
General Game Playing with ASP

Elliott Joseph Hill

Master of Computing in Computer Science with Honours
The University of Bath

April 2009

This dissertation may be made available for consultation within the Uni-
versity Library and may be photocopied or lent to other libraries for the
purposes of consultation.

Signed:

General Game Playing with ASP

Submitted by: Elliott Joseph Hill

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
University of Bath (see http://www.bath.ac.uk/ordinances/#intelprop).
This copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Master of Computing in the Department of Computer Science. No portion
of the work in this dissertation has been submitted in support of an application for any
other degree or qualification of this or any other university or institution of learning. Except
where specifcally acknowledged, it is the work of the author.

Signed:

Abstract

Answer Set Programing (ASP) is an emerging declarative programming paradigm aimed
towards NP-Hard search problems. The aims of this project are to design and implement a
General Game Playing (GGP) that uses ASP for knowledge representation and reasoning.
This system will take a Game Definition Language (GDL) specification and convert it into
ASP code that can then be used to play the game. In this project we have created the
foundations for a more advanced player and have created a GGP system (ASPlayer) that
can automatically parse GDL specifications into our ASP representation.

Contents

1 Introduction 1

2 Literature Survey 4

2.1 Answer Set Programing . 4

2.1.1 ASP History / Fundamentals . 4

2.1.2 Useful ASP Extensions . 7

2.1.3 The Frame Problem . 9

2.2 ASP Grounders / Solvers . 10

2.2.1 Smodels . 10

2.2.2 Clasp . 12

2.3 General Game Playing . 13

2.3.1 Playing General Games . 13

2.3.2 GGP Concepts / Features . 14

2.3.3 Previous General Game Players . 16

3 Requirements 21

3.1 Requirements . 21

3.1.1 ASP requirements . 21

3.1.2 General Game Player requirements 23

4 Design & High Level Implementation 25

4.1 ASP Planner Design . 25

4.1.1 Planner Overview . 25

4.1.2 Modifications from Barals Planning Method 29

i

CONTENTS ii

4.1.3 Note on the Frame Problem . 30

4.2 ASPlayer Design . 30

4.2.1 General Design . 31

4.2.2 Parser . 32

4.2.3 At Each Turn . 35

5 Testing & Results 36

5.1 Reasons for GDL Chosen . 36

5.2 GDL to ASP convertion . 37

5.2.1 Note on GDL being used to test . 37

5.2.2 Blocks World . 37

5.2.3 Tic-Tac-Toe . 39

5.3 Game Play Testing . 40

5.3.1 Single Player Games . 41

5.3.2 Multiplayer Games . 42

6 Conclusions 46

6.1 Critical Evaluation . 46

6.1.1 Original Requirements . 46

6.1.2 Project Summary . 46

6.1.3 Methodology Reflection . 47

6.1.4 Results Analysis . 50

6.1.5 Suitability of ASP for GGP . 50

6.2 Further Work . 51

A User Documentation 57

A.1 GameTester.jar . 57

A.2 ASPlayer.jar . 58

B Game Representations 59

B.1 GDL Specifications . 59

B.1.1 Blocks World . 59

CONTENTS iii

B.1.2 Buttons . 60

B.1.3 Maze . 62

B.1.4 Tic Tac Toe . 64

B.1.5 Hodgepodge . 65

B.2 ASP Representations . 68

B.2.1 Domain Indepentent . 69

B.2.2 Blocks World . 69

B.2.3 Buttons . 70

B.2.4 Maze . 72

B.2.5 Tic Tac Toe . 73

B.2.6 Hodgepodge . 76

C Code 81

C.1 File: ASPGamer.java . 82

C.2 File: ruleReader.java . 84

Acknowledgements

We would like to thank Marina De Vos for her support and guidance throughout the course
of the project. We would also like to thank the Stanford Logic Group for the invaluable
resources that were made available via the General Game Playing website[17].

iv

Chapter 1

Introduction

Problem Background

For a long time humans have been fascinated with creating game playing machines. “The
Turk” was originally appeared in 1769 and was advertised as a Chess playing automaton.
Even if this was a hoax it captured the world’s imagination and humanity has since been
attempting to create machines that can play games at a human level and beyond. It took
until 1950 when Claude Shannon produced his paper on how a machine could be made to
play chess[37] for game playing machines to really take their first major leap forward.
Even though Chess playing machines were one of the main goals for early AI researches, it
was not the only game that Computer Scientists were attempting to create machines for.
Two years after Shannon produced his paper C. S. Strachey produced the first Checkers
playing machine[39], however it took until Chinook[34] that a system could consistently beat
world class human players. In 2007 the same team also reported that they had “solved”[33]
Chequers, that is to say that is they had produced a machine that could not loose, and at
worse would draw.
There are some games that are still extremely difficult for computers to play, one such game
is Arimaa[41], it is so difficult to create an Arimma system that in the annual challenge
held since 2004 computers have won only 3 out of 42 games[42].
While these programs may excel in their chosen domain, as soon as they are taken out they
become useless. If Deep Blue was asked to play Chequers it would be unable to. Specific
game players rely on advanced algorithms and specific heuristics designed in advance. In
fact most of the work is done by humans designing the heuristics and investigating the
game that the machine will play.
As Robert A. Heinlein wrote in Time Enough For Love (1973) “Specialization is for in-
sects”, and as such AI researches have moved on to a different problem, General Game
Playing (GGP). Michael Genesereth defines General Game Playing system as “One that
can accept a formal description of a game and play the game effectively without human
intervention.”[15]. All games are defined using Game Definition Language (GDL), so that

1

CHAPTER 1. INTRODUCTION 2

any game from Tic-Tac-Toe to Chess can be represented as a finite set of rules. GDL
contains the initial state of the game, the legal moves, the end state of a game, the state
of a winning game (which is a subset of the end states) and how many players take part in
the game.
Given a set of rules and facts, Answer Set Programming will attempt to create a set of
stable models (Answer Sets) that satisfy all the rules and of the program. Before a pro-
gram can be “Solved” (The answer sets computed) it needs to be “Grounded”, that is, all
variables need to be converted to atoms. ASP programs look similar to Prolog programs,
in that ASP uses clauses, rules and facts, with each rule consisting of a head and body.
Also like Prolog, ASP uses negation as failure. However ASP differs from Prolog in that
ordering of rules is inconsequential and ASP cannot enter an infinite loop.
In order to create, ground and solve ASP programs we will be using Lparse[43] (grounder)
and Smodels[29] (solver). We will build on knowledge of winners and participants of the
AAAI’s General Game Playing competition[1] in producing our General Game Player. We
will also make use of Stanford’s Gameserver in order to challenge other GGPs and asses
the quality of the GGP that we will produce in relation to other players.

Aims and Objectives

The aims of this project is to create a competitive GGP System that can convert a GDL
specification of a game into a playable ASP[2] representation. We shall achieve this by
drawing on past experiences and research of of the ASP and GGP communities. At the
conclusion of this project we hope to have a complete system that can take part in com-
petitive events if possible.
In order to produce this GGP system we shall need an ASP knowledge representation and
reasoning system and a GGP Framework than can interact with the ASP representation
along with sending and receiving HTTP messages.
We shall use resources from Stanford’s General Game Playing website[17] in order to follow
competitive GGP rules. We shall use various specifications to demonstrate the implemen-
tation of our ASP representation and our GDL to ASP conversion process.

Document Structure

This document is structured as follows:

Literature Review This section will review previous research in both ASP and General
Game Playing. It will give an introduction to both research areas along with a more
in depth discussion to any features / areas we feel relevant to the project.

Requirements This section will outline what we believe to be the requirements for our
ASP based GGP system. We give requirements for a basic GGP system, along with
requirements for more advanced functionality.

CHAPTER 1. INTRODUCTION 3

Design & High Level Implementation This section details the design of our ASP GGP
system (ASPlayer) along with justification for any design decisions made. This sec-
tion also includes a high level overview of implementation, including the parser and
any algorithms that we feel are important to ASPlayer.

Testing & Results This section details the results of our tests and any methods that we
used during testing. This section contains both GDL and ASP representations, along
with game play and move times for our gameplay testing

Conclusion This section will outline any findings that we drew from out testing, it will
also contain a critical evaluation on both ASPlayer and the processes, methods and
decisions that were made in the production of ASPlayer. We also detail any direc-
tions that we feel are suitable for extensions along with possible changes to current
ASPlayer functionality.

Chapter 2

Literature Survey

This section of the document will be used to discuss previous research that has taken place
in the field of ASP (along with other logic modeling languages that have come before) and
General Game Playing. The chapter shall be broken down into two sub-sections, ASP and
General Game Playing.

2.1 Answer Set Programing

2.1.1 ASP History / Fundamentals

Answer Set Basics

This section is intended for people unfamiliar with the Answer Set Semantics, anyone in-
troduced to the basics should be able to skip this section.
An Answer Set Program P is a set of rules r, where r is of the form:

A0 ← A1, · · · , An,notAn+1, · · · ,notAm

Each Ax is an atom or a predicate, from now on refered to as literals, with A0 being
defined as the head of the rule, and A1 · · ·Am defined as the body of the rule. A rule can be
thought of as “If the body is true then I can imply the head”. The head of a rule is defined
as H(r), the positive literals are defined as B+(r) and the negative literals are defined as
B−(r). B+(r) is the set of all non-NAF literals (see below) and B−(r) is the set of all NAF
literals.
There are two special case rules, facts and integrity constraints, facts have an empty body,
and are often just written as the literal that is being asserted. Integrity constraints are
rules that should never be true (e.g. two linked nodes being coloured the same in graph
colouring), these are written with the false literal (⊥) in the head of the rule.
We shall now introduce negation as failure (NAF), this is different from classical logic

4

CHAPTER 2. LITERATURE SURVEY 5

negation. Whilst classical logic is the assertion that a literal is false, negation as failure
the belief that a literal is not true. These atoms are specified within a rule by the literals
An+1 onward.
The Herbrand Universe UP is the set of all constants used within the program. Whilst the
Herbrand Base BP is the set of all ground atoms within a program P . A ground rule or
atom is one in which all the variables have been substituted for constants. A program is
ground if all the rules within it are ground.
Example 1. Car Ownership:

owns(alice,v1).
owns(bob,v2).
vehicle(v1).
vehicle(v2).
wheels(v1,4).
wheels(v2,2).
ownscar(X) ← vehicle(Y), wheels(Y,4), owns(X,Y).

The grond program then becomes:
owns(alice,v1).
owns(bob,v2).
vehicle(v1).
vehicle(v2).
wheels(v1,4).
wheels(v2,2).
ownscar(alice) ← vehicle(v1), wheels(v1,4), owns(alice,v1).
ownscar(alice) ← vehicle(v2), wheels(v2,4), owns(alice,v2).
ownscar(bob) ← vehicle(v1), wheels(v1,4), owns(bob,v1).
ownscar(bob) ← vehicle(v2), wheels(v2,4), owns(bob,v2).

We say a rule r is satisfied w.r.t an interpretation I ⊆ BP , if B+(r) ⊆ I, B−(r) ∩ I = ∅
and H(r) ∈ I. An interpretation I is a model for P if all rules are ground and satisfied. A
model M is minimal if no other model exists that is a subset of M. For positive programs
(programs where B− = ∅) models are suitable to give us the required solutions. However
for negative programs this is not sufficient.
For models containing NAF atoms we need to define the Gelfond-Lifschitz Reduction[14]
PS w.r.t to a set of ground atoms S as a program that has been transformed by the following
rules.

• Remove all rules which B−(r) contains an atom in S.

• For all remaining rules remove any negated literals.

This reduct PScan then be used to find models. An answer set is the minimal model to
the program PS

CHAPTER 2. LITERATURE SURVEY 6

Example 2. Gelfond-Lifschitz Reduction:
Consider the program:
a ← b.
b.
c ← not a.
d ← not c, not a.

For S = {b,c}:
a ← b.
b.
c ← not a.
← not c, not a.
The remaining rules give {a,b,c}, this is not equal to S, so S is not an answer set.
For S = {a,b}:
a ← b.
b.
c ← not a.
← not c, not a.
The remaining rules give {a,b}, so S is an answer set.

Answer Set History

In 1988 Gelfond and Lifschitz proposed the Stable Model Semantics[14], this outlined the
foundations for Answer Sets and Answer Set Programing. In [14] they note that Stable
Model Semantics has close links to both Autoepistemic Logic[27] and Circumscription[25].
Stable Model Semantics make use of “Canonical Models”, these are models that are used
to determine which result is communicated back. For example canonical models determine
that A ∧ B ≡ B ∧ A and will as such only return one of the two as a result. Gelfond and
Lifschitz also go on to show that stable models can be related to other forms of logic such
as the well-founded semantics[13] and Autoepistemic Logic[27]

Gelfond and Lifschitz define a Stable Model of a program Π as “A minimal Herbrand
Model of Π” [14], where a Herbrand Model takes is usual meaning (i.e. A model in which
all terms are ground).

Baral [2] gives 3 explanations for why one may wish to use stable model semantics as
opposed to well-founded semantics[13]:

1. Well-founded models are three valued (t,f,unknown), whereas stable models are two
valued (t,f)

2. Each program will have only one well-founded model, whereas a program can have

CHAPTER 2. LITERATURE SURVEY 7

multiple answer sets or even none

3. Computing the entailment w.r.t well-founded models is more tractable than comput-
ing the entailment w.r.t to answer sets

For 1), this is relevant because when reasoning about games we do not want to reason
about what we are unsure about, we only want to make decisions to act based on what we
do or do not know. The second point that is made is essentially the same point made by
Domenico Sacca [32] in which he notes “Stable Models capture and express the notion of
non-determinism in logic programs with negation”. Whilst the final point may seem like a
bad point for using Answer Sets, Baral notes[2] that this increases the expressive power of
the semantics.
Another of the main features of Answer Set Semantics is “Negation as Failure”[14], this is
very similar in concept to the negation in Autoepistemic Logic. In Autoepistemic Logic
negation is coupled with the belief operator (L) to to create ¬BL, this is interpreted as
“Do not believe that B is true”, in Answer Set semantics this is converted into “It cannot
be proved that B”. Negation as failure is not the assertion that something is false, just
that it cannot be proved to be true.

2.1.2 Useful ASP Extensions

Answer Set Planning

Planning is a nescessary feature of any game playing machine, general or not. It is this
planning that gives the impression of “intelligence” in a system, formulating, reasoning and
working towards states in the future. Baral [2] gives various methods of implemmenting
Answer Set Planning many of these are not relevant for a GGP System, planning with
domain constraints and planning with incomplete information are two examples. Planning
with domain constraints is irrelevant as due to the nature of General Game Playing, we
are unable to specify constraints untill runtime. Planning with incomplete information is
irrelevant also due to the fact that by definition a General Game is “a finite deterministic
game with complete information”. In section 5.3.2 Baral does give a planning method
closest to General Game Playing specifications, this is demonstrated by an example for
Blocks World. In this planning method πstrips1(Dbw, Obw, Gbw) the planning system is
split into two parts, the domaint dependant part πdep

strips1(Dbw, Obw, Gbw) and the domain
independant part πindep

strips1. The domain dependant part consists of five distinct sections:

1. The domain πdep.dom
strips1 (Dbw), this will define the objects in the world, the fluents and

the available actions.

2. The executablility conditions πdep.exec
strips1 (Dbw), these are facts of the form exec(a,f)

where a is an action and f is a fluent and should be read as a is executable if f holds.
There can be multiple facts with a unique a, for an action to be true the conjunction
of these facts must hold.

CHAPTER 2. LITERATURE SURVEY 8

3. The dynamic causal laws πdep.dyn
strips1 (Dbw), these are a set of facts about the effects of

actions at a given time. These are facts of the form cause(a,f) and should be read
as a causes f.

4. The initial state πdep.init
strips1 (Obw), these are facts of the form initially(f) and specify

what fluents are true during the initial state.

5. The goal conditions πdep.goal
strips1 (Gbw) these are of the form finally(f) and list the

fluents that must hold in a goal state.

The second part of the planning system is the domain independant part. This part of the
code does not model any part of a specific domain only information about how the objects,
fluents, actions etc. modeled in the domain specific part should interact with one another.
The assumption is made that the domain specific part is expressible in STRIPS [2][8]. The
various rules that make up the domain independant part are:

1. Defining time, used to make the answer set finite we bound the amount of distinct
steps allowed within the plan.

2. Defining goal, used to define when all goal conditions are satisfied.

3. Rules to ensure that Answer Sets reach a goal state.

4. Defining contrary, these facts define when a fluent literal is the negation of the other.

5. Defining executability, this rules are used to determine if an action A is executable
at time T

6. Converting initial fluents into the form holds(F,T).

7. Describing the change of fluent states after the execution of an action

8. Inertia axioms, used to describe fluents which do not alter thier state due to effect of
an action.

9. Occurance rules, used to enumerate action occurrences, also encode that there can
only be one action for any distrinct time step.

One of the advantages to this method of planning is that in the occurance rules we define
that an action can only take place if we are not in a goal state, if we are then no actions can
take place. This means that plans can be considered below a given threshold, otherwise we
would have to set a goal length and find plans equal to that length.

CHAPTER 2. LITERATURE SURVEY 9

Rule Preferences

When humans reason about various circumstances it is often the case that not all rules or
assertions are given an equal weighting in consideration. For example if a human were to
believe that it is warm outside, then there is little point for them to reason which woolly
jumper they are likely to wear. It is much the same with General Game Playing, if we know
that we can make a winning move, why should we reason about any other move? As such
it has been proposed in various papers[6][7] to include rule preferences about which rules
should be considered first when producing solving strategies. The idea was first proposed
in [7] and was extended in [6]. One of the main extensions that the team made in the later
was to remove the two-layer model that seemed to be necessary in all prior research in the
area. This two-layered model encapsulated all the rules into one of the layers and included
all the encoding of preferences in some meta-data, which was often given its own semantics.
Delgrade et. al.[6] were able to combine these into a single model, and allows for static
(defined external to a program) and dynamic (defined internally within a program). Infact
the language they suggest is sufficiently general to allow for preferences of preferences and
preferences only holding in certain contexts. They do this by defining a set of new relation
A≺ that defines preferences among relations. Another bonus to using the method proposed
by is that “it is flexible with respect to changing strategies”.

