figure 11. Notice that the answer sets for SN and SS

match exactly the Nash and subgame perfect equilibria of the game.
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Figure 11. The LPASs of Example 25

THEOREM 8. Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information and let SN and SS be the corresponding LPASs, according to Def-
inition 17. Then, s∗ is a Nash equilibrium (resp. subgame perfect equilibrium)
for 〈N,H,P,(ui)i∈N〉 iff the interpretation I with I(a) = s∗ for every a ∈ A is
an answer set of SN (resp. SS).

For the proof of the above theorem, we demonstrate that every evolution-
ary fixpoint of I /0 can be constructed in n iterations, with n the number of
players in the game. Of course, this only happens when players or agents
know which actions will lead to an equilibrium state. In practice, it might
take more iterations in order to find a fixpoint. Such a fixpoint computation
can easily be seen as the players trying to obtain actions belonging to an
equilibrium state. At first, she picks an action and sees how the other players
respond to this. With this information she can update her actions. This process
is carried on until a equilibrium is reached.

6. Relationship to Other Approaches

6.1. (EXTENDED) LOGIC PROGRAMMING

Choice logic programs can represent logic programs [11]. However, the map-
ping between the stable models/answer sets of both formalisms is not total
since an extra condition for the stable models of a choice logic program,
namely rationality, is required. A full mapping exists only for the class of
positive-acyclic logic programs. Generalizing to OCLP, we can obtain a full
one-to-one correspondence, as far as answer sets are concerned, between
logic programs and their corresponding OCLPs. The mapping can be further
extended to simulate the answer set semantics of extended logic programs.
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DEFINITION 18. Let P be an extended logic program without classical
negation. The corresponding OCLP PL is defined by 〈{C,R,N},C ≺ R≺ N〉
with

N = {nota← | a ∈ BP} ,

R = {a← B,notC ∈ R | r : a← B,¬C ∈ P}∪

{nota← B,notC ∈ R | r : ¬a← B,¬C ∈ P}∪

{ ← B,notC ∈ R | r : ← B,¬C ∈ P} ,

C = {a⊕nota← a | a ∈ BP} ,

where, for a ∈ BP, nota is a fresh atom representing ¬a14.

Intuitively, the choice rules in C force a choice between a and ¬a while
the rules in N encode “negation by default”.

THEOREM 9. Let P be an extended logic program without classical nega-
tion15. Then, M ⊆ BP is an answer set of P iff S is an answer set of PL with
S+ = M+∪not(BP\M).

The proof of this theorem relies on the choice rules a⊕ nota ← a to ob-
tain the one-to-one mapping between the answer sets. The next example
demonstrates that this is essential.

EXAMPLE 26. Consider the very simple logic program P: a ← a .
Obviously, we obtain /0 as the only answer set of this program. When we
apply the transformation of Definition 18, we obtain a OCLP PL with a single
answer set M with M+ = {nota}. Suppose we would use choice rules with
empty body. Then the program would produce two answer set: M and N with
N+ = {a}. Certainly, N does not correspond to any answer set of P.

6.2. PREFERENCES

Various logic (programming) formalisms have been introduced to deal with
the notions of preference, order and updates. Ordered choice logic program-
ming uses the intuition of defeating from ordered logic programming (OLP)
[17, 18] to select the most favorable alternative of a decision. In fact, every
ordered logic program can be transformed into a OCLP such that the answer
set semantics reflects the credulous semantics of the OLP.

Dynamic preference in extended logic programs was introduced in [4] in
order to obtain a better suited well-founded semantics. Although preferences

14 For a set X ∈ BP, notX = {nota | a ∈ X}.
15 This is not a real restriction: classical negation can easily be replaced using a simple

preprocessor.
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are called dynamic they are not dynamic in our sense. Instead of defining a
preference relation on subsets of rules, preferences are incorporated as rules
in the program. Moreover, a stability criterion may come into play to over-
rule preference information. Another important difference with our approach
is the notion of alternatives, as the corresponding notion in [4] is statically
defined.

A totally different approach is proposed in [25]. where preferences are
defined between atoms. Given these preferences, one can combine them to
obtain preferences for sets of atoms. Defining models in the usual way, the
preferences are then used to filter out the less preferred models.

[6] proposes disjunctive ordered logic programs which are similar to or-
dered logic programs [17] where disjunctive rules are permitted. In [5], pref-
erence in extended disjunctive logic programming is considered. As far as
overriding is concerned the technique corresponds rather well with a skeptical
version of the OCLP semantics ([13]), but alternatives are fixed as an atom
and its (classical) negation.

