
Towards Incremental Computation of the
Answer Set Semantics: Preliminary Report

Martin Brain Marina De Vos∗

Department of Computer Science

University of Bath
Bath, United Kingdom

{mjb,mdv}@bath.ac.uk

Abstract

In this paper a new algorithm for computing answer sets in an evolving environ-
ment is presented. Currently, each time any new information is ‘learnt’, all answer
sets must be recomputed, this algorithms reduces the amount of recomputation
needed, making interactive, learning applications possible. Rather than comput-
ing completely from scratch, our incremental answer solver, IDEAS, stores in-
formation, i.e. the answer sets, of previous computations. This is intended for
application domains in which the AnsProlog∗ program is developed over the
course of the program but answer sets are required throughout. Apart from being
the first incremental solver, IDEAS is also the first parallel one. In this paper we
discuss both the theoretic aspects as the implementation side of our system.

1 Introduction

AnsProlog∗[2] or answer set programming is a new approach to the ideas of knowl-
edge representation, real world reasoning and declarative problem solving that has
been under development for the past 10-15 years. It has a variety of powerful and
useful features such as supporting non monotonic reasoning, handling of multiple
possible world views, both classical and intuitistic negation and the ability to char-
acterise and reason about partial and incomplete information. A variety of extensions
to the core language support constructs such as preference (both weighted[15] and
ordered[4, 5, 9]), choices (exclusive[8] and inclusive[6]) and belief operators[12].

Critically the semantics of AnsProlog∗ are simple, expressive and computable.
Each set of rules gives a (possibly empty) set of answer sets. These may be thought
of as world views that are consistent with the information given; inconsistency yields
no answer sets. Over the past 5 or so years a number of answer set solvers (software
tools that take text based representation of an AnsProlog∗ program and compute the
answer sets), have been implemented. The most popular and widely used ones are
Smodels[10], Helsinki University of Technology, and DLV[14], created at the Tech-
nical University of Vienna and the University of Calabria. These can be run using
standard commodity computer hardware and already have comparable (if not better)

∗Contacting author. This work was partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging technologies under the IST-2001-37004 WASP project.

1

performance to older and more established logic programming systems[16] both in
terms of computation time and scalability.

However, very few of the potential application areas of knowledge representation
technology are static. For example a diagnostic system will not only be used once on
any given problem. An initial computation will give a variety of potential scenarios,
additional test can then add to the knowledge base and determine the exact status of
the system. In this scenario static problem solving is of interest but of much less use
than strategies able to evolve. Thus, many of the applications of AnsProlog∗ involve
computing the answer sets of a sequence of similar rule sets. The current solution
is to simply run each rule set through a traditional answer set solver independently.
However this approach takes time, making interactive applications with larger rule
sets difficult and cumbersome to use.

This document presents, up to our knowledge, the first results on incremental an-
swer set solvers. For this paper, we restrict to algorithms dealing with updates of
adding or subtracting one rule. Critically in many cases this is considerably simpler
than just computing the answer sets of the new program. This allows the AnsProlog∗

program to develop and grow in the way conventional databases or bases of expertise
would. The first release of an implementation of these ideas as an interactive develop-
ment and evaluation environment is available from http://www.cs.bath.ac.
uk/˜mdv/incremental/
It features the first parallel solver implementation and lazy (on demand) computation
along with slack time computation to give the fastest interactive response times.

It is important to note that the presented algorithms in no way changes the syntax
or the semantics of the programs. The answer sets of a new rule set given by the incre-
mental algorithm is exactly the same as the one given by a traditional answer set solver.
Also the algorithms do not attempt to produce a solution method of lower theoretical
complexity; in the worst case scenario all answer sets have to be recomputed.

2 Answer Set Programming

Only a brief overview is given here, readers are advised to refer to [2] for a more in
depth coverage of the motivation, semantics, properties and computation of AnsProlog∗

programs. What is discussed here is also a syntactic and functional subgroup of
AnsProlog∗, referred to as AnsDatalog⊥1.

An AnsDatalog⊥ program is made up of a series of rules. Each rule has the form:
A0 ← A1, . . . , An,not An+1, . . . ,not Am .