2.1.3 The Frame Problem

The Frame Problem, first proposed by John McCarthy[26], is the problem of modeling
the effect of actions within a logic language without the need to model a large number of
non-effects. Consider the following rules relating to an object:

position(X) :- move(X).
colour(X) :- paint(X)

These rules do not specify the effect of the action move(X) on the colour of the object,
or the effect of paint(X) on the position of an object. One solution is to create frame
axioms for every possible non-effect of an action. However most actions do not effect most
fluents, this leads to a large number of axioms though, for M actions and N fluents this
would require MN frame axioms. The esscence of the Frame Problem is to declare a gen-
eral assumption that fluents are not affected unless specifically stated, this assumption is
known as the common sense law of innertia[36]. One problem to early solutions to the
frame problem was the Yale Turkey Shoot[18], a scenario that, when formalised in logic,
has two solutions, one intuatively correct the other not.
The main obstacle in classical logic to the frame problem is the monotonicity of classi-
cal logic, ie “ In classical logic, the set of conclusions that can be drawn from a set of
formulae always increases with the addition of further formulae”[36]. This lead to the devl-
opment of non-montonic languages, non-montonicity in ASP is handeled through negation
as failure[5].

CHAPTER 2. LITERATURE SURVEY 10

The ASP solution to the frame problem is an ASP expression of Reiters frame defaults
[23][31]. In ASP this is formalised as:

p(T+1) :- p(T), not ¬p(T+1), time(T).

This solution uses negation as failure and classical negation to describe that if P is true at
time T, and there is no evidence that it becomes false at T+1 then it remains true at time
T+1[23].

2.2 ASP Grounders / Solvers

Before we can start reasoning with answer sets we need to compute them. For this we
will need both a grounder (to compute the ground instances of a program), and a solver
(to compute the actual answer sets). Solvers will take a set of ground rules and output a
subset of these such that none of the rules cause a contradiction and the subset contains
any ground facts that have been specified within the program. For example if boy(tom) is
a fact in the non-ground program then it must appear in the output from the solver.
Throughout the years there have been various implementations of solvers and grounders,
in this review we shall focus on the most commonly used programs currently available.

2.2.1 Smodels

Smodels [29] is an Answer Set Solver taking logic programs in a prolog-style syntax as input
and outputing the answer sets of the given program. Smodels requires that all programs are
domain restricted, with predicates split into domain predicates and non-domain predicates.
Domain predicates are predicate symbols used within the program that are defined non
recursively (e.g. colour), whereas non-domain predicates are predicate symbols that are
recursively defined (e.g. ancestor).
Since its conception Smodels had been extended to include cardinality and weight restraints[38],
these allow programmers to express more advanced notions or create more efficient prorgams.
These extensions allowed programmers to specify that a certain amount, or even a range,
of heads should appear within a program (cardinality), this can be useful for programs
such as graph colouring. Weighing allows the programmer to choose a weighting for each
resulting predicate, with the combined result not being greater that a specified value. This
can be particularly useful for problems where value needs to be maximised given a certain
amount of resources (e.g. the Knapsack Problem).
All Smodels programs were computed in 3 different steps[28]:

1. A ground instance of the program is computed

2. The program created above is transformed into a program containing only primitive
rules.

CHAPTER 2. LITERATURE SURVEY 11

3. A Davis-Putnam[4] like algorithm is used to compute the answer sets of a given
program[29]

The Davis-Putnam algorithm[4] is an algorithm that uses two facts to check the validity of
a program, these two facts are:

• An unsatisfiable formula has an unsatisfiable ground instance.

• A formula is valid if and only if its negation is unsatisfiable.

It should also be noted that this algorithm is O(2n) in search space, as it is effectively
traversing a Binary Tree[29]. One of the advantags of using a system such as Smodels
is “the system is based on an implementation-independent declarative semantics”[29] and
that it is easy to learn and use along with being suitable for applications where other
logic program methods (e.g. prolog) would not. During execution the whole set of ground
models are not computed, only enough to ensure that stable models are not lost during
solving[28]. Niemelä and Simons note that a sophisticated bottom-up backtracking with
pruning method is used that can be made to run in linear space. One of the initial aims at
the outset of the creation of Smodels the was to create a system whose performance was not
sensitive to the representation of the input program[28]. The Smodels team succeeded in
this by showing that their implementation executed well when rules were randomly shuffled.

GrinGo

ASP solvers rely sophisticated variable substitution techniques (grounders)[10], before
GrinGo there were only two major grounders available, LParse and DLV’s grounding
component. GrinGo is designed to compete with both of these, at its core is the idea
of extensibility [10]. This allows additional language constructs can be added into the
grounding process with a minimal amount of work. In fact one of the main aims was to
use Bison/Flex as this provides an easy way to extend the language. There are 4 stages to
GrinGo’s execution [10]:

1. The parser checks the input for syntactic correctness.

2. The checker verifies that the program is λ-restricted

3. The instantiator computes the ground instances of the rules.

4. The evaluator identifies newly derived instances of ground predicates.

The term λ-restricted means that all the variables in the rules of a program are bound by the
rules of a smaller program. λ programs also have a finite equivalent ground instantiation,
this is useful to know as GrinGo will be able to determine whether there are ground
instances of a program before attempting to ground it.

CHAPTER 2. LITERATURE SURVEY 12

It should be noted that GrinGo draws from DLVs back-jumping algorithm [10][22], this is
used so that redundant rules are not generated. Whilst DVL uses a system that may from
time to time result in rule generation that would ground variables with different values but
eventually produces the same result. GrinGo attempts to distinguish these rules and will
reduce the amount of redundant grounding of rules. The GrinGo team also note that good
heuristics are needed for binder instantiation order[10], they plan for this to be an area of
future research. The results that were published by the GrinGo team also show that for
the experiments that were conducted by the team GrinGo regularly generate far less rules
than DVL and LParse, and apart from one anomaly (blamed on unsatisfactory heuristics)
was faster than LParse at Sodoku, it was also quicker than both DVL and LParse at Graph
3-Colourability.

2.2.2 Clasp

Clasp [12] is a confilct driven ASP solver, written by Schaub et. al. Clasp, unlike other
ASP solvers is built around, and optimized for conflict driven answer set solving. Clasp is
centered around the concept of nogoods, nogoods are used in search trees, and are an easily
checkable condition that is used to determine if the nodes below the current position are still
plausable. In a logic programing sense, two assignments that cannot occur simultainiously.
Clasp features a degree of abstraction from nogoods [12], allowing for future language
extensions, eg aggregates. Clasp differs from Smodels and DVL in many ways, for instance,
rather than computing the greatest unfounded set (The set of atoms that all must be
assumed or falisied before any more rules can be derived), any unfounded atom is falsibied
immediatly before moving on[12].
Clasp has two operation modes:

• Conflict Driven Nogood learning (Primary)

• Systematic Backtracking Without Learning (Secondary)

Clasp also features many features found in Conflict-Driven Clause Learning (CDCL), such
as “restarts, deletion of recorded conflict and loop nogoods” [12].
The Clasp team identify three major components of Clasp:

1. Preprocessing - The input is parsed and nogoods are generated

2. Static Data - All verticies of an atom-body depencany graph are associated with
assignable variables

3. Solver - Answer Set are computed

During the solving process, the solver will distinguish between static nogoods (resulting
from the input program), and dynamic nogoods (resulting from confilcts during solveing).
Variable assignment during the solving phase is done either by propogation or using Clasps

CHAPTER 2. LITERATURE SURVEY 13

decision heuristics[12]. These depend on whether learning is in effect, if is it then Clasp uses
look-back strategies, derived from CDCL approaches in SAT solvers. If not then it uses
look-ahead strategies to propegate literals. During the solving process Clasp uses source
pointers along with its unfounded set detection system in anattempt to create small and
“loop-encompasing” sets rather than the greatest sets [12].

2.3 General Game Playing

General Game Playing grew from Meta-Gaming [30], a system for describing a Chess like
class of games that could be played by a computer. This idea was taken a step further and
the idea of truly general games were introduced [15]. General Game Playing is still the
subject of much research, some of which is listed below.

2.3.1 Playing General Games

Game Definition Language

Game Definition Language (GDL)[24] is an extension of Datalog that allows function con-
stants, negation and recursion[24]. It allows the expression of finite, discrete, deterministic,
n-player games of complete information with simultaneous moves. Games are considered
deterministic as we do not wish to describe games where “chance” effects the outcome, so
performing a specific action on a specific state we will reach a unique state. Even though
all games modeled in GDL are considered to be simultaneous movement games we can
introduce turns into a game by the use of a no-op move. This is a move that a player
makes when they wish to (or are forced to) take no action. From now on all games referred
to as simultaneous move or turn based will take on the expected meaning with turn based
games behaving as above. Since games are considered finite, we should be able to create
a Finite State Machine of the states and actions. GDL rules take two forms, statements
of fact are written (fact argument · · ·) where there can be n arguments. The second form
specifies a causal relationship between statements in GDL, these take the form:

(← outcome
action)

Where there is one outcome and n actions. Variables are represented by ?var, any other
atom is a value. GDL has a set of 8 main keywords that are present in every game specified
in GDL. There are :

• role - Players taking part in the game.

• init - State true at the beginning of the game

• true - Represents state true at any other stage

CHAPTER 2. LITERATURE SURVEY 14

• does - Represents actions made by players

• next - Represents values true in the next state of the game

• legal - Used to represent legal moves that are available to players

• goal - Used to define the value given to various terminal states of a game

• terminal - Used to specify the terminal states of games.

All of these, along with distinct can be seen in Appendix B (page 59). Distinct is a reserved
word within GDL and is used to specify that arguments passed to it are different. In the
Blocks game we can see that there is one player, robot, and the initial state of the game is to
have three blocks (a,b,c), with a and b on the table, and c on top of a. The next set of rules
specify what happens based on a legal move made by robot. The goal states are specified
so that the only winning state is to have the blocks stacked a,b,c, the terminal states are
specified so that the game is in a terminal state whenever we are in this arrangement of
blocks, or 4 steps have passed.
The concept of steps or turns is often very important within a GDL specification, as we
previously discussed GDL games must be finite and be able to modeled as a Finite State
Machine, without states we may be able to introduce loops into this state machine, possibly
creating an infinite game. With the concept of turns introduced we may be able to take
multiple paths to reach a certain state but we can never return to a previously explored
state. It should be noted that many search/evaluation algorithms will remove the step
definition before evaluating a state. If this is not done it can lead to sub-optimal searches
due to the fact that whilst two states may be identical in terms of everything but step.
The search/evaluation function will identify these as different states of the game, when
effectively they are not.

Gameserver

All GGP games are run by the Gameserver, this is the main server that controls the play
clock, determines game state and relates game information to players. Before we move into
more indepth discussions about specific GGPs it is worth discussing the Gameserver briefly
and specifying certain parts that may be necessary further on. The Gameserver runs the
Start Clock and Play Clock, the start clock is initialised at the start of the game and can
vary in length. This time is used for players to interpret the GDL defined game, investigate
any heuristics they may have pre-programmed or dynamically created along with anything
else the player may wish to do. The play clock is used after each turn has been submitted
and it used to allow the players to determine which move they wish to make next.

2.3.2 GGP Concepts / Features

Before introducing specific GGPs we shall discuss and expand on some techniques that have
been identified through subject related reading as being perceived as important to building

CHAPTER 2. LITERATURE SURVEY 15

effective GGP Players. This section is intended as a brief introduction to the topics listed
below and we invite people to read further into these topic should they wish.

Minimax Search Tree

Minimax is a method of searching specifically designed for two player games, it can be
thought of as a method to minimise the maximum possible loss, or alternatively as max-
imising the minimum gain. It is easiest considered as a tree (Fig. 2.1), in this example
the circle represents the moves of the player, whilst the squares represent the moves of the
opponent. Positive infinity represents a win for the player, negative infinity represents a
win for the opponent.

Figure 2.1: Example Minimax Tree

In minimax the parent nodes analyze their child nodes, the selection that is made depends
on whose turn it is. Since these payoffs are for the player, when the player is moving (circle)
they will want to attempt to maximise the gain, however when the opponent (square) is
moving they will want to attempt to minimise the gain for the player.

Alpha Beta Pruning

Alpha Beta Pruning is an extension of the Minimax algorithm, it improves performance
by halting evaluation of a branch that it knows has a higher / lower value than currently
evaluated nodes. This means that whole sections of the game tree can be removed from
evaluation, allowing search functions to search deeper into the search tree, thereby having
more information with which to make decisions.

Iterative Deepening

Iterative Deepening is method of tree traversal, in this method the depth that the tree
is searched is incremented until the shallowest goal state is reached. The overall distinct
ordering is breadth first, however at any iteration the ordering is depth first.

CHAPTER 2. LITERATURE SURVEY 16

Feature Evaluation / Heuristic Construction

To be able to effectively reason about a given game we must produce adequate heuristics,
these heuristics have to be based on game specific features. Features in games are state
characteristics that can be used to measure state “worth” to a player, e.g. special pieces (e.g.
Kings in chequers), or important strategic points. Structures can also be identified and are
specific from game to game. Structures are drawn from the syntax of the GDL, whereas
features are often semantic structures that have to be discerned from running a game
multiple times.These heuristics will the allow accurate, reliable assessment of states[44]. In
specialised game players it has been argued that much of the “intelligence” came from these
heuristics that humans often spent an extended amount of time tuning and optimizing. In
General Game Playing this cannot happen, as the game is only known at run time, and
so heuristics must be derived from a GDL specification once it is received by the player.
Utgoff[44] describes 4 major aspects to designing a good heuristics evaluation function:

1. Create accurate features to measure state properties

2. Choose a model that maps these features to a scalar value

3. Provide game payoffs

4. Provide a method for adjusting the parameters of the heuristic function.

It is also noted that features should only be chosen if a GGP can perform better with said
feature than without[44]. Utgoff also defines overlapping and disjoint features. Overlapping
features are where the scalar product is used for the worth of a particular feature whereas
disjoint features have a different worth for each feature combination.
Jame Clunes [3], also goes a step further attempt to identify sub-games, these are multiple
parts of games that can exist and have no consequence on each other. These may each
require their own separate heuristics, some of which may conflict with heuristics to other
sub-games.

2.3.3 Previous General Game Players

FLUXPlayer

FLUXPlayer[35], winner of the 2006 AAAI GGP competition, is a player written by
Stephan Schiffel and Michael Thielscher. To reason about the legal moves and effects
of its actions it uses Fluent Calculus and the Prolog interpretation FLUX[35], this is done
within the time allowed by the start clock. They also aim to construct certain heuristics
and recognise various parts for given games. One of these aims is the construction of an
evaluation function that will be used to determine which of a given set of actions the player
believes to be best. Another aim they specify is that the player will attempt to recognise
and use within its reasoning any structures that may arise from the GDL specification.

CHAPTER 2. LITERATURE SURVEY 17

In the attempt to search the game tree FLUXPlayer uses an iterative deepening depth-first
algorithm with two enhancements, transposition tables and history heuristics [35]. Trans-
positions Tables are a method used where states that have been previously evaluated can
be stored and then this stored value can be used whenever the same state is met again.
History Heuristics are very similar and are used in the pruning algorithm so that simi-
lar moves that have been evaluated in other branches and found not to be optimal are
not re-considered in the current branch. FLUXPlayer also uses various additional pruning
method depending on the type of game currently being played, e.g. for two player games
alpha-beta pruning is employed [35].
One assumption made by the player in multi-player, simultaneous move games is that all
opponents know of the players move before making their choices this means that pruning
the search tree becomes easier for the player at the cost of possible suboptimal play [35].
The team are attempting to produce a method using game theory and Nash Equilibria.
FLUXPlayer attempts to build a heuristic function at runtime that will evaluate the non
terminal states of a game, it attempts to avoid terminal states while the goal has not been
reached. It uses Fuzzy Logic to assign values between 0 and 1 to atoms that are then used
to determine the ‘best’ move. In the evaluation function FLUXPlayer will also attempt
to identify and evaluate structures that become apparent through investigating the GDL
specifications that the player receives. These structures can then be used in non-binary
evaluation [35].
One aspect of General Game Playing that is noted in [35] is that there are no predefined set
of benchmarks that can be used to measure the success of a player. To combat this the team
used the results from the 2006 AAAI competition to produce results about their player.
These results appear to be very positive, and infact they are, due to the fact the FLUX-
Player was the winner of that competition we do not expect to see many negative results.
One of the conclusions that the team draw from their player is that producing heuristics is
much faster than learning based approaches, however is some cases the evaluation function
maybe more complex to compute than some learning based approaches[35].

OGRE

The GGP Player OGRE [20] is the successor to GOBLIN, OGRE came fourth in the 2006
AAAI GGP competition, whereas GOBLIN placed second in the previous years competi-
tion. It is noted in [20] that OGRE is very similar to GOBLIN in many ways however it
features a new inference engine and a new feature extraction algorithm. OGRE consists of
5 components[20]:

• HTTP Interface

• Parser

• Game Analyser

• Search Engine

CHAPTER 2. LITERATURE SURVEY 18

• Inference Engine

The HTTP Interface controls all calls external to the player, such as communicating with
the Gameserver. The parser uses the KIF parser built into the Java Theorem Prover (JTP)
to transform the GDL specification passed to the player into a clausal form that can be
interpreted by the inference engine. This is one of the places where OGRE differs from
GOBLIN, GOBLIN used JTP to reason about states, goals and legal moves whereas OGRE
uses its own “Significantly Faster”[20] inference engine. The game analyser is used only
whilst the start clock is active, this part of the player uses approximately 50% of its time to
extract features and construct an effective evaluation function by playing games internally.
The other 50% of this phase is used by the agent to determine its starting move. The Game
Analyser is no longer used once the start clock is not active. The search engine is used
to select the “best” move available to the player from the set of legal moves, this uses the
paranoid algorithm[40], which reduces an n-player game into a two player game by making
the assumtion that all opponents have formed a coallition and are working against the
player. The use of this paranoid algorithm means that OGRE has a strong bias towards
two player games[20]. This assumption is unlikely but allows a standard Minimax search
algorithm with Alpha-Beta pruning[20], however this assumption may lead to sub-optimal
performance [40] but due to the extra-pruning that can be introduced it may mean that
the game tree can be searched deeper. The search engine also uses itterative deepening
and transposition tables to further speed up the algorithm. The inference engine is the
part of OGRE that is used to determine relative worth of the current set of legal moves.
Depending on the type of game that is being played it can spend upto 71% of the time
analysing game states [20], this severely decreases the amount of processing time available
to searching the game tree. A faster inference engine means the game tree can be searched
deeper and the game structure can be analyzed in more detail. One enhancement that is
that it uses a static predicate cache, these are predicates that are not dependant on the
GDL reserved words true or does, these predicates do not change from turn to turn and
as such recalculating them may be very time costly, instead they are cached and recalled
whenever needed.
Whilst discussing thier conclusions the OGRE team commented:

“On average our system is only capable of searching 100 game states each second. This is
quite slow. For comparison, readily available Chess playing programs such as GNUchess
and Crafty can easily search through over 35,000 game states each second and with the aid
of specially designed Chess chips, Deep Blue is capable of examining over 200 million game
states each second.”[20]

However states searched may not be a suitable benchmark to determinne player speed,
mainly due to the fact that there are other variables that effect this number, game complex-
ity, machine speed and heuristic efficiency (for which predefined heuristics will be greatly
improved over heuristics defined at run time).