To reason about updates of generalized logic programs, extended logic
programs without classical negation, [2] introduces dynamic logic programs.
A stable model of such a dynamic logic program is a stable model of the gen-
eralized program obtained by removing the rejected rules. The definition of a
rejected rule corresponds to our definition of a defeated rule when a and ¬a
are considered alternatives. It was shown in [2], that the stable model seman-
tics and the answer set semantics coincide for generalized logic programs.
In Theorem 9 we have demonstrated that extended logic programs without
classical negation can be represented as ordered choice logic programs such
that the answer set semantics of the extended logic program can be obtained
as the answer set semantics of the OCLP. Because rejecting rules corresponds
to defeating rules, it is not hard to see that, with some minor changes, Defini-
tion 18 can be used to retrieve the stable models of the dynamic logic program
as the stable models of the corresponding OCLP. The only things we need to
do are to replace the component R by the Pis of the dynamic logic program

�
{Pi : i∈ S}, replace every occurrence of ¬a by nota and add a⊕nota← nota

to C for each a ∈ BP.
A similar system is proposed in [15], where sequences are based on ex-

tended logic programs, and defeat is restricted to rules with opposing heads.
The semantics is obtained by mapping to a single extended logic program
containing expanded rules such that defeated rules become blocked in the
interpretation of the “flattened” program.

A slightly different version of Definition 18 can be used to map the se-
quences of programs of [15] to OCLPs.

In [3], preferences are added to the dynamic logic program formalism of
[2]. These are used to select the most preferred stable models. Along the
same line, [14] proposes logic programs with compiled preferences, where
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preferences may appear in any part of the rules. For the semantics, [14] maps
the program to an extended logic program.

6.3. GAMES

In Section 5 we demonstrated that extensive games with perfect information
have a natural formulation as a system of logic programming agents such
that equilibria coincide with answer sets. Furthermore, the fixpoint semantics
simulates the way players make assumptions about other players’ behaviors
in order to make a decision.

Besides explaining and retrieving game theoretic phenomena, OCLPs can
be used to extend game theory. First of all, OCLPs can be used to represent
more complex games since rules may involve extra antecedents and depen-
dencies that cannot easily be represented in games. Perhaps even more impor-
tant is the ability for a player to take more than one action as demonstrated
by the Travel OCLP of the introduction (Example 2). If we just consider
the first three components (P1, P2 and P3), we see the representation of a
very simple strategic or extensive game with a single player (the person who
wants to go on vacation). In this case the equilibrium would be {spain}which
corresponds to the situation with a smaller budget. When you win the lottery,
your budget will be considerably larger and you will be able to afford two
vacations instead of one. In game theory this is simply not possible. Every
player is forced to take a single action. Another advantage of using (ordered)
logic programming for game theory is its ability not only to serve as a test lab
for game theory but also as an implementation tool to obtain the equilibria of
game.

To the best of our knowledge, little work has been done so far on game
theory in the context of logic programming. An important exception is [23]
which introduces a formalism called “Independent Choice Logic” (ICL) which
uses (acyclic) logic programs to deterministically model the consequences of
choices made by agents. Since choices are external to the logic program, [23]
restricts the programs further to be not only deterministic (i.e. each choice
leads to a unique stable model) but also independent in the sense that literals
representing alternatives may not influence each other, e.g. they may not
appear in the head of rules. ICL is further extended to reconstruct much of
classical game theory and other related fields.

6.4. AGENTS

A considerable amount of work has been done in the area of logic pro-
gramming and agents. Due to space restrictions, we only mention systems
designed for game theoretic purposes. [24] investigates methods to prevent
agents exploiting game theoretic properties of negotiations: if, e.g., the play-
ers in a task oriented domain know that all players follow the game theory
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route, they can exploit this knowledge by introducing phantom tasks or by
hiding tasks to improve their score. [23] incorporates the players of the game
directly into a logic programming formalism for strategic games in order to
obtain mixed strategy Nash equilibria (where probabilities are introduced by
an additional mechanism that is external to the logic program). Here, on the
other hand, we are interested in multi-agent systems that are able to repre-
sent, in an intuitive way, games such that agents correspond with players and
models with the equilibria.

7. Conclusions and Directions for Future Research

In this paper we proposed a logic programming agent systems that allows us
to represent the communication between decision-makers in order to come to
a conclusion. The semantics of such a system relies on the agents to send an-
swer sets to connected agents. Furthermore, we demonstrated that extensive
games with perfect information have an elegant and natural formalization as
a LPAS. The Nash equilibria and subgame perfect equilibria can be obtained
as the answer sets of the corresponding system. In addition, the fixpoint com-
putation reflects the way players reason in order to make a decision belonging
to an equilibrium state.