Where A0 is an atom or ⊥ and Ai for i ∈ [1, m] are atoms. A0 is the head of
the rule, denoted H(r) for rule r and {A1, . . . , Am} is the body, denoted B(r). The
intuition for this rule is that if all of A1, . . . , An are known and none of An+1, . . . , Am

are known then A0 is considered to be known (in the case that A0 is ⊥, this indicates
a contradiction).

When speaking about the status of rules with respect to a given set of atoms the
terms applicable and applied are used. A rule is said to be applicable with respect to

1The theory also holds for AnsDatalog¬,⊥ as classical negation can easily be replaced.

a set if all of A1, . . . , An and none of An+1, . . . , Am are in the set. It is applied if it is
applicable and A0 is also in the set.

A wide variety of different semantics for logics of this form have been developed[7]
as well as a variety of characterisations of the semantics of AnsProlog∗. In this paper
we shall use the characterisation given by [13]. This is divided into two sections, the
semantics of programs that do not contain negation and a semantic criterion and reduct
for removing negation.

Programs without negation (also referred to as AnsDatalog−not) each have one
answer set which is given by the logical closure of the rule set, i.e. starting with the
facts (rules that have no body and are thus not dependent on anything), recursively
build a set of anything that can be concluded using a rule who’s body is in the set.

To remove negations the Gelfond-Lifschitz reduct (or transformation)[11] is used.
To reduce a program with respect to a set of atoms S:

• Removing every rule that contains not p in the body if p ∈ S

• Removing all remaining negative literals (i.e. not q) from the rules

The answer sets of the program are the sets of atoms S such that S is the answer
set of the reduced program.

In short the answer sets of a program can be thought of as all of the possible world
views that can be supported by the rules. For example, program P = {a← b ;
c ← not d, a ; d ← not c, a ; b ; e ← d} has two answer sets {a, b, c} and
{a, b, d, e}. When reduced with respect to {a, b, c}, only one rule is removed given
the program {a ← b ; c ← a ; b ; e ← d} which has the answer set {a, b, c} (thus
making it an answer set of P). Note that e is not included in the answer set of the
reduced program as there is no way of concluding d and so the rule giving e cannot
be used. On the other hand if P is reduced by {a, b, e} then the following program is
obtained {a← b ; c← a ; d← a ; b ; e← d}which has the answer set {a, b, c, d, e},
which is not the same as the set used to perform the reduct and thus not an answer set
of P .

Notice that every rule in a program is either applied or not applicable with respect
to its answer sets. The converse is not true, consider the set {a, b, c, e} and the program
P .

3 Theoretic Foundation

This section presents the foundations of the incremental algorithms. An outline of the
additive algorithm is provided in the next section. Full details of the theory can be
found in [3].

The first key point is that the complexity and efficiency of computing alterations
to answer sets, as versus recomputing varies considerably with the rule that is being
added and what it is being added to. For example, using the program P from the
previous section; adding e← b will only add e to every answer set that doesn’t already
contain it, as e is not used in the body of any rule. Likewise removing e← d will have
a minimal effect. Adding ⊥ ← e, d top the initial program would simply remove

the second answer set. However removing the first rule, a ← b, would cause major
changes as the exclusive choice between c and d will not be made.

Definition 1 Let P be a set of rules and a an atom then. We define support and usage
as follows:

• support(a, P) = {r ∈ P |H(r) = a}

• usage(a, P) = {r ∈ P |a ∈ B(r) ∨ not a ∈ B(r)}

Intuitively the support of an atom in a given set of rule is the set of rules which
could support it within a given answer set. Usage is the number of rules in which it ap-
pears. They can be used to easily infer some basic facts; for example if support(a, P) =
∅ then a will not appear in any answer set.

Unfortunately adding rules to a rule set is not as simple as just adding the head
atom in answer sets where the rule is applicable. Adding atoms to an answer set
may in turn make or stop other rules being applicable and thus require other atoms to
be added or removed. These are the implications of adding / removing the original
atom. The positive implications are the atoms that have to be added and the negative
implications are the atoms that need to be removed.