CHAPTER 2. LITERATURE SURVEY 19

UTexas LARG

UTexas LARG (herein refered to as LARG)[21] was developed to compete in the 2005
AAAI GGP Competition. They state that a general game scenario consists of 3 factors:

1. Class of games being considered

2. Domain Knowlege prior to the start of the game

3. How performance is measured

They go on to specify that throughout [21] they will be considering the scenarios that are
available for the AAAI GGP competition, however it is worth noting that general game
playing exists outside of the framework developed at Stanford for the competition. LARG
uses a minimax search algorithm along with a heuristic evaluation function. It should be
noted that the feature / structure derivation mechanism works on syntax alone[21]. This is
shown by randomly scrambling predicates (other than the GDL keywords) and show their
player can still produce features and structures from this scrambled GDL. Heuristics are
developed from identifying features and structures in the GDL specification, these are then
evaluated at the same time the opening move is being decided (during the start clock)[21].
LARG will also construct multiple heuristics based on specific features, at the very least
these will be maximal and minimal, it can then be determined which one of these heuristics
is the most appropriate to use.
To calculate the next move LARG will spawn multiple slaves to generate the best move for
a specific heuristic which the slave will report back at specific instances. Before the play
clock expires the player will select the “best” move from the set of suggested moves.

CADIAPlayer

CADIAPlayer [9] is the winner of the 2007 & 2008 AAAI General Game Playing competi-
tion. The CADIAPlayer team state that in order to be able to take part effectively in the
GGP competition three components are needed:

• A HTTP server to interact with the Gamesmaster.

• The ability to reason using GDL

• A.I. to actually play the game and select moves.

The team also note that whilst a HTTP server is required it does not necessarily need
to be considered part of the player, it can be a separate module that just exists. The
CADIAPlayer itself it made up of three conceptual layers[9]:

1. Game Agent Interface

CHAPTER 2. LITERATURE SURVEY 20

2. Game Play Interface

3. Game Logic Interface

The game agent interface is used to communicate externally (or to the HTTP Server),
the game play interface is the AI part of the player and contains the search algorithms
and the logic interface is used to store and calculate game states among other things. To
deduce legal moves and reason about the game CADIAPlayer uses Prolog. The game play
interface uses two different search methods UCT and Extended IDA* search. UCT is the
main algorithm, whilst IDA* search is used if playing a single player game and if a terminal
state is found for which the value is not 0 during the start clock. Extended IDA* is the
iterative deepening search discussed earlier combined with the A* [19] algorithm.
CADIAPlayer uses knowledge transfer to produce heuristics that are used to decide the
“best” move that is available. This works by playing a simple game in a specific genre a
number of times to learn features from analysing the game tree, these features are then
transfered to similar games in the same genre. There was significant design decisions
regarding parallelization taken into consideration, this was done by setting up slaves to
run on separate CPUs, these slaves can then be updated or report back at specific points
through the game[9].

Chapter 3

Requirements

3.1 Requirements

In this chapter we shall outline the requirements that are needed for our General Game
Playing system, ASPlayer. We shall consider the requirements of both the GGP application
itself and the ASP representation of the games that we will be playing. For the ASP System
we shall be considering the basic requirements and alternate extended requirements. We
do not intend to meet all the requirements listed in the extensions, however we hope to give
requirements for an idealised ASPlayer system. We group these extensions together and
if any of the group is implemented we shall implement the whole group. All requirements
from previous groups are assumed to carry forwards unless otherwise stated.

3.1.1 ASP requirements

Any GGP system needs to be able to represent and reason with the GDL that is passed
into it. As stated we will be using ASP to represent the knowledge that is passed into
ASPlayer. As such we need our ASP representation to:

• Accurately represent all relevant information available within the GDL specification
automatically via a parser.

• Assume no information that is unavailable, all the information used in the knowledge
representation must be non-game specific or have been received from the Gameserver.

• Keep usage of variables to the minimum amount possible, to minimize grounding
time.

• Track game state.

• Use the available fluents to reason about legal moves.

21

CHAPTER 3. REQUIREMENTS 22

• Determine if there is a maximum number of turns for a given game.

• Keep a record of previous moves, encoded within the ASP program.

• Use these moves to determine current game state.

Extended ASP Requirements

Single Player Planning:
We believe that the next step after using the ASP to just reason about legal moves is to
use the fluents that we are representing to plan towards a specific goal. This system should
be able to:

• Create ASP that can be used to effectively plan towards a goal for a single player.

• Create plans of or under a given length to work towards a goal, if there is a maximum
number of turns the length should be this number.

N-Player Planning:
This system will work identically to the one above but will work at planning towards a goal
for multiplayer games. This system should:

• Use the same methods as single player planning, this ensures that only one system is
used for all games.

• Manage the goals of multiple players.

• Plan moves for multiple players, with the plan working towards the goal for a single
player (ASPlayer)

Move Reasoning:
After we have created a planning GGP system that can plan for n-player games we then
need to be able to reason about the quality of a move. A system that can reason about the
quality of possible plans should be able to:

• Provide some method of placing a scalar value on the quality of a plan.

• Determine that a given move by an opponent is improbable, e.g. ignoring a move
that may prevent an opponent winning within the near future.

• Determine between a forced move resulting in an opponent win and inaction resulting
in an opponent win. For example in Tic-Tac-Toe there are times when regardless what
move is made the next move by an opponent will result in a win for the opponent.

CHAPTER 3. REQUIREMENTS 23

• Reason between which moves are the “best” using both the scalar value and the
probability of moves of an opponent.

Feature Evaluation and Heuristic Construction:
We believe the final requirements to create a truly competitive GGP system is the ability
to create, modify and reason using features, structures and heuristics. A system that can
use features, structures and heuristics should:

• Use the GDL that is passed into ASPlayer and produce features, structures and
heuristics from this GDL.

• Provide a method to adjust the parameters to the heuristic function.

• Determine between overlapping and disjoint features[44].

• Create a method to store and retrieve features, structures and heuristics from previous
games.

• Create a method to determine if a game has been played previously.

• Create a method to rate previously used heuristics for use in future games.

3.1.2 General Game Player requirements

The basic requirements for this system will be to handle all of the basic requirements for the
ASP system, along with the single and n-player games. Further ASP requirement groups
will need further features to be able to handle the move reasoning and feature construction
abilities of the ASP, these requirements will be listed in further requirements section.

Basic Requirements

A GGP Program must:

Functional Requirements:

• Receive HTTP Messages.

• Send HTTP Messages.

• Incorporate a method for parsing incoming GDL specifications from the Gameserver.

• Parse moves that are passed to the player by the Gameserver.

• Store and retrieve parsed ASP representations.

CHAPTER 3. REQUIREMENTS 24

• Have the ability to append rules to previously stored parsed representations.

• Call command line applications for grounding and solving ASP programs.

• Determine the prefered move to play from multiple possible answer sets of planned
moves.

Non-Functional Requirements:

• The parsing module of the GGP must be able to parse a GDL specification in the
alloted time by the gameserver.

• The HTTP module should be able to accept and send connections on more than one
port.

Further Requirements

The requirements listed above are the basic requirements that are needed for ASPlayer,
however for a more competitive player or with more advanced ASP representations we need
a move advanced GGP player to:

• Determine the scalar values of ASP plans that incorporate move preferences. (Move
Preferences).

• Provide a method for selecting a specific move if two or more plans have the same
scalar value. (Move Preference).

• Provide a method for determining the effectiveness of features and structures used.
(Feature Construction).

• Provide a method of storing completed games for later inspection. (Feature Con-
struction).

• Provide a method for linking completed games with the features, constructions and
heuristics used within the game. (Feature Construction).

Chapter 4

Design & High Level
Implementation

During this section we give a detailed analysis of the design of ASPlayer and any required
modules.

4.1 ASP Planner Design

The ASP Planning method that we detail below uses a modification of Barals’ planning
method. We chose to base our method around Barals for many reasons, however the main
reason for this is the corrolation between GDL rules and the rules in the ASP representation.
The rules in the GDL and ASP specification match up with an almost one-to-one link. This
keeps the complexity of the parsing program as low as possible, ensuring that the GDL is
converted into ASP in the quickest possible time, helping to meet one of our non-functional
requirements.

4.1.1 Planner Overview

Domain Independent:
Before we start we shall quickly note the domain of the variables that we have used:

Role : R

Time : T

Action : A,AA

Fluent : F

25

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 26

time : the constant “time” is used by ASPlayer as a parameter to Lparse. By passing in
this parameter we can alter the length of our plans at any time without having to
reparse any GDL.

Defining Time:

time(1..time).

This line defines the timesteps that we will allow within our plan, as stated above the
constraint “time” is replaced with an upper bound on our plans when we come to ground
our program.

Causal Laws:

holds(F,T+1) :- occurs(A,T,R), causes(F,R,A,T).

This rules is used to describe the effect of actions on fluents. So a fluent will hold in
timestep T+1, if the action that is taken at timestep T by role R causes fluent F. As stated
below every other fluent not explicitly stated to hold will not hold. There is no inertia
(Notes on the Frame Problem, Page 30)

Goal Conditions:

not goal(T,R) :- finally(F,R), not holds(F,T).
goal(T,R) :- not not goal(T,R).
:- not goal(time,R).

The first line here specifies when we are not in a goal state at time T for a particular
role R. The second is used to specify when we are in a goal state and uses NAF in con-
junction with the first line. The final line is a integrity constraint and ensures that when
we reach timestep “time” we must be in a goal state.

Occurance Relations:

not occurs(A,T,R) :- occurs(AA,T,R), A != AA.
occurs(A,T,R) :- not goal(T,R), not not occurs(A,T,R).
:- occurs(A,T,R), not executable(A,T,R).

Again here we have two new predicates and an integrity constraint. The first rule specifies
that an action AA occurs at T then another distinct action A cannot occur. The second
rule is used to specify when an action A is executed by role R at time T. Note if we are in
a goal state we cannot execute another action, this is to ensure that we can create plans
shorter than our specified length, if we are in a goal state then the game should be over
and no more moves occur. The final line is an integrity constraint to ensure that no actions

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 27

are executed at time T if that action is not found to be executable at time T.

Innertia after Goal:

holds(obj reached,T) :- goal(T,R).
holds(F,T+1) :- holds(F,T), holds(obj reached,T).

In the first line we define a new fluent obj reached which will be true in any goal state.
The second rule is used to define inertia once we have reached a goal. This rule will allow
inertia from the goal state onwards, so that once we reach a goal state the fluents continue
to hold ensuring that the final timestep is still a goal state. Without this line we can only
create plans of a specific length.

Domain Dependendent:
In this section we give a brief overview of the domain dependent part of our ASP planning
system. The ASP rules within this section will vary from game to game and this is the
section that will be produced when we parse the GDL input into ASPlayer. In this section
any part of the rules that are replaced by game specifics will be capitalised, we also provide
an equivelant definition in natural language where we feel appropriate.

Roles:
Any roles that are specified within the GDL are simply converted into:

role(ROLENAME).

Initial State:
Any fluents that hold in the games initial state are converted into the ASP rule:

holds(FLUENTNAME,1).

Tautologies:
Tautologies are any fluents that hold at any timestep regardless of actions etc. These are
normally used to define structure of games, such as steps or the board structure etc. They
often are used to condense the GDL specification. For example on a linear board rather
than having many long ground rules we can place these with one shorter rule with vari-
ables and then in the body ensure that the tautology is present, e.g. including succ(X,Y)
to ensure than X follows Y on the gameboard. These tautologies are converted to the form:

holds(FLUENTNAME,T).

Fluents \ Causes:
These rules are used to specify the fluents that hold at the next timestep due to the effects
of an action of a player, they are accompanied by a fact stating that the effect that is being
caused are fluents. These rules are of the form:

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 28

fluent(FLUENTNAME).
causes(FLUENTNAME,ROLENAME,ACTIONNAME,T) :- holds(FLUENT′,T),

· · ·, holds(FLUENT′′,T).

In conjunction with the holds(FLUENTNAME,T) predicates we also may have atoms in the
body of the form X != Y, for more information about how and when we use different atom
please see the parser design section (Page 32). There is the posibility that there are no
conditions, in which case the body of the rule is empty and we have a fact. The second
rules reads:

ACTIONNAME executed by ROLENAME at time T causes FLUENTNAME if FLU-
ENT’ and ... and FLUENT’ currently hold

Holding without Actions:
Sometimes fluents hold regardless of which action is taken as a particular timestep. These
are normally effects such as who has ‘control’ in multiplayer games, having multiple rules
specifying that player x has control in the next step for each action that player o can make
means that for N possible actions and M players NM rules are needed. This can be solved
by having a single rule stating that if player o has control currently then player x has
control at the next step. These rules take the form:

holds(FLUENTNAME,T+1) :- holds(FLUENT‘,T), · · ·, holds(FLUENT“,T).

These rules read:

FLUENTNAME holds at the next step if FLUENT‘ and · · · and FLUENT“ cur-
rently hold.

Actions \ Executability:
The rules are used to define the actions and what fluents have to hold for a particular role
to be able to execute this action. In the same way that causes had fluent rules linked with
them executability rules also have action facts linked with them. These rules are of the form:

action(ACTIONNAME).
executable(ROLENAME,ACTIONNAME,T) :- holds(FLUENT′,T),

· · ·, holds(FLUENT′′,T).

As with cause rules we may also have atoms of the form X != Y in the body of the exe-
cutability rules, there is also the possibility that the body of these rules are empty. These
second rules reads:

ACTIONNAME can be executed by ROLENAME at time T if FLUENT‘ and, · · ·,
and FLUENT“ currently hold

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 29

Goals:
Goals for each player are defined by using a fluent finally, for a player to have reached a
goal state all of their finally rules must be satisfied. In single player games we only need
finally rules for an individual role, however in multiplayer games we need rules for every
individual role. The decision was made to set all players goals to ASPlayers goals, without
it sometimes resulted in opposing players reaching thier goal and inertia resulted in illegal
moves etc. This is an area where further research is needed in order to be able to more
accuratey model competing agents with varying goals and predict realistic moves made by
them. The goal rules take the form:

action(ACTIONNAME)
finally(FLUENTNAME,ROLE).

4.1.2 Modifications from Barals Planning Method

As earlier stated the main structure of this planning method is based around the method by
Baral[2] with some modifications to suit our needs. In this section we cover the majority
of changes that were made from Barals system and give an explanation for why these
modifications were made.
The main modification that we made is the move away from only having facts within our
domain dependent part. We encountered this problem after early prototyping with methods
closer to Barals origional method when we started introducing variables into our rules.
Take for example the fact exec(at(X),player), once this fact is ground if X can take the
values a,b,c,d then we will have 4 rules. In Barals method the predicate not executable
was satisfied if not exec was true, in this context not executable will always hold as
intuatively player cannot be at a,b,c and d all at once. To solve this problem we moved
all the fluents in the exec rules into the body of an executable rule. This also allowed
us to remove the exec and not executabile predicates as there were now unnessecary as
executable was defined as holding if not exec was not holding. We simpley reformulated
the exec predicates into executable predicates, removing the double negation whilst using
not executable and exec. We also converted the cause rules into the same form.
The move of from facts to full rules has forced us to add an element of time into all
predicates, as we have placed holds(F,T) predicates in the body we have to add a T
parameter into the head so that we know exactly when an action is executable, a fluent
holds etc.
The next major change that we have made from Barals planning method is the assumtion
of no inertia, appart from when a goal state is reached, for more information on this
decision please see the section below (entitled “Note on the Frame Problem”, page 30).
This assumption of innertia has also meant that we have been able to remove from our
domain independent part the rules defining contradiction. We now do not need to state
that ‘on’ is the opposite ‘off’ and visa versa, as this situation should never happen unless

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 30

the GDL passed into ASPlayer is incorrect.
We have also been able to replace Barals initially atom with a holds(F,1) rule, this
removes the need for a rule to state this in the domain independent part. Our use of
domain variables has also allowed us to remove alot of atoms in the bodies of the domain
independent part as these are covered by the domain, e.g. we can remove role(R) from
all bodies as it is implicit from the use of R.

4.1.3 Note on the Frame Problem

As mentioned in the Literature Review the Frame Problem (page 9) is the problem of
formulating the common sense law of inertia in logic programs. After researching GGP
Systems and viewing GDL specifications it is our belief that we should make no explicit
process for handeling the frame problem, infact our design has no explicit method of rep-
resenting inertia. In larger logic systems with many discinct fluents, modeling inertia is
something that should be carefully considered in the design of the system. Within a GDL
game specification however there are relatively few fluents, any large amount of similar flu-
ents are often linked via variables, e.g. cell(1,1) · · · cell(3,3) can be represented by cell(X,Y).
This means that inertia is easily modeled within the GDL specifications themselves, there-
fore the inertia is explicit and no method for encoding innertia within our ASP system is
needed.
This was discovered in testing on early prototype ASP representation systems. Barals ASP
planning system explicitly supports inertia. As such rules would be included stating which
fluents should be made true or false with everything else respecting inertia, this information
is not included in the GDL specifications. It was discovered during early prototyping with
the “buttons” game that we were getting into an interesting situation where a light could be
both on and off at the same time. This was due to the fact within the ASP representation
created from the GDL specification there was no information to state that on and off are
mutually exclusive, or that illuminating a bulb will also falsify the fluent that it is off.
There is one instance where we do add inertia though, this is when a goal state has been
reached before the final timestep of our plan. Without this inertia we would be forced to
create only plans of a specific length, no plans shorter than this length may be created.
This is due to our assumption in the design of the ASP that there is no inertia, without
this inertia when the final timestep in our plan occurs any previous goal state earlier in the
plan will not hold.