A number of questions re. LPAS remain to be studied: e.g. what are suffi-
cient conditions on the agent programs and/or their communication structure
for guaranteeing the existence of an answer set (see Section 4 for an example
of a LPAS that has no answer sets)?

Although logic programming has shown itself to be a convenient repre-
sentational language for decision-problems, we only covered a few aspects of
the decision-making process. E.g. we assume that the agents are rational and
fair and that none of them has a hidden agenda or would deliberately deceive
the other agents. To model such aspects of decision-making, we need to add
epistemic primitives to the formalism such that agents can reason about each
other in more detail.

An extension along the same line is information hiding by agents. The
current definition of LPAS assumes that every agent is willing to share all
her information, in the form of an answer set, with the connected agents,
i.e. only the reasoning capabilities (the program) are hidden. There are situa-
tions in which this may not be desirable, as when consequences of classified
information may be made public without revealing the underlying motivation.

By demonstrating that extended logic programs can be represented in
OCLP, we obtain a lower complexity bound for OCLP. Current research [8]
involves mapping OCLP to logic programs, thus showing that the complexity
of OCLP equals that of logic programming. Having such a result implies that
one could use dlv [16] and/or smodels [20] to supply an implementation for
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OCLP and, consequently, LPAS. Smodels seems to be a particularly suitable
candidate for this, as it already contains primitives to express priority and
exclusive choice. Because the game OCLPs/LPASs are very specific, it might
be possible to incorporate this knowledge in the algorithms in order to obtain
the equilibria more efficiently.
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Appendix

A. Proofs

A.1. ORDERED CHOICE LOGIC PROGRAMMING

THEOREM 1 Let P be a choice logic program. M is a stable model for P if
M is an answer set of the corresponding OCLP Po = 〈{P},≺〉.
Proof. In order to demonstrate that M is answer set of Po, we need, by Defi-
nition 4 to show that M is a minimal model of PM

o .
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− M is a model of PM
o . Because M is a stable model of P, we have that for

every rule r ∈ P applicable rule holds |Hr ∩M| = 1. Because rules are
left unchanged in the reduction process, we have that all rules in PM

o are
satisfied.

− M is a minimal model of PM
o . This implies that we need to show that no

interpretation I of PM
o is a model of it. Since M is a stable model of P,

we know that M is minimal and therefore I cannot be a model of P. This
means a rule r exists such that Br ⊆ I ⊆M while |Hr ∩ I| 6= 1. Since M
is a model of P, we must have |Hr ∩M| = 1. For us to proof that I is
not a model of PM

o , it suffices to demonstrate that r is part of PM
o , which

means showing that r is not defeated w.r.t. M. When M is concerned,
we know that r is applied. Assume that Hr ∩M = {a}. Suppose know
that r would be defeated. According to Definition 3, this implies, among
other things, ∃b ∈ (ΩM

c(r)(a)∩M) 6= /0 . With Definition 2, this yields
∃r′ ∈ P · a⊕ b⊕B←C such that C ⊆M. Clearly this rule is applicable
but unapplied, which is contradiction with M being a model of P. This
leaves us no other option then to conclude r cannot be defeated and will
therefore be in PM

o . Which is enough to state that I could impossibly be
a model of PM

o . Therefore, M is a minimal model of PM
o .

THEOREM 2 Let M be an answer set of an OCLP P. Then, M is a model for
P.

Proof. In order to show this, we need to prove that every rule in P? is either
non-applicable, applied or defeated w.r.t. M. Let us begin with the constraints.
Since they do not contain head atoms, they cannot be defeated, implying that
they are automatically included in PM

c . Since M is a stable model of PM
c and

thus a model, we have that every constraint is non-applicable in PM
c , which

immediately implies that they are also satisfied for P.
Let us now consider the rules with head atoms. Let r be such a rule. Assume
that r is applicable and not defeated w.r.t. M. If one of these conditions is not
met, we have that r is satisfied w.r.t. M. Since r is not defeated w.r.t. M, r
must be in PM

c . Since M is model and r is applicable, r has to be applied in
PM

c , which implies |Hr∩M|= 1, making r applied in P.
Since all rules in P? are satisfied, we obtain that M is a model for P.

A.2. LOGIC PROGRAMMING AGENTS

THEOREM 3 Let F = 〈A,C〉 be a LPAS. An interpretation I is a model of F
iff it is an evolutionary fixpoint of F w.r.t. I.
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Proof. Let I be a model of F . It is easy to see that the sequence I, I satisfies
the criteria for a evolution. So, with Definition 9, I is a evolutionary fixpoint
of F w.r.t. I.
Let I be a evolutionary fixpoint. With Definition 9, an evolution I0, . . . , In = I
exists such that, for all a ∈ A, In+1(a) is an answer set of aInIn (a). Since I is
the fixpoint, this becomes I(a) is a model of aInI(a). With Definition 8, this
allows us to conclude that I is a model of F .