Definition 2 Let P be a program, A a set of atoms and a /∈ A is the atom to be added
into A. Let PA,+ ⊂ P be the set of rules that are applicable with respect to A and
PA,− = P \ PA,+ (The complementary set of rules that are not applicable).

The positive implications I+ and negative implications I− are defined as:

• I(+, P, A, +a) = {H(r)|∃r ∈ usage(a, P) · r ∈ PA,− ∧ r ∈ PA∪{a},+}

• I(−, P, A, +a) = {H(r)|∃r ∈ usage(a, P) · r ∈ PA,+ ∧ r ∈ PA∪{a},−}

Intuitively these are the set of heads of any rule that becomes applicable by adding
a and anything that can only be concluded by a rule depending on not a.

The implications of removing an atom are defined in an analogous manner.
For compactness the following notation is introduced for denoting the implications

of adding and subtracting an atom:

• I(P, A, +a) := (I(+, P, A, +a), I(−, P, A, +a))

• I(P, A,−a) := (I(+, P, A,−a), I(−, P, A,−a))

Handling implications is a non trivial problem as each one can give rise to further
implications and they may also be linked so order of resolution can matter. For ex-
ample, consider the program P = {a ← c,not b ; b ← c,not a ; c ← d} which
has only one answer set A = ∅. Adding the rule d← gives the following sequence of
implications:

• I(P, ∅, +d) = ({c}, ∅)

• I(P, {d}, +c) = ({a, b}, ∅)

Adding d leads to a further implication, c must be added. However adding c leads
to a more complex situation. Adding a will stop b being an implication and vica
versa. The final answer sets of P ∪ {d ←} are {a, c, d} and {b, c, d}. Implications
are the main complexity in incremental algorithms, handling implications effectively
is mostly solving the incremental problem.

Dependency graphs showing the relation between rules are a common tool in an-
swer set semantic research. Past uses have included the theoretical basis for stratified
logic programs and some other functional2 subclasses of AnsProlog∗ and as the basis
for computing answer sets[1]. They have been characterised in a variety of ways with
different degrees and displays of aggregation of information3, thus we give a definition
of the exact type required here rather than referencing a standard definition.

Definition 3 Let P be a program, its dependency graph D = (N, L) where N is a
set of nodes and L ⊂ N × N × P is a set of directed links annotated with rules, is
constructed as follows:

• N = {na|a an atom}

• L = {(na, nb, r)|∀rusage(a, P) ∩ support(b, P)}

Intuitively a link is created from a to b if there is a rule that has a or not a in the
body and b in the head. Nodes are annotated with atoms 4. This means that for every
rule r there will be |B(r)| links to H(r). Self referential rules can easily be removed
without the changing the semantics. Therefore, we will assume that they have been
removed before starting the solving process, and thus no node links directly to itself.

For these graphs to be of any use, there have to be ways of extracting information
from them. Thus a definition of reachability is presented.

Definition 4 Let D = (N, L) be the dependency graph of program P and let a be an
atom. The reachability set after n steps from a is notated as Rn(a) and defined as

• R1(a) = {b ∈ BP |∃(na, nb, r)L}

• Rn(a) = {b ∈ R1(c)|c ∈ Rn−1(a)} ∪Rn−1(a)

This is the obvious definition, the set of nodes which are reachable after travelling
along n links. The following propositions give basic properties of the reachability
function and link it to the concept of implication.

Proposition 1 Let P be a program, D its dependency graph and a and atom then
there exists na s.t. Rna(a) = Rna+1(a)

For clarity some simple notation is introduced. In the context of the preceding
proposition Rna(a) is notated as Rω(a). If b ∈ R1(a), b is said to be directly reachable
from a, while if b ∈ Rω(a) it is just said to be reachable from a.

2As opposed to syntactic subclasses such as AnsProlog¬,⊥

3The link between rules, heads and bodies is essentially three non orthogonal directions of information,
graphs are essentially a projection of this information onto a two dimensional paradigm, hence the number
of fundamentally equivalent ways of expressing the relation. The choice between them is based entirely on
which way the information is to be accessed.