4.2 ASPlayer Design

The foundation of ASPlayer is Stanford’s Jocular system, Jocular is an open source GGP
system with the only licence restriction being that users are unable to redistribute the
code[16]. Whilst Jocular is the framework of ASPlayer we have modified / created many
classes and packages, in this sectionwe will give an overview of how Jocular works, the
changes we have made and how they fit into the system. We decided to build ontop of

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 31

an already existing player as we fealt creating certain parts of a player were away from
the spirit of this project and would take time from other more central aspects. Creating
modules such as HTTP and internal communication would have reduced the time that
could have been spent designing and implementing the ASP system. As such we decided,
since theses were vital parts of a GGP system, to reuse existing and well designed code.
Jocular was chosen for many reasons, out of the 4 GGP systems we found available, two
were written in Common Lisp and two were witten in Java. Due to our unfamiliarity with
Lisp it was decided that we should use one of the Java implementations. The two Java
implementation were Jocular and another simpler unnamed implementation, since the un-
named implementation did not provide any method of TCP/IP communication with the
game manager (one of the main reasons for our code reuse) the decision was made to build
ASPlayer ontop of Jocular.
The Jocular system itself is built ontop of more basic components, with library stanfordlogic
containing the basic components needed for a GGP player, and the jocular specific pack-
ages. We shall call these parts of the package “Common” and “Jocular”. The Common
library contains classes to deal with connections, game management and GDL representa-
tion classes used in many Stanford players along with abstract classes and interfaces. Very
little was changed in the Common library, infact the only method that was modified was
GameManager.newGame, this was altered to call our ASP Parser rather than the Jocular
specific parser.
Most of that changes came within the Jocular library, the calls to Jocular specific parsers,
reasoners and game managers were replaced with calls to our own ASPlayer library. The
library “ASPlayer” was created and includes all the code needed to run the ASP parsers
amd interpreters, this includes two classes:

ruleReader.java This package is called during the start clock amd is used to parse GDL
specification into the domain dependent part of the GDL, detect the number of players
and determine if there is an upper bound on the number of turns.

ASPGamer.java This package is called during the play clock, it will make command line
calls to the grounder and solver, update the ASP representation with past moves
made and convert ASP style code the lisp style code required by the game manager.

4.2.1 General Design

On Initialisation:
When ASPlayer is started the program will wait for an incoming message. This message
will then be passed to the connection manager which will determine the type of the mes-
sage and create the appropriate subclass of stanfordlogic.network.RequestHandler,
with the data being that contained within the message. All varience is then determined
by the type of subclass created, once a message is received the player will wait for a new
message untill a KillRequestHandler is created.

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 32

RequestHandelers:
Below is a list of the various subclasses of RequestHandler and thier uses and calls, all
these classes can be found in stanfordlogic.jocular.network.

StartRequestHandler This handler will be created whenever the player receives a mes-
sage that a game is starting. This handler will call
stanfordlogic.game.GameManager.newGame which will parse the GDL received into
ASP, determine the number of players and turns. For more information see below
(Parser, page 32).

PlayRequestHandler This handler will be created whenever the play clock is activated
and the game manager requests a move. Methods from the class ASPlayer.ASPGamer
will be called, for more information see below (At Each Turn, page 35).

KillRequestHandler This handler will be created whenever the player receives a request
to shut down, this will call the
stanfordlogic.game.GameManager.shutdown() method to terminate the thread
awaiting incomming messages.

4.2.2 Parser

Below we give a description of any GDL keywords and how they are converted into our
ASP Planning System. Before we start we shall quickly mention how we convert from the
Lisp style GDL to ASP. We use a recursive algorithm that is outlined below:

1. If input is a single atom return the atom.

2. Itterate along the string, when the first space is found take the text between second
character and the space (first character is ‘(’). This will then form the predicate.

3. Concatenate above with ‘(’.

4. Continue itterating along the string, if the character is a space, append text between
last space and current one. If the character is ‘(’ then take the string between it and
the corresponding ‘)’ and recursively call method.

5. Continue iterating as above, untill at the end of the String, then finally append text
between last copy and the end.

We now give a description on how each GDL keyword is converted into ASP.

(role · · · :
Any GDL rule of this type will be converted into role(CONTENTS) rule.

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 33

(init · · · :
Any GDL rule of this type will have the contents converted into the ASP represen-
tation using the above algorithm and enclosed within a holds(CONTENTS,1).

(<= (next · · · (does · · · :
Any GDL rule of this type will be converted into causes(F,R,A,T) :- holds(· · ·
with F being the second argument in the “next” list, R being the second argument
in the “does” list, A being the third agument in the “does” list. The fluent F will a
also be a rule of the form fluent(F) with F replaced by the second argument in the
“next” list.

(<= (next · · · :
Any GDL rule of this form will be converted into a holds(FLUENTNAME,T+1) atom
and n-1 holds(FLUENTNAME,T). atoms. Where the head of the rule is the first holds
atom, and the body is the concatenation of the remaining rules in the “<=” list.

(<= (legal · · · :
Any GDL rules of this form will be converted into executable(R,A,T) with R being
the second argument in the legal list and A being the second. Any subsequent “true”
lists will be converted into an ASP body using holds(FLUENTNAME,T) atoms. A move
without any conditions will be an ASP fact. These rules will also be acompanied by
an action(ACTIONNAME) atom.

(<= (goal · · · :
Any GDL rules of this form will be converted into N finally(F,R) rules, where N
is the amount of “true” lists, F is replaced by the contents of these lists and R is
the second argument to the “goal” list. Each ‘finally’ rule will be accompanied by a
fluent(FLUENTNAME,T). rule. Only goals that are offering the greatest payout (100)
are considered, others are disgarded, one possible area of future research is extending
the ASP representation to reason about varying levels of goals.

(<= (terminal · · · :
Any atoms of this form will be ignored, from research it has been determined that
these are often reitterations of goal states or result from moves that the player is
forced to take rather than moves they choose to make.

(<= · · · :
Any GDL rules of this form are treated exactly as rules in the form (<= (next · · ·
appart from the head which is of the form holds(FLUENTNAME,T)..

· · · (or · · · :
Anytime we encounter an ‘or’ atom within a GDL rule we add it to an ArrayList and
continue parsing the rule. Once the rule has finished parsing if there are ‘or’ lists in
the ArrayList then for every condition in the ‘or’ list we create copy of the parsed
rule and append the condition. If there are multiple ‘or’ lists, then each set of lists
created is split again, so for 3 lists with X,Y,Z conditions respectively we will have
created XYZ ASP rules.

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 34

· · · (distinct · · · :
Whenever we encounter a ‘distinct’ keyword within our GDL we will convert it into
the form X1! = X2, · · · , X1! = Xn, X2! = X3, · · · , Xn−1! = Xn.

· · · (true · · ·) :
Whenever we enoucnted a ‘true’ keyword within our GDL it will be converted into
ASP of the form holds(FLUENTNAME,T), where FLUENTNAME is the contents of
the ‘true’ list.

Once we have parsed through the GDL specification to create the domain dependent part we
then concatenate this with the domain independent part (held in ASPRuleDef/nonDom.lp),
this ASP Program is then saved as ASPRuleDef/javaParse.lp

Variable Domains:

In order to be able to ground the ASP represesentation of the GDL specification we must
specify the domains of any variables within our ASP representation. The domain indepen-
dent part has these rules allready encoded, however the domain dependent part does not,
we therefore have to determine these at runtime. The algorithm to determine the variable
domains is as follows:

parse through GDL creating a distinct list of variables.
FOR Each Variable
determine position within predicates in GDL
FOR each position

find literals and other variables occupying this position
END FOR
FOR each other variable found

ECHO ’#domain VARNAMEvarxx(CURVAR).’
END FOR
IF literals were found

ECHO ‘CURVARvarxx(LISTOFLITERALS).’
END IF

END FOR

Where VARNAME is the name of the other variable found, CURVAR is the variable in the FROM
Each Variable loop and LISTOFLITERALS is all the literals that were found in the positions
of the predicate.

Maxmimum Turn Discovery:

In order to be able to effectivley create plans we have to know if there is an upper bound
on the length of a game. When there is a maximum number of steps these are encoded

CHAPTER 4. DESIGN & HIGH LEVEL IMPLEMENTATION 35

within the GDL specification, however there is no sepcific keyword to declare this. It was
noted during the early stages of prototyping that whenever a maximum number of steps is
being used that there would be GDL rules of the form (successor 1 2) or (succ 1 2).
Therefore to determine is there is an upper bound on the length of a game we preform a
wildcard search on each GDL rule looking for a (succ* token. If a token is found we take
the maximum of the final argument and this is the final turn. We then add 1 to this value
and store it ready to pass to the ASPGamer class. The reason for adding 1 is that whilst
this number may be the final turn of the game we still need an extra timestep within our
plan to represent the final state of the game after this turn.

4.2.3 At Each Turn

Whenever the game manager sends a play message to a player they will also send all the
moves made by players in the previous terms, if there were no moves (i.e this is the first
turn) then nil is sent. The first action that is taken is to itterate through the list of player
names as assign to each one of them a move of the form occurs(ACTION,ROLE,TIME).
Each of these ASP rules is then added to the javaParse.lp file.
ASPlayer will then call Lparse and Smodels through the command line calls using the Java
Runtime.getRuntime().exec command, using this command we also can control the variable
that is substituted into our “time” constant in the domain independent part of the rules.
From the answer sets that we receive back, we pick the move from the shortest answer set.
The decision to pick the shortest move was arbitrary, we could just as easily have picked
the first answer set. We belieive that one of the areas of research for the immediate future
should involve determining the best move to make from a set of answer sets plans, and as
so we chose the method of picking the shortest answer set untill a more suitable method
presents itself.

Chapter 5

Testing & Results

In this section we demonstrate that ASPlayer is capable of producing the ASP represen-
tations that were outlined in the design section, we also test how competitive ASPlayer
currently is. For the GDL specifications used within this testing section please see the
appendices.

5.1 Reasons for GDL Chosen

Throughout the development process of ASPlayer we have been conducting unit testing at
each stage to ensure everything is implemented correctly before continuing development.
We have also used White Box and Black Box testing methods throughout out unit testing.
Wherever possible we have used GDL specifications from the Stanford GGP website, this
satisfies the Black Box Testing. However sometimes we have had to modify GDL specifi-
cations to ensure that we reach all parts of our code. For example we had to deepen the
depth of our predicates, introducing dummy predicates to test the recursive functionality
in our method to convert Lisp style code to ASP code. These modifications were used to
satisfy White Box Testing requirements.
Due to the generic nature of GGP systems there is very little that can be done to specifically
attempt to break the parser player other than provide unplayable or incomplete specifica-
tions. With unplayable specifications ASPlayer will continue parsing until the end of the
specification, but will be unable to ‘play’ the ASP representation. With incomplete spec-
ifications where brackets are introduced or removed the GDL will not parse. We believe
this is acceptable, without a complete and playable specification we cannot be expected to
produce moves for a game.

36

CHAPTER 5. TESTING & RESULTS 37

5.2 GDL to ASP convertion

In this section we demonstrate that ASPlayer is capable of converting the GDL specifica-
tions into the domain dependent part outlined within our design section. We only show
the domain dependent part here, however in the full ASP representation the domain inde-
pendent part is also present.

5.2.1 Note on GDL being used to test

The GDL that we are using to test ASPlayer is taken from the Stanford GGP website
(http://games.stanford.edu), however sometimes we have made slight modifications to
these specifications, where changes have been made they are noted. However in all the
GDL specifications we have re-distributed the variables. The main reason for this is that
in most of the GDL specifications that we found on the website used variables with no
consistency, for example in the game HodgePodge only two variables are used X and Y,
this means that X and Y can take the values of 1 to 10 and a,b,c,d. We could find no
design decision for this distribution of variables in the GGP literature.
We believe that this formulation is completely counter-intuitive, when attempting to learn
to play games humans compartmentalize and separate distinct sections of the game. There-
fore we have altered the GDL specifications for each of the games used for testing to better
distribute the usage of variables, in all cases separate distinct variables are used for each
game entity. Note, we do not need separate variables in each predicate, for example in Tic-
Tac-Toe we have used (cell ?m ?n b) and (mark ?m ?n) but we will not have (control
?m), here m will be replaced with another variable, say x.
Tests have shown that in some cases the effects can be provide a drastic increase in ground-
ing time, for the game HodgePodge without the changes Lparse will ground the ASP rep-
resentation in 3:35:67 (min:sec:millisec), however with the variables redistributed this is
decreased to 0:01:39 (min:sec:millisec). This is a major increase in grounding speeds, with-
out these changed ASPlayer would have exceeded the play clock without having even ground
the variables in the ASP representation.

5.2.2 Blocks World

Below is the ASP representation of the Blocks World GDL specifications:

1 xvarxx(a;c;b).
2 #domain xvarxx(X).
3 #domain yvarxx(X).
4 yvarxx(a;c;b).
5 #domain yvarxx(Y).
6 #domain xvarxx(Y).

CHAPTER 5. TESTING & RESULTS 38

7 #domain xvarxx(U).
8 #domain yvarxx(V).
9 mvarxx(4;3;2;1).

10 #domain mvarxx(M).
11 #domain nvarxx(M).
12 nvarxx(4;3;2;1).
13 #domain nvarxx(N).
14 #domain mvarxx(N).
15 role(robot).
16 holds(clear(b),1).
17 holds(clear(c),1).
18 holds(on(c,a),1).
19 holds(table(a),1).
20 holds(table(b),1).
21 holds(step(1),1).
22 fluent(on(X,Y)).
23 causes(on(X,Y), robot, s(X,Y),T) .
24 fluent(on(X,Y)).
25 causes(on(X,Y), robot, s(U,V),T) :- holds(on(X,Y),T) .
26 fluent(table(X)).
27 causes(table(X), robot, s(U,V),T) :- holds(table(X),T) ,U!=X.
28 fluent(clear(Y)).
29 causes(clear(Y), robot, s(U,V),T) :- holds(clear(Y),T) ,V!=Y.
30 fluent(on(X,Y)).
31 causes(on(X,Y), robot, u(U,V),T) :- holds(on(X,Y),T) ,U!=X.
32 fluent(table(X)).
33 causes(table(X), robot, u(X,Y),T) .
34 fluent(table(X)).
35 causes(table(X), robot, u(U,V),T) :- holds(table(X),T) .
36 fluent(clear(Y)).
37 causes(clear(Y), robot, u(X,Y),T) .
38 fluent(clear(X)).
39 causes(clear(X), robot, u(U,V),T) :- holds(clear(X),T) .
40 holds(step(M),T+1) :- holds(step(N),T),holds(successor(N,M),T).
41 holds(successor(1,2),T).
42 holds(successor(2,3),T).
43 holds(successor(3,4),T).
44 action(s(X,Y)).
45 executable(robot,s(X,Y),T) :- holds(clear(X),T) , holds(table(X),T) ,
46 holds(clear(Y),T) ,X!=Y.
47 action(u(X,Y)).
48 executable(robot,u(X,Y),T) :- holds(clear(X),T) , holds(on(X,Y),T) .
49 fluent(on(a,b)).
50 finally(on(a,b),R).

CHAPTER 5. TESTING & RESULTS 39

51 fluent(on(b,c)).
52 finally(on(b,c),R).

The variables specified at the start of the representation have been redistributed using our
method above, as you can see the variables X and Y are used to represent blocks, and
M and N are used to represent turns. Lines 27,29,31 and 46 also show examples of the
conversion of the distinct GDL keyword.

5.2.3 Tic-Tac-Toe

Below is the ASP representation of the Tic-Tac-Toe (Noughts and Crosses) GDL specifi-
cations:

1 mvarxx(3;2;1).
2 #domain mvarxx(M).
3 #domain nvarxx(M).
4 nvarxx(3;2;1).
5 #domain nvarxx(N).
6 #domain mvarxx(N).
7 xvarxx(o;x;b).
8 #domain xvarxx(X).
9 wvarxx(oplayer;xplayer).

10 #domain wvarxx(W).
11 #domain mvarxx(J).
12 #domain nvarxx(K).
13 role(xplayer).
14 role(oplayer).
15 holds(cell(1,1,b),1).
16 holds(cell(1,2,b),1).
17 holds(cell(1,3,b),1).
18 holds(cell(2,1,b),1).
19 holds(cell(2,2,b),1).
20 holds(cell(2,3,b),1).
21 holds(cell(3,1,b),1).
22 holds(cell(3,2,b),1).
23 holds(cell(3,3,b),1).
24 holds(control(xplayer),1).
25 fluent(cell(M,N,x)).
26 causes(cell(M,N,x), xplayer, mark(M,N),T) :- holds(cell(M,N,b),T) .
27 fluent(cell(M,N,o)).
28 causes(cell(M,N,o), oplayer, mark(M,N),T) :- holds(cell(M,N,b),T) .
29 holds(cell(M,N,X),T+1) :- holds(cell(M,N,X),T),X!=b.

CHAPTER 5. TESTING & RESULTS 40

30 fluent(cell(M,N,b)).
31 causes(cell(M,N,b), W, mark(J,K),T) :- holds(cell(M,N,b),T) ,M!=J.
32 causes(cell(M,N,b), W, mark(J,K),T) :- holds(cell(M,N,b),T) ,N!=K.
33 holds(control(xplayer),T+1) :- holds(control(oplayer),T).
34 holds(control(oplayer),T+1) :- holds(control(xplayer),T).
35 holds(row(M,X),T) :- holds(cell(M,1,X),T),holds(cell(M,2,X),T),
36 holds(cell(M,3,X),T).
37 holds(column(N,X),T) :- holds(cell(1,N,X),T),holds(cell(2,N,X),T),
38 holds(cell(3,N,X),T).
39 holds(diagonal(X),T) :- holds(cell(1,1,X),T),holds(cell(2,2,X),T),
40 holds(cell(3,3,X),T).
41 holds(diagonal(X),T) :- holds(cell(1,3,X),T),holds(cell(2,2,X),T),
42 holds(cell(3,1,X),T).
43 holds(line(X),T) :- holds(row(M,X),T).
44 holds(line(X),T) :- holds(column(M,X),T).
45 holds(line(X),T) :- holds(diagonal(X),T).
46 holds(open,T) :- holds(cell(M,N,b),T).
47 action(mark(M,N)).
48 executable(W,mark(M,N),T) :- holds(cell(M,N,b),T) , holds(control(W),T) .
49 action(noop).
50 executable(xplayer,noop,T) :- holds(control(oplayer),T) .
51 action(noop).
52 executable(oplayer,noop,T) :- holds(control(xplayer),T) .
53 fluent(line(x)).
54 finally(line(x),R).