THEOREM 4 Let F = 〈A,C〉 be a LPAS without cycles. An interpretation M
is an answer set of F iff it is a model of F. of F.

Proof. The “only-if” part follows immediately from Corollary 1. For the “if”
part let M be a model of F . Let IO be the interpretation yielding an output of /0.
Because F is cycle-free there must agents without any incoming channels. Let
A1 be the set of these agents. Now we can construct an interpretation I1 such
that I1(a) = M(a) for each a ∈ A1. For the remaining agents b, we make sure
that I1(b) is a model of bInI0(b). Since M is a model and because the agents of
A1 do not receive information from other, we know that I1(a) is an answer set
of aInI0 (a) = aInM(a). Now let A2 be the set of agents that receive information
only from agents in A1. This is possible since F does not contain cycles. With
this we can construct an interpretation I2 such that I2(a) = M(a) for each a ∈
A2. For the remaining agents b, we make sure that I2(b) is a model of bInI1(b).
Due to the construction of I2, we have that for all a∈ A2 aInI1(a) = aInM(a). Due
to M being a model of F , we must have that I2(a) is an answer set of aInI1(a).
We can continue this process until we constructed an interpretation In that
covers all agents. Clearly, In = M. Moreover, the sequence I0 . . . In induces a
evolution of which In is the fixpoint. With Definition 9, this implies that M is
an answer set of F .

A.3. LPAS AND GAME THEORY

A.3.1. Phase 1
THEOREM 6 Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game with per-
fect information and let PN and PS be its corresponding OCLPs accord-
ing to Definition 15. Then, s∗ is a Nash equilibrium (resp. subgame perfect
equilibrium) for G iff s∗ is a answer set of PN (resp. PS).

Proof. We will break down this proof into a seperate proof for Nash equilibria
and one for subgame perfect equilibria
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A.3.1.1. Nash equilibria Before we start the actual proof, we first demon-
strate that every model for PN is also an answer set of it and that a model of
PN is a strategy profile for G.

LEMMA 1. Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game with per-
fect information and let Gn be its corresponding OCLP according to Defini-
tion 15. Then, M is an answer set for Gn iff M is a model of Gn.
Proof. The “only-if”-part follows immediately from Theorem 2.
For the “if”-part, let M be a model of Gn. We need to demonstrate that M is
a minimal model of GM

n,c. We first demonstrate that M is a model of GM
n,c. We

need to show that every rule and every constraint in GM
n,c is satisfied by M. The

choice logic program GM
n,c is obtained from G∗n (i.e. Definition 4) by deleting

all defeated rules w.r.t. M. Since M is a model of GM
n,c, we know that for the

remaining rules must hold that either B * M or |Hr∩M|= 1. This implies that
the rule is satisfied. So, M satisfies every rule in GM

n,c and, thus, M is a model
of GM

n,c. So it remains to be shown that M is also minimal. The construction
of Gn assures, by placing the choice rules in the most specific component
and by forcing that every atom appears exactly once in such a choice rule,
that these rules can never be defeated w.r.t. M. From Definition 4, we know
that all these choice rules are also in GM

n,c. Thus, for every a ∈M, we have a
rule a⊕A← ∈ GM

n,c. Since M is a model of GM
n,c, we know that A∩M = /0.

Removing a from M, would result in an unsatisfied rule. This makes that
every total interpretation N with N+ ⊂M+ cannot be a model for GM

n,c. So, M
is a minimal model of GM

n,c, which makes M an answer set of Gn.

LEMMA 2. Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information, let Gn be the corresponding OCLP and let M be a model of Gn.
Then, M is a strategy profile for G.
Proof. This follows immediately from the construction of Gn. The heads of
the choice rules in the component Ct correspond exactly with all the sets A(h),
with h a non-terminal history. Because Ct is the most specific component and
since every atom appears exactly once in the head of such a choice rule, we
know that a choice rule r cannot be defeated in Ct w.r.t. M. Since M is a
model, we know that |Hr∩M|= 1. So, for every non-terminal history h, we
have A(h)∩M = 1. This makes that M is a strategy profile for G.