4atoms will be used interchangeably with ‘the node representing the atom’

Proposition 2 Let P be a program, D = (N, L) it’s dependency graph, a an atom
and A a set of atoms then:

• I(+, P, A, +a) ⊂ R1(a)

• I(+, P, A,−a) ⊂ R1(a)

• I(−, P, A, +a) ⊂ R1(a)

• I(−, P, A,−a) ⊂ R1(a)

Thus all of the implications of altering atom a and all of their knock on impli-
cations will be contained within Rω, giving a technique for bounding the possible
changes caused by adding a rule to a program. To use this and to infer that atoms can-
not be altered and thus their status propagated to new answer sets results that relate the
concept of reachability to the answer sets of the corresponding program are needed.

Definition 5 Let P be a program and a, b are atoms. Then a may effect the status of b
in an answer set⇔ there exists a chain of rules (r1, r2, . . . , rn) with r1, . . . , rn ∈ P
such that (a ∈ B(r1)) ∨ (not a ∈ B(r1)), (H(rn) ∈ B(rn+1)) ∨ (not H(rn) ∈
B(rn+1)) and H(rn) = b.

Although complex to write down this definition is conceptual simple. If there are
rules (r1, . . . , rn) such that a can effect whether r1 is applicable, rn can effect whether
b appears in an answer set and each rule can influence the next then it is fair to say that
a can influence whether b is in an answer set. After applying the reduct, this chain may
allow the immediate consequence operator to conclude b if the status of a is known.
This allows the concepts of the dependency graph (and thus implications) to be related
to answer sets.

Proposition 3 Let P be a program and a, b are atoms.

b ∈ Rω(a)⇒ a may effect the status of b

Perhaps more usefully, the ‘opposite’ can be concluded

Theorem 1 Let P be a program and a, b are atoms.

b 6∈ Rω(a) ⇒ ¬(a may effect the status of b)

Thus there exists a link between the maximum implications of a change and the
reachability set from the changed atom. Also shown is the equivalence of being reach-
able and being able to effect another atoms existence in an answer set. This allows the
conclusion that if an atom cannot be reached by the changed atom then it will have the
same status in the new answer set that it had in the original.

4 Addition Algorithm

In the previous section we introduced the theory behind our algorithms. In this section
we take a closer look at the actual algorithms. The subtracting algorithm is very similar
to the addition one. Due to page limit restrictions, we will only deal with addition. Full
details of the both algorithms and their sound and completeness proofs can be found
in [3].

The algorithm for handling adding rules is divided into three phases. The first
section removes all cases where the new rule can be easily shown to have no effect, or
it’s effect is trivial. After this phase, if there are answer sets which require non trivial
changes, the second phase takes over to further reduce the program. It is possible that
the first phase handles all answer sets in which case the algorithm finishes. The second
phase of the algorithm works by ‘bounding’ the changes caused by adding the rule, if
it can be shown that a particular conclusion is not effected by the addition of the new
rule then it will be the same in the new answer set as it was in the old one. Again if
there are still sets that need to be handled after this phase is completed the program
can be handed over to the final phase can be used to complete the answer sets. Again
it is possible that phase two handles all cases and there is no more work to be done.
The third section of the algorithm is a modified version of the Smodels[10] algorithm
which dynamically cuts out sections of the program if it is clear that they will not be
affected by the changes.

Phase One From the definition of answer sets it is clear that adding a rule r to an
answer set S will not change anything if r is either applied or not applicable with
respect to S. In these cases the rule will not alter the eventual conclusion of the
direct consequence operator or be removed by the reduct or contain unsupported atoms
respectively. Only if the rule is applicable but not applied does it stop A being an
answer set, i.e. cause a change. Phase one of the algorithm reduces the problem to
cases where r is applicable but not applied and handles some edge cases (i.e. the
introduction of new atoms to the system, constraints and self referential rules). From
this point on the algorithm branches per answer set to phase two.