The GDL variables for Tic-Tac-Toe were reformulated so M,N,J and K were cell variables
(1,2,3), X was used to indicate the contents of a cell (x,o,b) and W was used to indicate
players. Lines 31 and 32 show an example of the output of an or GDL keyword, these rules
are used to specify that blank cells continue to stay blank whenever another cell is marked.
These two lines allow the condition causes(cell(M,N,b), W, mark(J,K),T) whenever
either of the not equal conditions holds, as the only time a cell would not remain blank is
when M=J and N=K.

5.3 Game Play Testing

This section will be used to give evidence of the general game playing abilities of ASPlayer.
One thing that became apparent very early into testing, ASPlayer constantly plays the
same move in a given game state, in single player games this is not a problem as the only
important outcome is reaching the goal. However this presents a problem in multiplayer
games, since we are pitting our selves against another GGP System. This repetition is
due to the fact that given the same game state the resulting ASP Plans will be the same

CHAPTER 5. TESTING & RESULTS 41

every time, this combined with our opponents (Jocular) use of a minimax search tree re-
sulted in identical moves every time we played a game. Therefore when testing Tic-Tac-Toe
with ASPlayer vs Jocular we only ever produced two paths to playing the game, one with
ASPlayer as Xplayer, one with ASPlayer as OPlayer. However these two games against
Jocular have given us plenty of feedback and areas of further work.
The tables below details the turns, moves and reasoning time of ASPlayer, where appro-
priate we list any notes of opponents / ASPlayer. We also give the scalar value of the goal
state as given in the GDL specification in the final line of all move tables.

5.3.1 Single Player Games

Blocks World

Blocks world is a classic AI Planning puzzle, it is basic, well understood and often used
in early testing of AI. The domain consists of 3 blocks (A,B,C), with block C on block A,
and blocks A and B on the table. The aim is to produce a tower of blocks of the form
on(A,on(B,C)).
Maximum Turns: 4

Turn Move Reasoning Time
(Sec:Millisec)

1 (u c a) 0.321
2 (s b c) 0.318
3 (s a b) 0.286

Goal 100

Table 5.1: Blocks World example play.

Buttons

The buttons domain consists of three bulbs (A,B,C) and three buttons (P,Q,R), initially
all three bulbs are off, the aim is to turn all three on. Pressing button P will invert bulb
A (on→off, off→on), pressing button Q will swap the status of bulbs A and B, pressing
button R will swap the status of bulbs B and C.
Maximum Turns: 7

CHAPTER 5. TESTING & RESULTS 42

Turn Move Reasoning Time
(Sec:Millisec)

1 a 0.114
2 b 0.098
3 a 0.095
4 c 0.096
5 b 0.094
6 a 0.092

Goal 100

Table 5.2: Buttons example play.

Maze

The maze domain consists of a 2x2 board with cells A,B,C,D, the player starts in cell A
and there a pile of gold in cell C. The player may move A→B→C→D→A· · ·, the player
may also grab and drop. The aim is to move the gold from cell C to drop it in cell A.
Maximum Turns: 10

Turn Move Reasoning Time
(Sec:Millisec)

1 move 0.736
2 move 0.702
3 grab 0.755
4 move 0.705
5 move 0.753
6 drop 0.735

Goal 100

Table 5.3: Maze example play.

5.3.2 Multiplayer Games

Note on Opponent

As an opponent for multiplayer games we have used an unmodified Jocular system from
Stanford’s GGP website. As stated earlier as both ASPlayer and Jocular will both play
the same move given the same state, therefore we only have two game paths. Originally we
were hoping to test ASPlayer using Stanford’s Gameserver, however this was offline at the
time of testing, also we believe there is still more work to be done before playing against

CHAPTER 5. TESTING & RESULTS 43

top class GGP systems.
Jocular uses a Minimax search algorithm to determine that best move to play at each turn.
Jocular will also output a taunt of “HaHa I Win!” when Jocular has determined that there
is no doubt that it can reach its goal, in single player games it will output this taunt at the
first move. Jocular will also output a taunt of “Well, darn” when it has determined there
is no possibly way for it to win if an opponent plays reasonably.

Tic-Tac-Toe

Tic-Tac-Toe or Nought and Crosses is a game consisting of a 3x3 game board and two
players Xplayer and Oplayer. The players take it in turns to mark a blank cell on the
board with either an x or an o, the aim of the game is to control 3 squares in a line (row,
column or diagonal) whilst preventing the opposing player from doing so.
Maximum Turns: None Specified in GDL

ASPlayer as Xplayer:

Turn ASPlayer Opponent Reasoning Time Notes
(Sec:Millisec)

1 (mark 2 2) noop 2.169 Jocular Timeout
2 noop (mark 1 1) 1.997
3 (mark 1 2) noop 1.955
4 noop (mark 3 2) 1.987
5 (mark 1 3) noop 2.288 Retested, still anomalous

move time, unsure as to cause.
6 noop (mark 3 1) 1.538 Jocular: ‘HaHa I Win!’
7 (mark 3 3) noop 1.458
8 noop (mark 2 1) 1.418

Goal 0 100

Table 5.4: Tic-Tac-Toe example play, with ASPlayer as Xplayer.

CHAPTER 5. TESTING & RESULTS 44

ASPlayer as Oplayer:

Turn ASPlayer Opponent Reasoning Time Notes
(Sec:Millisec)

1 noop (mark 1 1) 2.038 Jocular Timeout
2 (mark 3 3) noop 2.174
3 noop (mark 1 3) 1.944 Jocular: ‘HaHa I Win!’
4 (mark 3 1) noop 3.612 Retested, still anomalous

move time, unsure as to cause.
5 noop (mark 1 2) 1.996

Goal 0 100

Table 5.5: Tic-Tac-Toe example play, with ASPlayer as Oplayer.

HodgePodge

HodgePodge is a two player game where Blocksplayer plays the single player Blocks World
game and Mazeplayer plays the single player Maze game. The game itself is not inherently
interesting, however this game does demonstrate some need for incorporation of move rea-
soning in to ASPlayer. As Blocks World can be completed in a shorter time to Maze,
Blocksplayer should always win (as is shown in these results). However Mazeplayer should
also determine that, should Blocksplayer play reasonably, that there is no possible way to
win. Jocular as Mazeplayer determines this on the first move, however ASPlayer makes no
such inference and continues to play in the belief that it can still win.
Maximum Turns: None Specified in GDL

ASPlayer as Blocksplayer:

Turn ASPlayer Opponent Reasoning Time Notes
(Sec:Millisec)

1 (u c a) move 1.760 Jocular: ‘Well, darn’
2 (s b c) move 1.672
3 (s a b) move 1.664

Goal 100 0

Table 5.6: HodgePodge example play, with ASPlayer as Blocksplayer.

CHAPTER 5. TESTING & RESULTS 45

ASPlayer as Mazeplayer:

Turn ASPlayer Opponent Reasoning Time Notes
(Sec:Millisec)

1 move (u c a) 1.737 Jocular: ‘HaHa, I Win’
2 move (s b c) 1.714
3 grab (s a b) 1.773

Goal 0 100

Table 5.7: HopdgePodge example play, with ASPlayer as Mazeplayer.

Chapter 6

Conclusions

6.1 Critical Evaluation

6.1.1 Original Requirements

Looking back at our original requirements we now believe that some were very optimistic.
However due to the way the requirements were structured we were able to implement up
to a point without having to rewrite the requirements. Given time constraints and the
scope of the project we felt that it would be more appropriate to concentrate on creating
a good foundation for possible future developments as opposed to attempting to partially
implement all requirements. As such our requirements for move reasoning and feature
construction were left unimplemented, however in this chapter we give suggestions for
possible work and any direction we see this progressing.

6.1.2 Project Summary

We believe that overall the project has gone very well, however this is still a long way to go
before ASP is a truly competitive GGP System capable of competing against the likes of
Cadiaplayer and FLUXplayer. We have shown that it is possible to automatically generate
playable ASP code from a GDL specifications, this is the foundations to any GGP systems
onto which extra ‘intelligence’ must be built.
We would have liked to have introduced some method of move reasoning into our project
however a lot of development went into ensuring that various methods of specifying GDL
were supported. Since we were so far along in development by the time we had completed
this we decided that there was insufficient time to incorporate move reasoning into the
project.
One piece of advice we would give to any team considering starting development on a new
GGP system is very early on to look at lots of GGP specifications and view all different
possible methods of defining the same characteristics and game features. In the early

46

CHAPTER 6. CONCLUSIONS 47

stages we looked at basic single player GDL specifications and created a GGP Parser and
ASP representation to play these games, this created problems for us moving forward. More
specifically every time we attempted to play an additional game we found some new method
of specifying games and were forced to modify our parser or representation accordingly.
Thankfully we had designed our ASP representation with multiplayer games in mind and
we were not forced to completely overhaul the representation. We have still encountered
issues however, in the final stages of testing we discovered a method of specifying games
we had not considered, specifically causes that rely on specific moves by multiple people.
Due to limitations of our representation there is no method of representing this method of
specifying causality, due to the fact we found the problem extremely late in testing there
was insufficient time to be able to produce a fix.

6.1.3 Methodology Reflection

ASP Representation:

As stated earlier our planning method is a modifications of Barals planning system[2], we
believe that the method that we have produced is sufficient for the task that we have set
it. As mentioned above there are certain limitations to the method produced and given
more time, or had we inspected more GDL specifications early on in the design stages then
we would have liked to have made various changes to deal with drawbacks noted. Another
change that we would like to make but have been prevented due to time constraints is
to convert the finally rules into the form finally(ROLE) :- conditions. This was only
considered later on in the project as we were finalising test results, it was simply overlooked
in our haste to create a working ASP representation. It is possible that this would allow
us produce a method in which we attempt to identify and interpret possible likely moves
of our opponents by additions to our domain independent ASP rules. One of the questions
that we were unable to answer during early design stages is how to distinguish between an
inaction that results in an opponent victory and a situation where no matter what action is
taken an opponent will win. This is an important distinction and one of the early questions
that should be answered before ASPlayer can have a complete move reasoning component.
Obviously the knowledge representation and reasoning engine is the foundation of any GGP
system and we believe that in ASPlayers design we have a solid base that can be further
improved to increase the effectiveness of ASPlayer.

Parser:

From the testing that we have conducted we have discovered that the parser that we have
created is quick and efficient. In none of our tests have we discovered that there is any
chance of the parser being unable to produce the domain dependent part of the ASP repre-
sentation before the start clock expires. However it should be noted that in other players the
start clock is used for feature construction, heuristic evaluation and many other advanced
AI features, so there should never be any chance of ASPlayer being unable to parse the

CHAPTER 6. CONCLUSIONS 48

GDL before the start clock expires. Since currently many of these advanced AI techniques
are not present in ASPlayer we are left with plenty of unused time during the start clock,
we believe that this time should be sufficient to allow for more advanced AI techniques
should there ever be plans to introduce them into ASPlayer.
One of the reasons we believe that our representation is efficient to parse is our use of
a domain dependent and domain independent part, combined with a representation that
allows an almost one-to-one link between GDL and ASP rules. These features have helped
to keep the runtime of the parser short.
One issue that we have found with our parser is that it can be brittle, for example given
an unexpected GDL specification ASP will be produced that will most likely not run, or
if it does will not produce the desired game representation. One example is the specifica-
tion of goal states within GDL, in the GDL specifications that we used for early testing
all fluents holding at goal states were specified using (true (FLUENT)). However in GDL
specifications we used for testing later fluents were sometimes specified without the true
GDL keyword. This caused problems with predicates not being parsed or sections of the
goal state being missed until the bug was discovered and fixed.
Future work on the parser could investigate methods of preventing this brittleness along
with further inspection of GDL to ensure that there are no obscure GDL structures that
have been missed. This task was made harder for us due to the fact we were unable to find
any literature about GDL game specifications stating exactly how games should be spec-
ified. Having this information would have allowed us to know exactly which specification
methods were correct and designing with these in mind rather than having to attempt to
satisfy all the methods we found.

GGP System:

As stated earlier ASPlayer is built on top of Jocular, for design decisions and more in-
formation please see the design chapter (page 25). Building on top of Jocular allowed us
to spend much more time focused on our ASP representation and parser stability rather
than building the framework of a GGP System. Using Jocular also reduced time needed
for testing as we were confident that we had a functioning GGP framework without any
known major bugs. During our testing of ASPlayer we also did not find any bugs, however
as we were only using the framework and none of the minimax gaming functionality we
did not expect to find any as we assume the framework was extensively tested by the team
behind Jocular at Stanford.
One invaluable module of Jocular that we found was the GameTester class, this is a module
allowing quick simulation of start clock and play clock functionality. Once started the user
is asked for a game to play (found in the jocular-0.2/game-defs folder), the user can then
input the start clock and play clock times and player role. GameTester will then simulate
the calls made by the GameServer to start the games, passing in GDL representation etc.
Users can then send a play command via the console to simulate a turn. Only the first
turn will be simulated as the play calls within GameTester are static text with no method
to vary the text passed into it. This allowed us to quickly simulate the start clock and play

CHAPTER 6. CONCLUSIONS 49

clock and allow us to easily test game functionality, along with a method to produce the
message to start game play (which is often very long due to the fact we have to pass in the
whole GDL specification)

Drawbacks:

We believe that ASPlayer has all the basics required of a good GGP system, however
currently our method does have some drawbacks. Along with the drawbacks for specific
modules mentioned above we also are currently unable to play multiple games simultane-
ously. This is due to the fact that the files where the ASP representation is stored are
overwritten whenever a new game is started. Currently this is not a problem, however once
ASPlayer becomes more advanced and is in a position where it can compete in competitions
this should be changed to allow varying filenames.
One of the drawbacks of the ASP representation that we have used is that we fix an upper
bound on the length of plans. As discovered during research for the literature review many
other top class GGP systems use iterative deepening this allows them to search the move
tree a turn at a time inspecting game state. ASPlayer however fixes the plan length, if
we wish to alter the plan length we must run Lparse and Smodels again, which will still
require the time to run as with the previous upper bound along with addition time for the
further game turns. Investigation into a method to overcome this problem maybe necessary
for increased productivity when playing longer games, as shorter plans may be unrealistic
due to the fact they often require opponent players to make unlikely moves. If ASPlayer
is extended to determine about ‘likely’ moves then this situation is likely to become worse
due to the fact that many plans currently available will not be, meaning ASPlayer may
have to look further to find a valid plan.
Another issue currently affecting ASPlayer is that given the same game state ASPlayer will
always play the same move. This is acceptable if ASPlayer has a method of judging that
this move is the optimal move. For more information on possible fixes, please see the next
section (Possible Changes).

Possible Changes:

If we were to to give any advice to a team looking into starting their own GGP system
it would be read as much GDL as possible in the early stages of development. As stated
earlier this makes the development and testing process much simpler as there is a clear idea
of all the possible GDL structures from the beginning.
Also there are some changes we would have liked to have made with more time or had they
been considered during the early stages of the project. These are are the option to be able
to play multiple games simultaneously and the possibility of playing various moves given
the same game state. Playing multiple games simultaneously could be achieved by varying
the name of the file holding the ASP representation of games, with some reference to the
game name to allow retrieval. This solution does not allow for multiple games with the
same name, however we must assume that if two games are started with identical names

CHAPTER 6. CONCLUSIONS 50

then the first game is complete and we no longer need any information related to that
game.
The second major issue that we would have considered differently if we were to restart work
on ASPlayer is the issue that given the same game state ASPlayer will consistently play
the same move. This issue has multiple solutions, firstly a selection is made from the list
of shortest plans (possibly using random numbers). Secondly we can build in a method of
move reasoning, and then use this to select the optimal move, if there are multiple optimal
moves then we use the solution proposed above with the list of optimal moves.

6.1.4 Results Analysis

From looking at our results two things immediately become clear. Firstly ASPlayer cur-
rently plays single player games very well, finding the shortest possible path through the
game to reach its goal. Secondly ASPlayer currently doesn’t play multiplayer games very
well. From the results section you can see that ASPlayer lost a game of Tic-Tac-Toe in 5
moves (the shortest possible time to loose a game of Tic-Tac-Toe). ASPlayer fared better
when it was Xplayer, however this is due to chance, had Smodels outputted the answer sets
in a different order we would have played different moves.
Single player games work very well due to the fact that ASPlayer can automatically convert
the GDL specification in ASP, this ASP can then be used to create a plan to reach the
goal. In this scenario nothing changes that ASPlayer doesn’t have complete control over.
However in multiplayer games an element of uncertainty is introduced due to opponents
actions. As stated elsewhere (section Further Work, page 51) some system of reasoning
about moves is necessary when selecting a move at each turn.

6.1.5 Suitability of ASP for GGP

As previously stated we believe that ASP is definitely a suitable option for a GGP system,
however there are still a few concerns that must be addressed in future development of
ASPlayer. First of all grounding time, one of the bottlenecks of all ASP systems. Using
our modified GGP specifications we have been able to reduce grounding time significantly
(see Notes on GDL Being Used to Test, page 37), however if in GGP competitions specifi-
cations are used with inconsistent variables this could cause a major problem for ASPlayer.
The tests using the HodgePodge game were extreme cases of this variable inconsistency
and the times reflected this, however some form of inconsistency is often present in many
GDL specifications. For example many games with steps will use ?x for steps and board
variables, with M steps this leads to the the ASP variable X having the domain of numbers
1-M, leading to an M×M board being ground as opposed to the correct size. This results
in a less competitive player, and if these inconsistencies are present in competition specifi-
cations then this will defiantly hinder ASPlayer.
Another concern that we have with using ASPlayer is that significantly decreased perfor-
mance has been noted with games with a large state space or range of possible moves. This
was most profound in the pegs game, as there are many possible moves at each turn, this

CHAPTER 6. CONCLUSIONS 51

results in a large amount of ground rules and long solving time. Also along the same lines
is the issue of searching further game turns in an iterative deepening style, for example if
we reach the upper bound on plan length without finding a valid plan is there any way to
use the work already completed (especially the grounding) to continue searching?
Whilst we have been Developing ASPlayer there has been work on producing an incremen-
tal ASP grounder and solver Iclingo[11] by the university of Potsdam, Germany. Iclingo
is specifically designed to be used with bounded programs such as our planning represen-
tation. It has been shown that using Iclingo can drastically reduce grounding times [11],
however it has been noted that the effectiveness of solving techniques for intensive incre-
mental search problems are less predictable[11]. However a possible solution to our iterative
deepening problem may lie in use of Iclingo and as such this should be one area of further
research for ASPlayer.
Other than the two concerns noted above we believe that ASP is a viable method of knowl-
edge representation and reasoning for use in GGP systems. We have shown the single
player games are played particularly well by ASPlayer and we believe that with more work
on multiplayer games an ASP GGP system could play these games well also.