Now that we have proven the above lemmas, we can proceed with demon-
strating the equivalence between answer sets and Nash equilibria.
For the “if”-part, let M be a Nash equilibrium for G. With Lemma 1, we need
to prove that M is a model of Gn in order to conclude that M is an answer set
of Gn. We have two types of rules in our program: choice rules (e.g. rules with
more than one head atom) and rules with a single head atom. Let us proceed
with the former. The head of such a choice rule corresponds to A(h) for some
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non-terminal history h. Since Nash equilibria are also strategy profiles, we
have that |A(h)∩M| = 1. This implies that all our choice rules are applied
and thus satisfied w.r.t. M.
Now consider the rules with a single head atom. Let r be such rule with Br ⊆
M and Hr = a /∈ M. Since M is a Nash equilibrium, we must have that the
player, player i, who has to make a decision took an action b which would
lead him to an outcome that gives a payoff at least as good as the outcome
which involves the action a. The construction of PN guarantees that a is a
head atom of a choice rule r′ with b ∈ Hr′ . This rule is trivially applicable,
thus b ∈ΩM

c(r)(a). Because M is a strategy profile, the other players will have
actions in their strategy to deal with the possibility that player i might have
chosen b instead of a. These actions are all contained in M. Filling in actions
for player i, including b, this yields a terminal history h′. According to the
creation of PN , this results in a rule r′′ : b← [h′′] with h′′ those actions from h′

which are not chosen by player i. This rule r′′ is applied and since h′ results
in a payoff at least as good as the one of h, we can use r ′′ to defeat r. Thus,
r is satisfied w.r.t. M. So we can conclude that M is a model of PN and thus,
with Lemma 1, an answer set of PN .
For the “only-if”-part, let M be an answer set of PN . From Lemma 2, we
already know that M is a strategy profile for G. So it remains to be shown
that M is a Nash equilibrium. This means that a player i cannot, given the
other players’ actions, leave the equilibrium to obtain a better payoff. Or that
all terminal histories containing for the other players actions from M and
possibly different actions for i should not produce a better outcome for player
i. For all actions a ∈M chosen by player i, we have that all the alternatives
b of a cannot be in M. This implies, for all rules r with b ∈ Hr, that r is not
applicable or defeated. When r is not applicable, we know that none of the
terminal histories containing b and Br can be in the way for concluding that
M is a Nash equilibrium. When r is defeated, we know that there exists an
applied rule r′ with a ∈ Hr′ such that c(r) 6≺ c(r′). This means that there is a
terminal history containing a which guarantees a payoff at least as good as the
payoff you might get for using b. This means that there is no rational reason
to replace a with b. Since this is true for every action of a, we may conclude
that M is indeed a Nash equilibrium.

A.3.1.2. Subgame perfect equilibria Before we start the actual proof, we
first demonstrate that every model for PS is also an answer set of it and that a
model of PS is a strategy profile for G.

LEMMA 3. Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information and Gs be its corresponding OCLP according to Definition 15.
Then, M is an answer set for Gs iff M is a model of Gs.
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Proof. The “only-if”-part follows immediately from Theorem 2.
For the “if”-part, let M be a model of Gs. We need to demonstrate that M is
a minimal model of GM

s,c. We first demonstrate that M is a model of GM
s,c. We

need to show that every rule and every constraint in GM
s,c is satisfied by M. The

choice logic program GM
s,c is obtained from G∗s (i.e. Definition 4) by deleting

all defeated rules w.r.t. M. Since M is a model of Gs, we know that for the
remaining rules either B * M or |Hr∩M|= 1 holds. This implies that the rule
is satisfied in GM . So, M satisfies every rule, thus, M is a model of GM

s,c. So it
remains to be shown that M is also minimal. The construction of Gs assures,
by placing the choice rules in the most specific component and by forcing
that every atom appears exactly once in such a choice rule, that these rules
can never be defeated w.r.t. M. With Definition 4, we have that all these choice
rules are also in GM

s,c. Thus, for every a ∈M, we have a rule a⊕A← ∈ GM
s,c.

Since M is a model of GM
s,c, we know that A∩M = /0. Removing a from M,

would result in an unsatisfied rule. This makes that every total interpretation
N with N+ ⊆ M+ cannot be a model for GM

s,c. So, M is a minimal model of
GM

s,c which makes M an answer set of Gs.

LEMMA 4. Let G = 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information , Gs be the corresponding OCLP and let M be a model of Gn.
Then, M is a strategy profile for G.
Proof. This immediately follows from the construction of Gn. The heads of
the choice rules in the component Ct correspond exactly with all the sets A(h),
with h a non-terminal history. Because Ct is the most specific component and
since every atom appears exactly once in the head of such choice rule, we
know that a choice rule r cannot be defeated in Ct wrt M. Since M is a model,
we know that |Hr ∩M| = 1. So, for every non-terminal history h, we have
A(h)∩M = 1. This makes that M is a strategy profile for G.