Phase Two Phase two of the algorithm focuses on cases when the rule to be added
is applicable but not applied with respect to a particular answer set of the program.
In this case the conditions for the rule to be ‘true’ hold and what the rule concludes
is not already known - it actually makes a difference. This stage aims to resolve this
difference in simple cases and to bound the maximum effect it can have before handing
to phase three if necessary. This is done by computing the implications that will occur
and cutting the dependency graph so only the the part that may be changed remain. If
no implications are found the algorithm terminates.

Phase Three Phase three of the algorithm resolves the implications and dependency
graph that have been discovered in phase two, to produce the answer sets of the mod-
ified program. It uses of a modified version of the standard bound / reduce / branch
approach. When atoms within the program are shown to be unmodified by the changes

caused by adding rule r, it dynamically cuts the graph of atoms that need to be re-
solved, thus reducing the size of the problem further. Sections of the graph that be-
come unreachable from any of the nodes that can still be changed take the same value
they had in the original answer set; there is no longer any way that they could be any-
thing else. This dynamic cutting of the dependency graphs improves the efficiency
significantly.

5 Implementation

The implementation of the incremental algorithms is divided into two sections. IASAI
(Incremental Answer Set Algorithm Infrastructure) provides an abstract framework
for developing answer set solver algorithms and applications that use them. IDEAS
(Interactive Development & Evaluation tool for Answer Set programs) uses the IASAI
interface to provide a text based, interactive system for manipulating, developing and
using answer set programs.

The focus of IASAI is creating a common interface for different answer set algo-
rithms. Modules that implement the IASAI interface5 are under development for the
algorithm presented in this paper, the Smodels algorithm[10] and a generic external
answer set solver (aimed at compatibility with DLV[14]). It provides basic operations
on rule sets such as adding and subtracting rules, calculating answer sets, etc. as well
as functional descriptions of the representations of rules and atoms. As well as pro-
viding support for use of answer set programming with incremental knowledge bases
it is hoped that this will give a uniform interface for implementing any logic engine
that uses answer set semantics without needing to tailor it for a particular system or
algorithm.

IDEAS is a command line tool that provides a user interface to the functionality of
IASAI. It is intended to be used as a stand alone tool as well as being easily integrated
into larger systems for rapid prototyping of logical systems that use these semantics.
As well as running in a traditional interactive fashion it also supports scripting in the
style of Unix command shells.

The incremental IASAI back end is designed to perform the minimum amount of
work required to satisfy the request made to it. This is implemented as a FIFO list of
task structures. Each task structure contains an indication of which function should
be used (phase two, phase three, conventional solver, etc.) and the arguments. Where
the algorithms would call these key functions (such as handing off between the phases
and branching in the conventional solver) a task is added to the list. When an answer
set is requested the structures are in turn removed from the list and executed until an
answer set has been generated. This allows the computation to effectively be ‘paused’
after each answer set has been discovered, thus only doing work when it is required.

The division of work into task has been carefully chosen so that the only interaction
between them is consequence. Executing a task may give more tasks but will not effect
any existing tasks and the order of execution is non critical. This allows a custom
version of the task dispatch function to be used which assigns tasks to one of a set of
threads. Existing answer set solver implementations[10, 14] use recursion or lists to

5It is not fully in described in this document as it is still under development.

handle branching, however this approach allows the simultaneous execution of both
branches if run on suitable hardware. Given the increasing trend towards thread and
process based parallelism in modern CPU design, this sort of approach is required to
make maximum use of computing resources and drastically cut the real time of such
computations.

The just in time computation approach outlined above clearly helps the initial re-
sponse time of an interactive program. Returning after the computation of the first
answer set will give less delay than computing all answers sets before returning con-
trol to the user (assuming a non categorical rule set). However if a second answer
set is requested the response time of the just in time method will be less. Slack time
computation is the implementation work around to solve this problem.