6.2 Further Work

Whilst we believe that ASPlayer is a good foundation of a GGP system we also recognize
that there is still more functionality that must be included if ASPlayer is to become a great
GGP system. As we can see from the results of ASPlayers attempt to play Tic-Tac-Toe one
of the first sections of further work should be some sort of move reasoning system. There is
also the option for work to be carried out to build a method into the domain independent
part of the ASP representation to understand when opponents are likely to win soon and
take methods to prevent it. However the solution is implemented we believe that this func-
tionality should be work for the immediate future as this would improve ASPlayer greatly.
We can also see from our results that any move reasoning system would have plenty of time
to operate in. From our Tic-Tac-Toe games we can see that the most time that was taken
by ASPlayer in reasoning was 3.612 seconds, however in competition players are given 30
seconds[17]. Any Move reasoning system would therefore have ∼ 90% of the play clock to
work in. Comparing the other games we have used for testing with their play clock length,
where available[17], we have discovered that the reasoning time is always ∼ 10% of the
total play clock.
As noted in the above section (Suitability of ASP for GGP, page 50) variable inconsisten-
cies currently are a major hurdle in developing an effective ASP GGP system. If these
variable inconsistencies are likely to appear in competitive play then it is vital that some
work is undertaken to investigate a method of rearranging the variables during the start
clock. However there is the possibility that this would require too much natural language
processing ability and would not be viable to include in ASPlayer.
We believe that the above functionality should be the main focus of any immediate further
work, once this is completed there will be many more tweaks and small alterations that are

CHAPTER 6. CONCLUSIONS 52

needed however we are unable to concretely identify any as we have no results on which to
base our predications.

Bibliography

[1] AAAI. Aaai-08: General game playing competition.
http://www.aaai.org/Conferences/AAAI/2008/aaai08generalgame.php 20/10/2008,
2008.

[2] Chitta Baral. Knowlege Representation, Reasoning and Declaritive Problem Solving.
Cambridge University Press, 2003.

[3] James Clune. Heuristic evaluation functions for general game playing. In AAAI, pages
1134–1139. AAAI Press, 2007.

[4] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[5] Danny De Schreye. Proceedings of the 1999 international conference on logic program-
ming. Cambridge, MA, USA, 1999. Massachusetts Institute of Technology.

[6] J. Delgrande, T. Schaub, and H. Tompits. Logic programs with compiled preferences.
pages 392–398. ios, 2000.

[7] James P. Delgrande and Torsten Schaub. Compiling reasoning with and about pref-
erences into default logic. In IJCAI (1), pages 168–175, 1997.

[8] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[9] Hilmar Finnsson. Cadia-player: A general game playing agent. Master’s thesis, Reyk-
javk University - School of Computer Science, 2007.

[10] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set pro-
gramming. pages 266–271.

[11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Sven Thiele. Engineering an incremental asp solver. In ICLP, pages
190–205, 2008.

[12] Martin Gebser, Benjamin Kaufmann, Andr Neumann, and Torsten Schaub. clasp: A
conflict-driven answer set solver. In LPNMR07, pages 260–265, 2007.

53

BIBLIOGRAPHY 54

[13] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38:620–650, 1991.

[14] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. pages 1070–1080. MIT Press, 1988.

[15] Michael Genesereth, Nathaniel Love, and Barney Pell. General Game Playing:
Overview of the AAAI Competition. AI Magazine, 26(2), 2005.

[16] Stanford GGP. Jocular 0.2. http://games.stanford.edu/resources/reference/
jocular/jocular.html 30/3/2009.

[17] Stanford GGP. Stanford ggp website. http://games.stanford.edu 20/4/2009.

[18] Steve Hanks and Drew V. McDermott. Nonmonotonic logic and temporal projection.
Artif. Intell., 33(3):379–412, 1987.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. In S. S. Iyengar and A. Elfes, editors, Autonomous
Mobile Robots: Perception, Mapping, and Navigation (Vol. 1), pages 375–382. IEEE
Computer Society Press, Los Alamitos, CA, 1968.

[20] David M. Kaiser. The Structure of games. PhD thesis, Florida International University,
2007.

[21] Gregory Kuhlmann, Kurt Dresner, and Peter Stone. Automatic heuristic construc-
tion in a complete general game player. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence, pages 1457–62, 2006.

[22] Nicola Leone and Simona Perri. Backjumping techniques for rules instantiation in the
dlv system. In In NMR, pages 258–266, 2004.

[23] Vladimir Lifschitz. What is answer set programming?. In Dieter Fox and Carla P.
Gomes, editors, AAAI, pages 1594–1597. AAAI Press, 2008.

[24] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael Gene-
sereth. General game playing: Game description language specification. Tech-
nical Report March 4 2008, 2008. most recent version should be available at
http://games.stanford.edu/.

[25] J. McCarthy. Applications of circumscription to formalizing common-sense knowledge.
In M. L. Ginsberg, editor, Readings in Nonmonotonic Reasoning, pages 153–166. Kauf-
mann, Los Altos, CA, 1987.

[26] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

http://games.stanford.edu/resources/reference/jocular/jocular.html
http://games.stanford.edu/resources/reference/jocular/jocular.html
http://games.stanford.edu

BIBLIOGRAPHY 55

[27] R. C. Moore. Semantical considerations on nonmonotonic logic. In M. L. Ginsberg,
editor, Readings in Nonmonotonic Reasoning, pages 127–142. Kaufmann, Los Altos,
CA, 1987.

[28] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model
and well-founded semantics for normal lp. In LPNMR ’97: Proceedings of the 4th
International Conference on Logic Programming and Nonmonotonic Reasoning, pages
421–430, London, UK, 1997. Springer-Verlag.

[29] Ilkka Niemelä, Patrik Simons, and Tommi Syrjänen. Smodels: A system for answer
set programming. CoRR, cs.AI/0003033, 2000.

[30] Barney Pell. A strategic metagame player for general chess-like games. Computational
Intelligence, 12:177–198, 1996.

[31] Raymond Reiter. Data bases: A logical perspective. In Proceedings of the 1980
workshop on Data abstraction, databases and conceptual modeling, pages 174–176.
ACM, 1980.

[32] Domenico Sacca and Carlo Zaniolo. Stable models and non-determinism in logic pro-
grams with negation, 1990.

[33] Jonathan Schaeffer, Neil Burch, Yngvi Bjrnsson, Akihiro Kishimoto, Martin Mller,
Robert Lake, Paul Lu, and Steve Sutphen. Checkers is Solved. Science Express,
317(5844):1518–1522, 2007.

[34] Jonathan Schaeffer, Joseph Culberson, Norman Treloar, Brent Knight, Paul Lu,
and Duane Szafron. A World Championship Caliber Checkers Program. Artificial
Intelligence, 53(2-3):273–290, 1992.

[35] Stephan Schiffel and Michael Thielscher. Fluxplayer: A successful general game player.
In AAAI, pages 1191–1196. AAAI Press, 2007.

[36] Murray Shanahan. The frame problem. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Fall 2008.

[37] Claude E. Shannon. Programming a Computer for Playing Chess. Philosophical
Magazine, 41(314), 1950.

[38] Patrik Simons. Extending the smodels system with cardinality and weight constraints.
In Logic-Based Artificial Intelligence, pages 491–521. Kluwer Academic Publishers,
2000.

[39] C. S. Strachey. Logical or nonmathematical programs. Proceedings of the ACM
Conference, Toronto, 1952.

[40] Nathan R. Sturtevant and Richard E. Korf. On pruning techniques for multi-player
games. In Proceedings of the Seventeenth National Conference on Artificial Intelligence

BIBLIOGRAPHY 56

and Twelfth Conference on Innovative Applications of Artificial Intelligence, pages
201–207. AAAI Press / The MIT Press, 2000.

[41] Omar Syed. Arimaa a New Game Designed to be Difficult for Computers.
International Computer Games Association Journal, 26, 2003.

[42] Omar Syed. Arima Challenge History. http://en.wikipedia.org/wiki/Arimaa
20/10/2008, 2008.

[43] Tommi Syrjnen. Lparse. http://www.tcs.hut.fi/Software/smodels/lparse 8/12/2008,
1998.

[44] Paul E. Utgoff. Feature construction for game playing. In Machines that learn to play
games, pages 131–152. Nova Science Publishers, 2001.

Appendix A

User Documentation

All ASPlayers classes are packaged as .jar files, to run a .jar file use the UNIX command
java -jar filename.jar.

A.1 GameTester.jar

The GameTester class is a class that allows users to quickly and easily test ASPlayers
parser and initial move. Once started the GameTester class will first ask for a game, all
GDL specifications must found in the ASPlayerData/game-defs folder. When entering the
GDL filename please omit the file extension, GameTester will automatically append this.
GameTester will then ask for a player role, if no player role is entered the first role in the
GDL specification will be chosen. GameManager will then ask for a start and play clock
time, if not entered these will be set at 100 and 60 respectively. Once this information
in entered GameTester will then simulate a HTTP start game message with ASPlayer
behaving accordingly. GameManager will also print to the terminal the content of the
HTTP start message that can then be used in testing ASPlayers main class.
Once ASPlayer has parsed the GDL specification and has run as we would expect during
the start clock there are then two commands that may be used:

play Play will simulate a HTTP play message for the first turn. The message simulated
is (PLAY foo nil).

quit Quit will end the current session and return the user to the command line.

GameTester will run the same code as ASPlayer.jar only in an easier to test format, all
files created by ASPlayer.jar will be overwritten. As such users should be sure that there is
no information in the ASPlayerData/ASPRulesDef/javaParse.lp file that the user may
wish to refer back to.

57

APPENDIX A. USER DOCUMENTATION 58

A.2 ASPlayer.jar

ASPlayer.jar is the file that should be run when users wish to start ASPlayer to await GGP
messages. Messages should be sent to ASPlayer on port 4001. Once started ASPlayer will
wait for HTTP messages. There are two commands that then may be sent to ASPlayer
via the UNIX curl -d message address command. All messages must take the form
(command args...), the commands are:

start This command will call ASPlayers start clock functionality. Start message take the
form (start gamename role GDLspecification startclock playclock).

play This command will call ASPlayers play clock functionality. Play messages take the
form (play gamename movelist). Where movelist is in the order that roles are
specified in the GDL specification.

In order to shut down ASPlayer wait until all outstanding messages have been acted upon
by ASPlayer, then press the return key on the console.

Appendix B

Game Representations

B.1 GDL Specifications

B.1.1 Blocks World

1 (role robot)
2 (init (clear b))
3 (init (clear c))
4 (init (on c a))
5 (init (table a))
6 (init (table b))
7 (init (step 1))
8 (<= (next (on ?x ?y))
9 (does robot (s ?x ?y)))

10 (<= (next (on ?x ?y))
11 (does robot (s ?u ?v))
12 (true (on ?x ?y)))
13 (<= (next (table ?x))
14 (does robot (s ?u ?v))
15 (true (table ?x))
16 (distinct ?u ?x))
17 (<= (next (clear ?y))
18 (does robot (s ?u ?v))
19 (true (clear ?y))
20 (distinct ?v ?y))
21 (<= (next (on ?x ?y))
22 (does robot (u ?u ?v))
23 (true (on ?x ?y))
24 (distinct ?u ?x))

59

APPENDIX B. GAME REPRESENTATIONS 60

25 (<= (next (table ?x))
26 (does robot (u ?x ?y)))
27 (<= (next (table ?x))
28 (does robot (u ?u ?v))
29 (true (table ?x)))
30 (<= (next (clear ?y))
31 (does robot (u ?x ?y)))
32 (<= (next (clear ?x))
33 (does robot (u ?u ?v))
34 (true (clear ?x)))
35 (<= (next (step ?m))
36 (true (step ?n))
37 (successor ?n ?m))
38 (successor 1 2)
39 (successor 2 3)
40 (successor 3 4)
41 (<= (legal robot (s ?x ?y))
42 (true (clear ?x))
43 (true (table ?x))
44 (true (clear ?y))
45 (distinct ?x ?y))
46 (<= (legal robot (u ?x ?y))
47 (true (clear ?x))
48 (true (on ?x ?y)))
49 (<= (goal robot 100)
50 (true (on a b))
51 (on b c))
52 (<= (goal robot 0)
53 (not (true (on a b))))
54 (<= (goal robot 0)
55 (not (true (on b c))))
56 (<= terminal
57 (true (step 4)))
58 (<= terminal
59 (true (on a b))
60 (true (on b c)))

B.1.2 Buttons

1 (role white)
2 (init (off p))
3 (init (off q))
4 (init (off r))

APPENDIX B. GAME REPRESENTATIONS 61

5 (init (step 1))
6 (<= (next (on p))
7 (does white a)
8 (true (off p)))
9 (<= (next (on q))

10 (does white a)
11 (true (on q)))
12 (<= (next (on r))
13 (does white a)
14 (true (on r)))
15 (<= (next (off p))
16 (does white a)
17 (true (on p)))
18 (<= (next (off q))
19 (does white a)
20 (true (off q)))
21 (<= (next (off r))
22 (does white a)
23 (true (off r)))
24 (<= (next (on p))
25 (does white b)
26 (true (on q)))
27 (<= (next (on q))
28 (does white b)
29 (true (on p)))
30 (<= (next (on r))
31 (does white b)
32 (true (on r)))
33 (<= (next (off p))
34 (does white b)
35 (true (off q)))
36 (<= (next (off q))
37 (does white b)
38 (true (off p)))
39 (<= (next (off r))
40 (does white b)
41 (true (off r)))
42 (<= (next (on p))
43 (does white c)
44 (true (on p)))
45 (<= (next (on q))
46 (does white c)
47 (true (on r)))
48 (<= (next (on r))

APPENDIX B. GAME REPRESENTATIONS 62

49 (does white c)
50 (true (on q)))
51 (<= (next (off p))
52 (does white c)
53 (true (off p)))
54 (<= (next (off q))
55 (does white c)
56 (true (off r)))
57 (<= (next (off r))
58 (does white c)
59 (true (off q)))
60 (<= (next (step ?q))
61 (true (step ?p))
62 (succ ?p ?q))
63 (succ 1 2)
64 (succ 2 3)
65 (succ 3 4)
66 (succ 4 5)
67 (succ 5 6)
68 (succ 6 7)
69 (legal white a)
70 (legal white b)
71 (legal white c)
72 (<= (goal white 100)
73 (true (on p))
74 (true (on q))
75 (true (on r)))
76 (<= (goal white 0) (or
77 (not (true (on p)))
78 (not (true (on q)))
79 (not (true (on r)))))
80 (<= terminal
81 (true (step 7)))
82 (<= terminal
83 (true (on p))
84 (true (on q))
85 (true (on r)))

B.1.3 Maze

1 (role robot)
2 (init (cell a))
3 (init (gold c))

APPENDIX B. GAME REPRESENTATIONS 63

4 (init (step 1))
5 (<= (next (cell ?n))
6 (does robot move)
7 (true (cell ?m))
8 (adjacent ?m ?n))
9 (<= (next (cell ?m))

10 (does robot grab)
11 (true (cell ?m)))
12 (<= (next (cell ?m))
13 (does robot drop)
14 (true (cell ?m)))
15 (<= (next (gold ?m))
16 (does robot move)
17 (true (gold ?m)))
18 (<= (next (gold i))
19 (does robot grab)
20 (true (cell ?m))
21 (true (gold ?m)))
22 (<= (next (gold i))
23 (does robot grab)
24 (true (gold i)))
25 (<= (next (gold ?n))
26 (does robot grab)
27 (true (cell ?m))
28 (true (gold ?n))
29 (distinct ?m ?n))
30 (<= (next (gold ?m))
31 (does robot drop)
32 (true (cell ?m))
33 (true (gold i)))
34 (<= (next (gold ?m))
35 (does robot drop)
36 (true (gold ?m))
37 (distinct ?m i))
38 (<= (next (step ?n))
39 (true (step ?m))
40 (succ ?m ?n))
41 (adjacent a b)
42 (adjacent b c)
43 (adjacent c d)
44 (adjacent d a)
45 (succ 1 2)
46 (succ 2 3)
47 (succ 3 4)

APPENDIX B. GAME REPRESENTATIONS 64

48 (succ 4 5)
49 (succ 5 6)
50 (succ 6 7)
51 (succ 7 8)
52 (succ 8 9)
53 (succ 9 10)
54 (<= (legal robot move))
55 (<= (legal robot grab)
56 (true (cell ?m))
57 (true (gold ?m)))
58 (<= (legal robot drop)
59 (true (gold i)))
60 (<= (goal robot 100)
61 (true (gold a)))
62 (<= (goal robot 0)
63 (true (gold ?m))
64 (distinct ?m a))
65 (<= terminal
66 (true (step 10)))
67 (<= terminal
68 (true (gold a)))

B.1.4 Tic Tac Toe

1 (role xplayer)
2 (role oplayer)
3 (init (cell 1 1 b))
4 (init (cell 1 2 b))
5 (init (cell 1 3 b))
6 (init (cell 2 1 b))
7 (init (cell 2 2 b))
8 (init (cell 2 3 b))
9 (init (cell 3 1 b))

10 (init (cell 3 2 b))
11 (init (cell 3 3 b))
12 (init (control xplayer))
13 (<= (next (cell ?m ?n x)) (does xplayer (mark ?m ?n)) (true (cell ?m ?n b)))
14 (<= (next (cell ?m ?n o)) (does oplayer (mark ?m ?n)) (true (cell ?m ?n b)))
15 (<= (next (cell ?m ?n ?x)) (true (cell ?m ?n ?x)) (distinct ?x b))
16 (<= (next (cell ?m ?n b))
17 (does ?w (mark ?j ?k))
18 (true (cell ?m ?n b))
19 (or (distinct ?m ?j)