Now that we proved the above lemmas, we can proceed with demonstrating
the equivalence between answer sets and subgame perfect equilibria.
To prove the “if”-part, let M be a subgame perfect equilibrium of G. With
Lemma 3, it suffices to demonstrate that M is a model of PS. Because M is a
strategy profile, we know that |A(h)∩M|= 1 for every non-terminal history
h ∈ H . Exactly those A(h) are responsible for the creation of the choice rules
in Ct . This immediately implies that these rules are applied and, thus, satis-
fied. Now it remains to be shown that rules with a single head atom are also
satisfied. Let r be a rule such that Br ⊆M and Hr /∈ Br. Let a ∈ Hr. The con-
struction of PS guarantees that a ∈ A(h) for some h ∈ H . M being a subgame
perfect equilibrium states that a is not part of the outcome of the subgame G|h.
This implies the existence of a terminal history h′ of this subgame yielding a
better or equal payoff for the player P(h) = i. The construction of PS makes
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sure that a rule r′′ : b← B exists with B⊆M, containing all the actions of h′

except the ones made by i. Clearly, b ∈M and b ∈ ΩM
c(r)(a). Since the payoff

for i is at least as good as when h is played, we have that c(r ′) 4 c(r). This
means that r′ can be used as a defeater of r, which makes r satisfied. So we
may conclude that M is indeed a model of PS. With Lemma 3, we obtain that
M is also an answer set of PS.
For the “only-if”-part, let M be an answer set of PS. Lemma 4 already tells
us that M is a strategy profile for G. When we look at the construction of
PS, we see subgames are imitated. The smallest subgames are represented by
facts, since the actions that ought to be chosen are directly connected to the
leafs. Rules belonging to the same subgame can possibly defeat each other.
Since answer sets are models, for facts belonging to the same subgame, the
fact which is preferred the most is made true. In case there are several, a
random choice is justified. Clearly the chosen action corresponds to a Nash
equilibrium of the subgame. The same applies for larger subgames. They are
represented in the program in a similar way, only the number of body ele-
ments grows. Rules that become applicable contain only actions belonging
to a Nash equilibrium of the lower subgames. For each larger subgame an
action is chosen which yields the best or similar payoff to the deciding player.
Clearly, in this way we have obtained a Nash equilibrium for the current sub-
game. When we reach the root of the original game G in this way, we know
that the collection of actions M indeed contains a Nash equilibrium of each
subgame in G. This makes that M indeed is a subgame perfect equilibrium
for G.

A.3.2. Phase 2
THEOREM 7 Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information and let Pp

N and Pp
S be its corresponding OCLPs. Then, s∗ is a

Nash equilibrium (resp. subgame perfect equilibrium) for 〈N,H,P,(ui)i∈N〉
iff s∗ is a answer set of Pp

N (resp. Pp
S ).

Proof. The programs Pp
N and Pp

N are constructed in such a way that the relative
order between the components of two rules with in their heads alternatives is
the same as in Pp and PS. The only difference that we need to look into is
the presence of choice rules in the most specific component of each player.
With the construction of the programs Pp

N and Pp
S and the defeating strategy,

we know that such a choice rule can only be defeated when more than one
alternative is forced and decided on in the same component as the choice rule.
When we compute the reduct in this case, we obtain that every rule containing
an alternative generated by the choice rule has been deleted, including the
choice rule itself. This means that a stable model of this reduct can never
contain any of these alternatives, which makes that the interpretation at hand
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can never be considered an answer set. This implies that every answer set
contains exactly one action for each decision some agents has to make. Thus,
answer sets of Pp

N and Pp
S are strategy profiles. With this in mind, we have

that our proof is the same as the proofs for demonstrating that answer sets of
PN and PS coincide with respectively the Nash equilibria and subgame perfect
equilibria of the represented game. (Theorems 6 and 6 on page 21).

A.3.3. Phase 3
THEOREM 8 Let 〈N,H,P,(ui)i∈N〉 be a finite extensive game with perfect
information and let SN and SS be the corresponding LPAS, according to Defi-
nition 17. Then, s∗ is a Nash equilibrium (resp. subgame perfect equilibrium)
for 〈N,H,P,(ui)i∈N〉 iff the interpretation I with I(a) = s∗ for every a ∈ A is
a answer set of SN (resp. SS).