Slack time computation allows tasks to be dispatched while the front end is waiting
and processing user input. IASAI back ends have a function that dispatches tasks
while a given semaphore remains clear. To make use of this feature front ends are
required to use two threads, a main thread and a slack thread. Only one of these
threads will make use of the IASAI back end or in fact heavy use of the CPU at any
given time making it suitable for single processor hardware. Before the main thread
is about to start processing user input (for an interactive program this is clearly very
light work for the system) it wakes up the slack thread, which then calls the slack
function from the IASAI back end. This dispatches tasks within the back end while
the main thread is processing the user input. When the user input functions returns,
the main thread marks the semaphore controlling the slack function, this causes it
to finish computation and return, the slack thread of the front end then sleeps and
the main thread continues as normal. When the system is being used interactively
this gives the a better distribution of the compute load across the running time of the
program and minimises the latency of commands to the program.

6 Future Research

This paper presents a complete solution for handling the addition (and subtraction)
of single rules to an AnsDatalog¬,⊥ programs. However in terms of the overall
topic this is only the beginning. In this section some of the theoretical questions and
implementation areas raised by this work are presented.

Theory As this work treats changes in rule sets as single, atomic operations no con-
sideration of the pattern of rule modification has been made. For example adding an
exclusive choice between two new atoms requires at least 2 rules and is potentially
quite computationally expensive as the second rule will require a near complete re-
computation. Likewise care must be taken to add constraints before the rules than
generate large numbers of options. One area of interest is to look at ways of adding
multiple rules simultaneously, allowing a new concept or block of data to be added
in one operation with considerable potential savings. An alternative approach to the
same problem would be to develop some form of criterion or heuristic for when to
handle a series of changes using the presented algorithm and when it is more efficient
to recompute completely.

Such issues lead naturally to considering a modular approach to answer set and
logic programming. Modular programming is a well accepted technique and a pow-
erful abstraction mechanism, using modified versions of the presented algorithms and
techniques for making several simultaneous changes it may well be possible to provide
this for answer set programming. This raises more possibilities, from pre-computation
of fixed blocks of rules to distributed computation to mixing rule sources (for example
using databases as sources of facts) to the possibilities of choosing logical paradigms
on a module by module basis (using preference based choice formalisms such as
OCLP[9] for human interaction and AnsProlog∗ for the actual computation). All
of these would be further step towards providing a modern programming environment
for answer set computation.

Finally nothing has been presented on the addition of rules in any of the formalisms
that extend AnsDatalog¬,⊥. Those that can be mapped or reduced to AnsDatalog
could be converted quite easily, although the nature of such mappings may signifi-
cantly reduce the value of such algorithms. However logic systems such as AnsPrologor

with a higher computational complexity and logic system which include function sym-
bols are a much more interesting issues. Clearly the presented algorithms provide part
of, but not a complete solution.

Implementation As well as a number of theoretical questions, there are also a large
number of implementation issues raised by this work.

Firstly the IDEAS front end is still only in the alpha development stages. There are
a large number of features that need to be implemented before it reaches the standard
of a finished product. Examples are lexical matching to spot typographical errors,
support for a wider variety of input formats and portability to more software platforms
are more implementation specific.

Although not necessarily of massive theoretical significance, other IASAI front
ends would provide interesting applications of answer set solvers in other problem
domains. A front end that supported PROLOG syntax (or as much of it as is rea-
sonable) could be a useful teaching tool. Another option is an SQL front end which
would provide a more intelligent approach to complex data mining applications while
maintaining compatibility with a large array of existing tools.

For comparative and benchmarking purposes it may well be advantageous to im-
plement IASAI back ends that integrate with and / or implement some of the other
answer set solver algorithms.

Finally the incremental IASAI back end has considerable scope for future develop-
ment. To support larger input programs the task list and dispatch infrastructure could
be extended to distribute not only across threads but between separate machines, al-
lowing the computing power of high performance clusters and distributed systems to
be used. Finally the slack time infrastructure could be used to perform speculative
execution if there are no tasks remaining. At the most basic level this could be cal-
culating which atoms / answer set combinations give no implications. However as
implications are only dependent on the head atom of the rule being added it may well
be possible to handle non trivial implications. Given enough time between rule set
alterations it would be possible to compute all possible atom / alteration / answer set
combinations so handling alteration would simply require looking up the appropriate

results. In computational terms this is a wasteful approach as a large number of the
results will never be used and will have to be discarded after the rule set has been
changed, however in application areas in which this compute time would simply be
wasted this is not a problem. Further work may develop ways of modifying the data
produced by speculative execution rather than simply discarding it. It might also be
possible to produce constructive rather than analytic heuristics for what information is
to be added; the system could give a list of rules that would fulfil or aid certain criteria
on the answer sets (i.e. that there is only one answer set / the program is categorical,
the answer sets allow certain queries to be answered definitively). This is envisaged
to have significant potential for learning based knowledge representation applications,
for example in autonomous, intelligent agent systems.