APPENDIX B. GAME REPRESENTATIONS 65

20 (distinct ?n ?k)))
21 (<= (next (control xplayer)) (true (control oplayer)))
22 (<= (next (control oplayer)) (true (control xplayer)))
23 (<= (row ?m ?x)
24 (true (cell ?m 1 ?x))
25 (true (cell ?m 2 ?x))
26 (true (cell ?m 3 ?x)))
27 (<= (column ?n ?x)
28 (true (cell 1 ?n ?x))
29 (true (cell 2 ?n ?x))
30 (true (cell 3 ?n ?x)))
31 (<= (diagonal ?x)
32 (true (cell 1 1 ?x))
33 (true (cell 2 2 ?x))
34 (true (cell 3 3 ?x)))
35 (<= (diagonal ?x)
36 (true (cell 1 3 ?x))
37 (true (cell 2 2 ?x))
38 (true (cell 3 1 ?x)))
39 (<= (line ?x) (row ?m ?x))
40 (<= (line ?x) (column ?m ?x))
41 (<= (line ?x) (diagonal ?x))
42 (<= open (true (cell ?m ?n b)))
43 (<= (legal ?w (mark ?m ?n)) (true (cell ?m ?n b)) (true (control ?w)))
44 (<= (legal xplayer noop) (true (control oplayer)))
45 (<= (legal oplayer noop) (true (control xplayer)))
46 (<= (goal xplayer 100)(true (line x)))
47 (<= (goal xplayer 50) (not (line x)) (not (line o)) (not open))
48 (<= (goal xplayer 0) (true (line o)))
49 (<= (goal oplayer 100) (true (line o)))
50 (<= (goal oplayer 50) (not (line x)) (not (line o)) (not open))
51 (<= (goal oplayer 0) (line x))
52 (<= terminal (line x))
53 (<= terminal (line o))
54 (<= terminal (not open))

B.1.5 Hodgepodge

1 (role blocksplayer)
2 (role mazeplayer)
3 (init (clear b))
4 (init (clear c))
5 (init (on c a))

APPENDIX B. GAME REPRESENTATIONS 66

6 (init (table a))
7 (init (table b))
8 (init (step 1))
9 (<= (next (on ?x ?y))

10 (does blocksplayer (s ?x ?y)))
11 (<= (next (on ?x ?y))
12 (does blocksplayer (s ?u ?v))
13 (true (on ?x ?y)))
14 (<= (next (table ?x))
15 (does blocksplayer (s ?u ?v))
16 (true (table ?x))
17 (distinct ?u ?x))
18 (<= (next (clear ?y))
19 (does blocksplayer (s ?u ?v))
20 (true (clear ?y))
21 (distinct ?v ?y))
22 (<= (next (on ?x ?y))
23 (does blocksplayer (u ?u ?v))
24 (true (on ?x ?y))
25 (distinct ?u ?x))
26 (<= (next (table ?x))
27 (does blocksplayer (u ?x ?y)))
28 (<= (next (table ?x))
29 (does blocksplayer (u ?u ?v))
30 (true (table ?x)))
31 (<= (next (clear ?y))
32 (does blocksplayer (u ?x ?y)))
33 (<= (next (clear ?x))
34 (does blocksplayer (u ?u ?v))
35 (true (clear ?x)))
36 (<= (next (step ?p))
37 (true (step ?q))
38 (successor ?q ?p))
39 (successor 1 2)
40 (successor 2 3)
41 (successor 3 4)
42 (<= (legal blocksplayer (s ?x ?y))
43 (true (clear ?x))
44 (true (table ?x))
45 (true (clear ?y))
46 (distinct ?x ?y))
47 (<= (legal blocksplayer (u ?x ?y))
48 (true (clear ?x))
49 (true (on ?x ?y)))

APPENDIX B. GAME REPRESENTATIONS 67

50 (<= (goal blocksplayer 100)
51 (true (on a b))
52 (true (on b c)))
53 (<= (goal blocksplayer 0)
54 (not (true (on a b))))
55 (<= (goal blocksplayer 0)
56 (not (true (on b c))))
57 (<= terminal
58 (true (step 4)))
59 (<= terminal
60 (true (on a b))
61 (true (on b c)))
62 (init (cell a))
63 (init (gold c))
64 (init (step 1))
65 (<= (next (cell ?n))
66 (does mazeplayer move)
67 (true (cell ?m))
68 (adjacent ?m ?n))
69 (<= (next (cell ?m))
70 (does mazeplayer grab)
71 (true (cell ?m)))
72 (<= (next (cell ?m))
73 (does mazeplayer drop)
74 (true (cell ?m)))
75 (<= (next (gold ?m))
76 (does mazeplayer move)
77 (true (gold ?m)))
78 (<= (next (gold i))
79 (does mazeplayer grab)
80 (true (cell ?m))
81 (true (gold ?m)))
82 (<= (next (gold i))
83 (does mazeplayer grab)
84 (true (gold i)))
85 (<= (next (gold ?n))
86 (does mazeplayer grab)
87 (true (cell ?m))
88 (true (gold ?n))
89 (distinct ?m ?n))
90 (<= (next (gold ?m))
91 (does mazeplayer drop)
92 (true (cell ?m))
93 (true (gold i)))

APPENDIX B. GAME REPRESENTATIONS 68

94 (<= (next (gold ?m))
95 (does mazeplayer drop)
96 (true (gold ?m))
97 (distinct ?m i))
98 (<= (next (step ?p))
99 (true (step ?q))

100 (succ ?q ?p))
101 (adjacent a b)
102 (adjacent b c)
103 (adjacent c d)
104 (adjacent d a)
105 (succ 1 2)
106 (succ 2 3)
107 (succ 3 4)
108 (succ 4 5)
109 (succ 5 6)
110 (succ 6 7)
111 (succ 7 8)
112 (succ 8 9)
113 (succ 9 10)
114 (<= (legal mazeplayer move))
115 (<= (legal mazeplayer grab)
116 (true (cell ?m))
117 (true (gold ?m)))
118 (<= (legal mazeplayer drop)
119 (true (gold i)))
120 (<= (goal mazeplayer 100)
121 (true (gold a)))
122 (<= (goal mazeplayer 0)
123 (true (gold ?m))
124 (distinct ?m a))
125 (<= terminal
126 (true (step 10)))
127 (<= terminal
128 (true (gold a)))

B.2 ASP Representations

All game specifications are presented as domain dependent parts only to avoid repetition.
Please remeber to append the domain inpependent part if attempting to ground and solve
these representations.

APPENDIX B. GAME REPRESENTATIONS 69

B.2.1 Domain Indepentent

1 time(1..time).
2 #domain time(T).
3 #domain action(A;AA).
4 #domain fluent(F).
5 #domain role(R).
6 occurs(A,T,R) :- not goal(T,R), not not_occurs(A,T,R).
7 not_occurs(A,T,R) :- occurs(AA,T,R), A != AA.
8 :- occurs(A,T,R), not executable(R,A,T).
9 not_goal(T,R) :- finally(F,R), not holds(F,T).

10 goal(T,R) :- not not_goal(T,R).
11 :-not goal(time,R).
12 holds(obj_reached,T) :- goal(T,R).
13 holds(F,T+1) :- holds(F,T), holds(obj_reached,T).
14 holds(F,T+1) :- executable(R,A,T), occurs(A,T,R), causes(F, R, A, T).
15 #hide.
16 #show occurs(A,T,R).

B.2.2 Blocks World

1 xvarxx(a;c;b).
2 #domain xvarxx(X).
3 #domain yvarxx(X).
4 yvarxx(a;c;b).
5 #domain yvarxx(Y).
6 #domain xvarxx(Y).
7 #domain xvarxx(U).
8 #domain yvarxx(V).
9 mvarxx(4;3;2;1).

10 #domain mvarxx(M).
11 #domain nvarxx(M).
12 nvarxx(4;3;2;1).
13 #domain nvarxx(N).
14 #domain mvarxx(N).
15 role(robot).
16 holds(clear(b),1).
17 holds(clear(c),1).
18 holds(on(c,a),1).
19 holds(table(a),1).
20 holds(table(b),1).
21 holds(step(1),1).
22 fluent(on(X,Y)).

APPENDIX B. GAME REPRESENTATIONS 70

23 causes(on(X,Y), robot, s(X,Y),T) .
24 fluent(on(X,Y)).
25 causes(on(X,Y), robot, s(U,V),T) :- holds(on(X,Y),T) .
26 fluent(table(X)).
27 causes(table(X), robot, s(U,V),T) :- holds(table(X),T) ,U!=X.
28 fluent(clear(Y)).
29 causes(clear(Y), robot, s(U,V),T) :- holds(clear(Y),T) ,V!=Y.
30 fluent(on(X,Y)).
31 causes(on(X,Y), robot, u(U,V),T) :- holds(on(X,Y),T) ,U!=X.
32 fluent(table(X)).
33 causes(table(X), robot, u(X,Y),T) .
34 fluent(table(X)).
35 causes(table(X), robot, u(U,V),T) :- holds(table(X),T) .
36 fluent(clear(Y)).
37 causes(clear(Y), robot, u(X,Y),T) .
38 fluent(clear(X)).
39 causes(clear(X), robot, u(U,V),T) :- holds(clear(X),T) .
40 holds(step(M),T+1) :- holds(step(N),T),holds(successor(N,M),T).
41 holds(successor(1,2),T).
42 holds(successor(2,3),T).
43 holds(successor(3,4),T).
44 action(s(X,Y)).
45 executable(robot,s(X,Y),T) :- holds(clear(X),T) , holds(table(X),T) ,
46 holds(clear(Y),T) ,X!=Y.
47 action(u(X,Y)).
48 executable(robot,u(X,Y),T) :- holds(clear(X),T) , holds(on(X,Y),T) .
49 fluent(on(a,b)).
50 finally(on(a,b),R).
51 fluent(on(b,c)).
52 finally(on(b,c),R).

B.2.3 Buttons

1 qvarxx(7;6;5;4;3;2;1).
2 #domain qvarxx(Q).
3 #domain pvarxx(Q).
4 pvarxx(7;6;5;4;3;2;1).
5 #domain pvarxx(P).
6 #domain qvarxx(P).
7 role(white).
8 holds(off(p),1).
9 holds(off(q),1).

10 holds(off(r),1).

APPENDIX B. GAME REPRESENTATIONS 71

11 holds(step(1),1).
12 fluent(on(p)).
13 causes(on(p), white, a,T) :- holds(off(p),T) .
14 fluent(on(q)).
15 causes(on(q), white, a,T) :- holds(on(q),T) .
16 fluent(on(r)).
17 causes(on(r), white, a,T) :- holds(on(r),T) .
18 fluent(off(p)).
19 causes(off(p), white, a,T) :- holds(on(p),T) .
20 fluent(off(q)).
21 causes(off(q), white, a,T) :- holds(off(q),T) .
22 fluent(off(r)).
23 causes(off(r), white, a,T) :- holds(off(r),T) .
24 fluent(on(p)).
25 causes(on(p), white, b,T) :- holds(on(q),T) .
26 fluent(on(q)).
27 causes(on(q), white, b,T) :- holds(on(p),T) .
28 fluent(on(r)).
29 causes(on(r), white, b,T) :- holds(on(r),T) .
30 fluent(off(p)).
31 causes(off(p), white, b,T) :- holds(off(q),T) .
32 fluent(off(q)).
33 causes(off(q), white, b,T) :- holds(off(p),T) .
34 fluent(off(r)).
35 causes(off(r), white, b,T) :- holds(off(r),T) .
36 fluent(on(p)).
37 causes(on(p), white, c,T) :- holds(on(p),T) .
38 fluent(on(q)).
39 causes(on(q), white, c,T) :- holds(on(r),T) .
40 fluent(on(r)).
41 causes(on(r), white, c,T) :- holds(on(q),T) .
42 fluent(off(p)).
43 causes(off(p), white, c,T) :- holds(off(p),T) .
44 fluent(off(q)).
45 causes(off(q), white, c,T) :- holds(off(r),T) .
46 fluent(off(r)).
47 causes(off(r), white, c,T) :- holds(off(q),T) .
48 holds(step(Q),T+1) :- holds(step(P),T),holds(succ(P,Q),T).
49 holds(succ(1,2),T).
50 holds(succ(2,3),T).
51 holds(succ(3,4),T).
52 holds(succ(4,5),T).
53 holds(succ(5,6),T).
54 holds(succ(6,7),T).

APPENDIX B. GAME REPRESENTATIONS 72

55 executable(white,a,T).
56 action(a).
57 executable(white,b,T).
58 action(b).
59 executable(white,c,T).
60 action(c).
61 fluent(on(p)).
62 finally(on(p),R).
63 fluent(on(q)).
64 finally(on(q),R).
65 fluent(on(r)).
66 finally(on(r),R).

B.2.4 Maze

1 nvarxx(10;9;8;7;6;5;4;3;2;d;b;i;1;c;a).
2 #domain nvarxx(N).
3 #domain mvarxx(N).
4 mvarxx(10;9;8;7;6;5;4;3;2;d;b;i;1;c;a).
5 #domain mvarxx(M).
6 #domain nvarxx(M).
7 role(robot).
8 holds(cell(a),1).
9 holds(gold(c),1).

10 holds(step(1),1).
11 fluent(cell(N)).
12 causes(cell(N),robot,move,T) :- holds(cell(M),T),holds(adjacent(M,N),T).
13 fluent(cell(M)).
14 causes(cell(M), robot, grab,T) :- holds(cell(M),T) .
15 fluent(cell(M)).
16 causes(cell(M), robot, drop,T) :- holds(cell(M),T) .
17 fluent(gold(M)).
18 causes(gold(M), robot, move,T) :- holds(gold(M),T) .
19 fluent(gold(i)).
20 causes(gold(i), robot, grab,T) :- holds(cell(M),T) , holds(gold(M),T) .
21 fluent(gold(i)).
22 causes(gold(i), robot, grab,T) :- holds(gold(i),T) .
23 fluent(gold(N)).
24 causes(gold(N), robot, grab,T) :- holds(cell(M),T) ,holds(gold(N),T),M!=N.
25 fluent(gold(M)).
26 causes(gold(M), robot, drop,T) :- holds(cell(M),T) , holds(gold(i),T) .
27 fluent(gold(M)).
28 causes(gold(M), robot, drop,T) :- holds(gold(M),T) ,M!=i.

APPENDIX B. GAME REPRESENTATIONS 73

29 holds(step(N),T+1) :- holds(step(M),T),holds(succ(M,N),T).
30 holds(adjacent(a,b),T).
31 holds(adjacent(b,c),T).
32 holds(adjacent(c,d),T).
33 holds(adjacent(d,a),T).
34 holds(succ(1,2),T).
35 holds(succ(2,3),T).
36 holds(succ(3,4),T).
37 holds(succ(4,5),T).
38 holds(succ(5,6),T).
39 holds(succ(6,7),T).
40 holds(succ(7,8),T).
41 holds(succ(8,9),T).
42 holds(succ(9,10),T).
43 action(move).
44 executable(robot,move,T) .
45 action(grab).
46 executable(robot,grab,T) :- holds(cell(M),T) , holds(gold(M),T) .
47 action(drop).
48 executable(robot,drop,T) :- holds(gold(i),T) .
49 fluent(gold(a)).
50 finally(gold(a),R).

B.2.5 Tic Tac Toe

As Xplayer

1 mvarxx(3;2;1).
2 #domain mvarxx(M).
3 #domain nvarxx(M).
4 nvarxx(3;2;1).
5 #domain nvarxx(N).
6 #domain mvarxx(N).
7 xvarxx(o;x;b).
8 #domain xvarxx(X).
9 wvarxx(oplayer;xplayer).

10 #domain wvarxx(W).
11 #domain mvarxx(J).
12 #domain nvarxx(K).
13 role(xplayer).
14 role(oplayer).
15 holds(cell(1,1,b),1).
16 holds(cell(1,2,b),1).

APPENDIX B. GAME REPRESENTATIONS 74

17 holds(cell(1,3,b),1).
18 holds(cell(2,1,b),1).
19 holds(cell(2,2,b),1).
20 holds(cell(2,3,b),1).
21 holds(cell(3,1,b),1).
22 holds(cell(3,2,b),1).
23 holds(cell(3,3,b),1).
24 holds(control(xplayer),1).
25 fluent(cell(M,N,x)).
26 causes(cell(M,N,x), xplayer, mark(M,N),T) :- holds(cell(M,N,b),T) .
27 fluent(cell(M,N,o)).
28 causes(cell(M,N,o), oplayer, mark(M,N),T) :- holds(cell(M,N,b),T) .
29 holds(cell(M,N,X),T+1) :- holds(cell(M,N,X),T),X!=b.
30 fluent(cell(M,N,b)).
31 causes(cell(M,N,b), W, mark(J,K),T) :- holds(cell(M,N,b),T) ,M!=J.
32 causes(cell(M,N,b), W, mark(J,K),T) :- holds(cell(M,N,b),T) ,N!=K.
33 holds(control(xplayer),T+1) :- holds(control(oplayer),T).
34 holds(control(oplayer),T+1) :- holds(control(xplayer),T).
35 holds(row(M,X),T) :- holds(cell(M,1,X),T),holds(cell(M,2,X),T),
36 holds(cell(M,3,X),T).
37 holds(column(N,X),T) :- holds(cell(1,N,X),T),holds(cell(2,N,X),T),
38 holds(cell(3,N,X),T).
39 holds(diagonal(X),T) :- holds(cell(1,1,X),T),holds(cell(2,2,X),T),
40 holds(cell(3,3,X),T).
41 holds(diagonal(X),T) :- holds(cell(1,3,X),T),holds(cell(2,2,X),T),
42 holds(cell(3,1,X),T).
43 holds(line(X),T) :- holds(row(M,X),T).
44 holds(line(X),T) :- holds(column(M,X),T).
45 holds(line(X),T) :- holds(diagonal(X),T).
46 holds(open,T) :- holds(cell(M,N,b),T).
47 action(mark(M,N)).
48 executable(W,mark(M,N),T) :- holds(cell(M,N,b),T), holds(control(W),T).
49 action(noop).
50 executable(xplayer,noop,T) :- holds(control(oplayer),T) .
51 action(noop).
52 executable(oplayer,noop,T) :- holds(control(xplayer),T) .
53 fluent(line(x)).
54 finally(line(x),R).

As Oplayer

1 mvarxx(3;2;1).
2 #domain mvarxx(M).

APPENDIX B. GAME REPRESENTATIONS 75

3 #domain nvarxx(M).
4 nvarxx(3;2;1).
5 #domain nvarxx(N).
6 #domain mvarxx(N).
7 xvarxx(o;x;b).
8 #domain xvarxx(X).
9 wvarxx(oplayer;xplayer).