Proof. The construction of framework makes sure that a decision made by one
agent is accepted by all the others. The reason for this is that atoms are con-
sidered to be alternatives by one agent only appear in the head of a rule of just
this agent. With this in mind it is easy to see every agent has the same output in
model and that the models of (SN) (resp. SS) coincide with the answer sets of
Pp

N (resp. Pn
s ). In theorem 7, we demonstrated that the set of answer sets of Pp

N
(resp. Pp

S ) equals the set of Nash equilibria (resp. subgame perfect equilibria)
of the represented game. Now, it remains to shown that every model is also
an answer set. The reverse follows immediately from Corollary 1. Let M be
the output produced by every agent. We will demonstrate that there exist a
evolution I /0, . . . , In with n the number of players in the game. In the second
step we have:

I1(A
i) = M∩Ai ;

with Ai the actions from with player/agent Ai can choose. This is made pos-
sible because of the choice rules which are immediately applicable. All the
other steps are necessary to notify the agents of the choices made by the other
agents. This makes that the output of each agent in the last step (i.e. step n)
equals M. Only in the last step, all non-choice rules can become applicable.
This makes it easy to verify that Ii, for i < n fulfills all requirements necessary
to take part in a evolution. Also In satisfies the criteria to take part in the
evolution, this because M is a model of SN (resp. SS). Clearly for the same
reason we have that In is a fixpoint of this evolution. So, we may conclude
that every answer set of SN (resp. SS) is a Nash equilibrium (resp. subgame
perfect equilibrium) and vice versa.
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A.4. (EXTENDED) LOGIC PROGRAMS

THEOREM 9 Let P be an extended logic program without classical negation.
Then, M ⊆ BP is an answer set of P iff S is an answer set of PL with S+ =
M+∪not(BP\M).
To make the proof more readable, we introduce, for an interpretation I of
PL, I p and In as respectively {a ∈ BP | a ∈ I} and {a ∈ BP | nota ∈ I}. Thus,
I+ = I p∪notIn .

Proof. Let us start with the “only-if”-part. So let M be an answer set of P. We
need to show that S is an answer set of PL. With Definition 4, this implies that
S has to be a minimal model of PS

L .

− S is a model of PS
L . Let us consider the rules in the various components.

• r : a⊕nota← a∈PS
L . Assume that a∈ S. This implies that a∈M.

Because M is an interpretation, a /∈M−. With the construction of
S, we obtain nota /∈ S. Thus, |Hr ∩ S| = 1, which makes the rule
satisfied. If a /∈ S, we immediately have that r is satisfied.

• r : l ← B,notC ∈ PS
L with l = a or l = nota. This implies that r′ :

l′ ← B,¬C ∈ P with l ′ = a or l ′ = ¬a respectively. Because M is
deductively closed (i.e. every applicable rule is applied) for P, we
have for r′ that one of the following:

∗ B * M. Because B⊆BP and M+ = S+∩BP, we obtain B * S.
∗ C∩M 6= /0. Since C⊆BP and M+ = Sp, this yields C∩Sp 6= /0.

Because Sp∩SN = /0, we have Br * S.
∗ a ∈M if l ′ = a with a ∈ BP. This implies a ∈ S.
∗ a /∈M if l ′ = ¬a with a ∈ BP. With the construction of S, this

yields nota ∈ S.

Thus, the rule r is satisfied by S.

• r : ← B,notC ∈ R. This means that the constraint ← B,¬C ∈ P.
Because M is an answer set of P, we have that M is deductively
closed. This implies that either B * M or C∩M 6= /0. In terms of
S, this yields B * S or notC * S. This immediately implies that r is
not applicable, and thus satisfied.

• r : nota ← ∈ PS
L . Suppose that nota /∈ S. The construction of S

from M, implies a /∈ M−. Because M is total, we have a ∈ M+

and also a ∈ S. With the rule a⊕ nota ← a ∈ C, we obtain that
ΩS

N(nota) = {a}. Because M is an answer set P, we must have that
M is minimally closed for PM . This implies:

∃r′ ∈ P ·a ∈ Hr′,B
+
r′ ⊆M+,B−r′ ⊆M− .
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The construction of PL and S supply us, in this case, with a rule
r′′ for which a = Hr′′, Br′′ ⊆ S holds. Thus, by Definition 3, r′′

defeats the rule r, as c(r′′) = R≺ c(r) = N and a ∈ S, which is in
contradiction with r ∈ PS

L .
So we have to conclude that nota has to be in S, which makes r
satisfied.

So we can conclude that every rule in PS
L is satisfied w.r.t. S.

− S is minimal. We will demonstrate that no total interpretation Z with
Z+ ⊆ S+ can be considered to be a model of PS

L . Suppose that there
exists a nota such that nota ∈ S while nota /∈ Z. If nota ∈ S, we must
have that a /∈ S. Otherwise, the rule a⊕nota← a would not be satisfied,
which is impossible as S is a model of PS

L . This makes that ΩS
N(nota) = /0.

This implies that the rule nota← ∈N cannot be defeated w.r.t. S. Thus,
nota← ∈ PS

L . So, Z cannot be a model of PS
L , as nota /∈ Z.