References

[1] C. Anger, K. Konczak, and T. Linke. NoMoRe: Non-monotonic reasoning with
logic programs. In Eighth European Workshop on Logics in Artificial Intelligence
(JELIA’02), volume 2414 of Lecture Notes in Artificial Intelligence, 2002.

[2] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge Press, 2003.

[3] M. J. Brain. Undergraduate dissertation: Incremental answer set programming.
Technical Report 2004–05, University of Bath, U.K., Bath, May 2004.

[4] Martin Brain and Marina De Vos. Implementing OCLP as a front-end for Answer
Set Solvers: From Theory to Practice. In ASP03: Answer Set Programming:
Advances in Theory and Implementation. Ceur-WS, September 2003. online
CEUR-WS.org/Vol-78/asp03-final-brain.ps.

[5] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic
programs. Artificial Intelligence, 109(1-2):297–356, April 1999.

[6] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and weak
constraints in disjunctive datalog. In Jurgen Dix, Ulrich Furbach, and Anil
Nerode, editors, 4th International Conference on Logic Programming and Non-
Monotonic Reasoning (LPNMR’97), volume 1265 of Lecture Notes in Computer
Science, pages 2–17, Dagstuhl, Germany, July 1997. Springer Verslag.

[7] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Com-
plexity and expressive power of logic programming. ACM Computing Surveys
(CSUR), 33(3):374–425, 2001.

[8] Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice Logic
Programs. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Logic
Programming and Non-Monotonic Reasoning Conference (LPNMR’99), volume
1730 of Lecture Notes in Artificial Intelligence, pages 236–246, El Paso, Texas,
USA, 1999. Springer Verslag.

[9] Marina De Vos and Dirk Vermeir. A Logic for Modelling Decision Making
with Dynamic Preferences. In Proceedings of the Logic in Artificial Intelligence
(Jelia2000) workshop, number 1999 in Lecture Notes in Artificial Intelligence,
pages 391–406, Malaga, Spain, 2000. Springer Verslag.

[10] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco
Scarcello. The KR system dlv: Progress report, comparisons and benchmarks.
In Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98:
Principles of Knowledge Representation and Reasoning, pages 406–417. Mor-
gan Kaufmann, San Francisco, California, 1998.

[11] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of fifth logic programming symposium, pages 1070–1080. MIT PRESS,
1988.

[12] Michael Gelfond. Strong Introspection. In AAAI’91, pages 386–391, 1991.

[13] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9(3-4):365–386, 1991.

[14] I. Niemelä and P. Simons. Smodels: An implementation of the stable model
and well-founded semantics for normal LP. In Jürgen Dix, Ulrich Furbach, and
Anil Nerode, editors, Proceedings of the 4th International Conference on Logic
Programing and Nonmonotonic Reasoning, volume 1265 of LNAI, pages 420–
429, Berlin, July 28–31 1997. Springer.

[15] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable Model Semantics of
Weight Constraint Rules. In Proceedings of the Eight International Conference
on Logic and Nonmonotomic Reasoning, Lecture Notes in Computer Science,
pages ???–???, El Paso, Texas, US, December 1999. Springer-Verslag.

[16] N Pelov, E De Mot, and M. Denecker. Logic programming approaches for
representing and solving constraint satisfaction problems : a comparison. In
M. Parigot and A. Voronkov, editors, Logic for Programming and Automated
Reasoning, 7th International Conference, LPAR 2000, volume 1955 of Lecture
Notes in Artificial Intelligence, pages 225–239, Reunion Island, France, Novem-
ber 2000.