So we must have that SN = Zn. Thus, S+ \Z+ = D with D ⊆ BP. Since
D ⊆ S+, we have that D ⊆ M. Because M is an answer set of P, we
know that M is minimally closed under PM . This implies that, since D⊆
M, there is an atom a ∈ D such that a rule r ∈ PM exists for which,
amongst other things, that Br ⊆ M and Br ∩D = /0 holds. This implies
Br ⊆ (M+\D). This rule could only be in PM when for its corresponding
rule r′ holds B−r′ ∩M = /0. Since SN = Zn, we obtain with respect to Z,
B = B+

r′ ⊆ Z and notC = notB−
r′
⊆ Z. Due to the construction of PL, there

is a rule r′′ : a← B,notC ∈ PL. Since a ∈ S, we know by the construction
of S, that nota /∈ S. Because nota is the only alternative of a, we have,
with Definition 3, that r′′ cannot be defeated w.r.t. S, which implies that
r′′ ∈ PS

L . This makes that Z is not a model, as a /∈ Z while Br′′ ⊆ Z.
So we may conclude that, S is a minimal model of PS

L .

S being a minimal model of the choice logic program PS
L yields, that S is a

stable model of PS
L . This implies that S is indeed an answer set of PL.

For the “if”-part, let S be an answer of PL. Let M = Sp∪¬SN . According to the
definition of an answer set ([19]), we need to demonstrate that M is minimally
closed for PM . Before doing this, we demonstrate that Sp∪SN = BP. Because
S is an answer set of PL, it is also a model of PL (e.g. Theorem 2). This
implies that all the rules in the component C need to be satisfied. In case
a ∈ Sp, we have that the rule a⊕ nota ← a is applicable and not defeated
w.r.t. S. Since S is a model we must have that nota /∈ S. In case a /∈ Sp, we
have that ΩS

N(nota) = /0. This implies that the rule nota← cannot be defeated
w.r.t. S. Thus, since S is a model of PL, nota ∈ S. This yields Sp∩SN = /0 and
Sp∪SN = BP.

− M is closed for PM . We need to prove that for every rule r ∈ PM holds
that Hr ∈M whenever Br ⊆M. There are two types of rules: constraints
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and rules with a single head atom. Let us first start with the constraints.
According to the definition of the reduct, we have that a rule r ′ exists
from which r is originated. For r′ holds that A = H−r′ ⊆ M and C =
B−r′ ∩M = /0. This yields A∩SN = /0 and C ⊆ SN . The construction of Pl

implies the existence of a rule notA← Br,notC. Because S is an answer
set of PL and, by Theorem 2 a model of PL, we must have that Br * S.
Since Br ⊆BP, this implies that Br * M, which makes r satisfied. Let us
now proceed with the rules without empty-head and let r be such a rule.
Assume that Br ⊆M. Since r ∈ PM , we have a rule r′ : a← Br,¬C ∈ P
such that Br ⊆ M and C∩M = /0. With the creation of M, this implies
Br ⊆ Sp while C ⊆ SN . Thus, B∪notC ⊆ S. The construction of PL turns
the rule r′ into a rule r′′ : a← Br,notC ∈ R with Br′′ ⊆ S. Such a rule can
never be defeated and since S is a model of PL, we must have a ∈ Sp.
This yields, a ∈ M. Thus, r is satisfied w.r.t. M. We showed that every
rule in PM is satisfied, so we may conclude that M is indeed closed.

− M is minimally closed for PM . We will prove that a set of atoms Z for
PM with Z ⊂M can never be closed under PM . Because S is an answer
set of PL, we have that S is also a stable model of PM

L . This means,
by Proposition 6 in [10], that S is unfounded-free. This implies that no
non-empty subset of S+ can be an unfounded set of PL w.r.t. S. Since
Sp = M+, we have that D = (M+ \Z+) ⊆ S+ with D 6= /0. This means
that D cannot be an unfounded set w.r.t. S. According to the definition
([10]), this implies, amongst other things, that:

∃a ∈D · ∃r : A← B,notC ∈ PS
L ·a ∈ Hr,Br ⊆ S,Br∩D = /0 .

The last condition implies that r must be a rule in the component R. The
construction of PL implies that a rule r′ : a← B,¬C ∈ P exists such that
B ⊆ (M+ \D) = Z+ and C∩M = /0. This yields r′′ : a← B ∈ PM such
that a /∈ Z and B⊆ Z. Thus, Z cannot be a model of PM , which makes M
minimal.

We have demonstrated that M is indeed a minimal closed set under PM.
Therefore, we can conclude that M is an answer set of P.
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