10 #domain wvarxx(W).
11 #domain mvarxx(J).
12 #domain nvarxx(K).
13 role(xplayer).
14 role(oplayer).
15 holds(cell(1,1,b),1).
16 holds(cell(1,2,b),1).
17 holds(cell(1,3,b),1).
18 holds(cell(2,1,b),1).
19 holds(cell(2,2,b),1).
20 holds(cell(2,3,b),1).
21 holds(cell(3,1,b),1).
22 holds(cell(3,2,b),1).
23 holds(cell(3,3,b),1).
24 holds(control(xplayer),1).
25 fluent(cell(M,N,x)).
26 causes(cell(M,N,x), xplayer, mark(M,N),T) :- holds(cell(M,N,b),T) .
27 fluent(cell(M,N,o)).
28 causes(cell(M,N,o), oplayer, mark(M,N),T) :- holds(cell(M,N,b),T) .
29 holds(cell(M,N,X),T+1) :- holds(cell(M,N,X),T),X!=b.
30 fluent(cell(M,N,b)).
31 causes(cell(M,N,b), W, mark(J,K),T) :- holds(cell(M,N,b),T) ,M!=J.
32 causes(cell(M,N,b), W, mark(J,K),T) :- holds(cell(M,N,b),T) ,N!=K.
33 holds(control(xplayer),T+1) :- holds(control(oplayer),T).
34 holds(control(oplayer),T+1) :- holds(control(xplayer),T).
35 holds(row(M,X),T) :- holds(cell(M,1,X),T),holds(cell(M,2,X),T),
36 holds(cell(M,3,X),T).
37 holds(column(N,X),T) :- holds(cell(1,N,X),T),holds(cell(2,N,X),T),
38 holds(cell(3,N,X),T).
39 holds(diagonal(X),T) :- holds(cell(1,1,X),T),holds(cell(2,2,X),T),
40 holds(cell(3,3,X),T).
41 holds(diagonal(X),T) :- holds(cell(1,3,X),T),holds(cell(2,2,X),T),
42 holds(cell(3,1,X),T).
43 holds(line(X),T) :- holds(row(M,X),T).
44 holds(line(X),T) :- holds(column(M,X),T).
45 holds(line(X),T) :- holds(diagonal(X),T).
46 holds(open,T) :- holds(cell(M,N,b),T).

APPENDIX B. GAME REPRESENTATIONS 76

47 action(mark(M,N)).
48 executable(W,mark(M,N),T) :- holds(cell(M,N,b),T),holds(control(W),T).
49 action(noop).
50 executable(xplayer,noop,T) :- holds(control(oplayer),T) .
51 action(noop).
52 executable(oplayer,noop,T) :- holds(control(xplayer),T) .
53 fluent(line(o)).
54 finally(line(o),R).

B.2.6 Hodgepodge

As BlocksPlayer

1 xvarxx(a;c;b).
2 #domain xvarxx(X).
3 #domain yvarxx(X).
4 yvarxx(a;c;b).
5 #domain yvarxx(Y).
6 #domain xvarxx(Y).
7 #domain xvarxx(U).
8 #domain yvarxx(V).
9 pvarxx(10;9;8;7;6;5;4;3;2;1).

10 #domain pvarxx(P).
11 #domain qvarxx(P).
12 qvarxx(10;9;8;7;6;5;4;3;2;1).
13 #domain qvarxx(Q).
14 #domain pvarxx(Q).
15 nvarxx(d;b;i;c;a).
16 #domain nvarxx(N).
17 #domain mvarxx(N).
18 mvarxx(d;b;i;c;a).
19 #domain mvarxx(M).
20 #domain nvarxx(M).
21 role(blocksplayer).
22 role(mazeplayer).
23 holds(clear(b),1).
24 holds(clear(c),1).
25 holds(on(c,a),1).
26 holds(table(a),1).
27 holds(table(b),1).
28 holds(step(1),1).
29 fluent(on(X,Y)).
30 causes(on(X,Y), blocksplayer, s(X,Y),T) .

APPENDIX B. GAME REPRESENTATIONS 77

31 fluent(on(X,Y)).
32 causes(on(X,Y), blocksplayer, s(U,V),T) :- holds(on(X,Y),T) .
33 fluent(table(X)).
34 causes(table(X), blocksplayer, s(U,V),T) :- holds(table(X),T) ,U!=X.
35 fluent(clear(Y)).
36 causes(clear(Y), blocksplayer, s(U,V),T) :- holds(clear(Y),T) ,V!=Y.
37 fluent(on(X,Y)).
38 causes(on(X,Y), blocksplayer, u(U,V),T) :- holds(on(X,Y),T) ,U!=X.
39 fluent(table(X)).
40 causes(table(X), blocksplayer, u(X,Y),T) .
41 fluent(table(X)).
42 causes(table(X), blocksplayer, u(U,V),T) :- holds(table(X),T) .
43 fluent(clear(Y)).
44 causes(clear(Y), blocksplayer, u(X,Y),T) .
45 fluent(clear(X)).
46 causes(clear(X), blocksplayer, u(U,V),T) :- holds(clear(X),T) .
47 holds(step(P),T+1) :- holds(step(Q),T),holds(successor(Q,P),T).
48 holds(successor(1,2),T).
49 holds(successor(2,3),T).
50 holds(successor(3,4),T).
51 action(s(X,Y)).
52 executable(blocksplayer,s(X,Y),T) :- holds(clear(X),T) ,
53 holds(table(X),T) , holds(clear(Y),T) ,X!=Y.
54 action(u(X,Y)).
55 executable(blocksplayer,u(X,Y),T) :- holds(clear(X),T), holds(on(X,Y),T).
56 fluent(on(a,b)).
57 finally(on(a,b),R).
58 fluent(on(b,c)).
59 finally(on(b,c),R).
60 holds(cell(a),1).
61 holds(gold(c),1).
62 holds(step(1),1).
63 fluent(cell(N)).
64 causes(cell(N),mazeplayer,move,T) :- holds(cell(M),T),
65 holds(adjacent(M,N),T).
66 fluent(cell(M)).
67 causes(cell(M), mazeplayer, grab,T) :- holds(cell(M),T) .
68 fluent(cell(M)).
69 causes(cell(M), mazeplayer, drop,T) :- holds(cell(M),T) .
70 fluent(gold(M)).
71 causes(gold(M), mazeplayer, move,T) :- holds(gold(M),T) .
72 fluent(gold(i)).
73 causes(gold(i), mazeplayer, grab,T) :- holds(cell(M),T) ,holds(gold(M),T).
74 fluent(gold(i)).

APPENDIX B. GAME REPRESENTATIONS 78

75 causes(gold(i), mazeplayer, grab,T) :- holds(gold(i),T) .
76 fluent(gold(N)).
77 causes(gold(N), mazeplayer,grab,T) :- holds(cell(M),T),holds(gold(N),T),M!=N.
78 fluent(gold(M)).
79 causes(gold(M), mazeplayer, drop,T) :- holds(cell(M),T) ,holds(gold(i),T).
80 fluent(gold(M)).
81 causes(gold(M), mazeplayer, drop,T) :- holds(gold(M),T) ,M!=i.
82 holds(step(P),T+1) :- holds(step(Q),T),holds(succ(Q,P),T).
83 holds(adjacent(a,b),T).
84 holds(adjacent(b,c),T).
85 holds(adjacent(c,d),T).
86 holds(adjacent(d,a),T).
87 holds(succ(1,2),T).
88 holds(succ(2,3),T).
89 holds(succ(3,4),T).
90 holds(succ(4,5),T).
91 holds(succ(5,6),T).
92 holds(succ(6,7),T).
93 holds(succ(7,8),T).
94 holds(succ(8,9),T).
95 holds(succ(9,10),T).
96 action(move).
97 executable(mazeplayer,move,T) .
98 action(grab).
99 executable(mazeplayer,grab,T) :- holds(cell(M),T),holds(gold(M),T) .

100 action(drop).
101 executable(mazeplayer,drop,T) :- holds(gold(i),T) .

As MazePlayer

1 xvarxx(a;c;b).
2 #domain xvarxx(X).
3 #domain yvarxx(X).
4 yvarxx(a;c;b).
5 #domain yvarxx(Y).
6 #domain xvarxx(Y).
7 #domain xvarxx(U).
8 #domain yvarxx(V).
9 pvarxx(10;9;8;7;6;5;4;3;2;1).

10 #domain pvarxx(P).
11 #domain qvarxx(P).
12 qvarxx(10;9;8;7;6;5;4;3;2;1).
13 #domain qvarxx(Q).

APPENDIX B. GAME REPRESENTATIONS 79

14 #domain pvarxx(Q).
15 nvarxx(d;b;i;c;a).
16 #domain nvarxx(N).
17 #domain mvarxx(N).
18 mvarxx(d;b;i;c;a).
19 #domain mvarxx(M).
20 #domain nvarxx(M).
21 role(blocksplayer).
22 role(mazeplayer).
23 holds(clear(b),1).
24 holds(clear(c),1).
25 holds(on(c,a),1).
26 holds(table(a),1).
27 holds(table(b),1).
28 holds(step(1),1).
29 fluent(on(X,Y)).
30 causes(on(X,Y), blocksplayer, s(X,Y),T) .
31 fluent(on(X,Y)).
32 causes(on(X,Y), blocksplayer, s(U,V),T) :- holds(on(X,Y),T) .
33 fluent(table(X)).
34 causes(table(X), blocksplayer, s(U,V),T) :- holds(table(X),T) ,U!=X.
35 fluent(clear(Y)).
36 causes(clear(Y), blocksplayer, s(U,V),T) :- holds(clear(Y),T) ,V!=Y.
37 fluent(on(X,Y)).
38 causes(on(X,Y), blocksplayer, u(U,V),T) :- holds(on(X,Y),T) ,U!=X.
39 fluent(table(X)).
40 causes(table(X), blocksplayer, u(X,Y),T) .
41 fluent(table(X)).
42 causes(table(X), blocksplayer, u(U,V),T) :- holds(table(X),T) .
43 fluent(clear(Y)).
44 causes(clear(Y), blocksplayer, u(X,Y),T) .
45 fluent(clear(X)).
46 causes(clear(X), blocksplayer, u(U,V),T) :- holds(clear(X),T) .
47 holds(step(P),T+1) :- holds(step(Q),T),holds(successor(Q,P),T).
48 holds(successor(1,2),T).
49 holds(successor(2,3),T).
50 holds(successor(3,4),T).
51 action(s(X,Y)).
52 executable(blocksplayer,s(X,Y),T) :- holds(clear(X),T) ,
53 holds(table(X),T) , holds(clear(Y),T) ,X!=Y.
54 action(u(X,Y)).
55 executable(blocksplayer,u(X,Y),T) :- holds(clear(X),T) , holds(on(X,Y),T) .
56 holds(cell(a),1).
57 holds(gold(c),1).

APPENDIX B. GAME REPRESENTATIONS 80

58 holds(step(1),1).
59 fluent(cell(N)).
60 causes(cell(N), mazeplayer, move,T) :- holds(cell(M),T) ,
61 holds(adjacent(M,N),T).
62 fluent(cell(M)).
63 causes(cell(M), mazeplayer, grab,T) :- holds(cell(M),T) .
64 fluent(cell(M)).
65 causes(cell(M), mazeplayer, drop,T) :- holds(cell(M),T) .
66 fluent(gold(M)).
67 causes(gold(M), mazeplayer, move,T) :- holds(gold(M),T) .
68 fluent(gold(i)).
69 causes(gold(i), mazeplayer,grab,T) :- holds(cell(M),T),holds(gold(M),T).
70 fluent(gold(i)).
71 causes(gold(i), mazeplayer,grab,T) :- holds(gold(i),T) .
72 fluent(gold(N)).
73 causes(gold(N), mazeplayer,grab,T) :- holds(cell(M),T), holds(gold(N),T),M!=N.
74 fluent(gold(M)).
75 causes(gold(M), mazeplayer,drop,T) :- holds(cell(M),T), holds(gold(i),T).
76 fluent(gold(M)).
77 causes(gold(M), mazeplayer, drop,T) :- holds(gold(M),T) ,M!=i.
78 holds(step(P),T+1) :- holds(step(Q),T),holds(succ(Q,P),T).
79 holds(adjacent(a,b),T).
80 holds(adjacent(b,c),T).
81 holds(adjacent(c,d),T).
82 holds(adjacent(d,a),T).
83 holds(succ(1,2),T).
84 holds(succ(2,3),T).
85 holds(succ(3,4),T).
86 holds(succ(4,5),T).
87 holds(succ(5,6),T).
88 holds(succ(6,7),T).
89 holds(succ(7,8),T).
90 holds(succ(8,9),T).
91 holds(succ(9,10),T).
92 action(move).
93 executable(mazeplayer,move,T) .
94 action(grab).
95 executable(mazeplayer,grab,T) :- holds(cell(M),T) , holds(gold(M),T) .
96 action(drop).
97 executable(mazeplayer,drop,T) :- holds(gold(i),T) .
98 fluent(gold(a)).
99 finally(gold(a),R).

Appendix C

Code

81

A
P

P
E

N
D

IX
C

.
C

O
D

E
82

C.1 File: ASPGamer.java

package ASPlayer ;

import java . i o . BufferedReader ;
import java . i o . FileOutputStream ;
import java . i o . InputStreamReader ;
import java . i o . PrintStream ;
import java . u t i l . ArrayList ;

public class ASPGamer{
public f ina l St r ing OSENV = ”UNIX” ;
ArrayList<Str ing> r o l e s ;
S t r ing myRole ;
S t r ing turn ;
S t r ing maxTurns ;
int p l aye r s ;

public ASPGamer(St r ing r o l e) {
turn = ”1” ;
r o l e s = new ArrayList<Str ing >() ;
myRole = r o l e ;

}

public void setTurns (S t r ing turns) {
//Add one to turns as goa l s t a t e can be reached one

t imes tep a f t e r f i n a l move
maxTurns = St r ing . valueOf (In t eg e r . pa r s e In t (turns)+1) ;

}
public void s e tP l ay e r s (int noPlayers) {

p l aye r s = noPlayers ;
}

public int ge tP laye r s () {
return p l aye r s ;

}

public St r ing movethink () {
St r ing l i n e ;
S t r ing shor tL ine = ”” ;
try{
St r ing toPass [] ;
i f (OSENV. equa l s (”WIN”)) {

toPass = new St r ing [7] ;

toPass [0] = ”cmd” ;
toPass [1] = ”/C” ;
toPass [2] = ”ASPRulesDef\\ l p a r s e ” ;
toPass [3] = ”ASPRulesDef\\ javaParse . lp ” ;
toPass [4] = ” | ” ;
toPass [5] = ”ASPRulesDef\\ smodels ” ;
toPass [6] = ”33” ;

}
else {

toPass = new St r ing [3] ;
toPass [0] = ”/bin / sh” ;
toPass [1] = ”−c” ;
toPass [2] = ” . / ASPlayerData/ l p a r s e −c

time=”+maxTurns+”
ASPlayerData/ASPRulesDef/ javaParse . lp ” +
” | smodels 100” ;

}
//FOR WINDOWS make d i f f e r e n t f o r UNIX?

Process p = Runtime . getRuntime () . exec (toPass) ;
BufferedReader input = new BufferedReader

(new
InputStreamReader (p . getInputStream ())) ;

while ((l i n e = input . readLine ()) != null) {
i f (checkMove (l i n e)) {

i f (shor tL ine . equa l s (””) | |
shor tL ine . l ength () > l i n e . l ength ()) {

System . out . p r i n t l n (”REPLACING =”+l i n e) ;
shor tL ine = l i n e ;

}
}

}
input . c l o s e () ;
i f (! shor tL ine . equa l s (””)) {

System . out . p r i n t l n (shor tL ine) ;
return getMove (shor tL ine) ;

}
input = new BufferedReader

(new InputStreamReader (p . getErrorStream ())) ;
while ((l i n e = input . readLine ()) != null) {

System . out . p r i n t l n (”ErrorLine ”+l i n e) ;
}

input . c l o s e () ;
}
catch (Exception e) {

System . out . p r i n t l n (”EXCEPTION ” + e . getMessage ()) ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
83

}
return ”No Move Found” ;

}

public boolean checkMove (S t r ing l i n e) {
i f (l i n e . matches (” Stab le Model : . ∗ ”)) {

return true ;
}
return fa l se ;

}

public St r ing getMove (S t r ing l i n e) {
int moveEnd = l i n e . indexOf (turn+” , ”+myRole+”) ”) ;

int moveStart = 0 ;
int i = moveEnd ;
boolean foundBrac = fa l se ;
int bracs = 1 ;
while (! foundBrac) {

i f (l i n e . charAt (i) == ’) ’) {
bracs++;

}
else i f (l i n e . charAt (i) == ’ (’) {

bracs−−;
}
i f (l i n e . charAt (i) == ’ (’ && bracs == 0) {

foundBrac = true ;
moveStart = i ;

}
else {

i−−;
}

}
//System . out . p r i n t l n (”FOUND ToRET”+moveStart+”

”+moveEnd) ;
St r ing toRet = l i n e . sub s t r i ng (moveStart+1,moveEnd−1) ;
System . out . p r i n t l n (toRet) ;
i f (toRet . indexOf (” (”) != −1){

toRet = reBracket (toRet) ;
}
return toRet ;

}
//Parse back in to Kif Output
public St r ing reBracket (S t r ing toBrac) {

St r ing toRet = ” (” ;
S t r ing t o Sp l i t ;

int commStart ;
boolean moreStr ing = true ;
int commEnd = toBrac . indexOf (” (”) ;
toRet = toRet . concat (toBrac . sub s t r i ng (0 ,commEnd)+”

”) ;
t o Sp l i t = toBrac . sub s t r i ng (commEnd, toBrac . l ength ()) ;
commStart = 1 ;
commEnd = 0 ;
while (moreStr ing) {

//System . out . p r i n t l n (toRet+” ”+t o S p l i t) ;
commEnd = t oSp l i t . indexOf (” , ” ,commEnd+1) ;
i f (commEnd == −1){

commEnd = t oSp l i t . indexOf (”) ”) ;
moreStr ing = fa l se ;

}
//System . out . p r i n t l n (”START ”+commStart+” END

”+commEnd) ;
St r ing part = t oSp l i t . s ub s t r i ng (commStart , commEnd) ;
toRet = toRet . concat (” ”+part) ;
commStart = commEnd+1;

}
toRet = toRet . concat (”) ”) ;
return toRet ;

}

public void runCommand() {

}

public void updateTurn () {
turn = St r ing . valueOf (In t eg e r . pa r s e In t (turn)+1) ;

}

public St r ing parseOption (St r ing opt) {
St r ing opts =opt ;
i f (opt . indexOf (” (”) == −1){

return opt ;
}
St r ing [] part = opts . s p l i t (” \\(”) ;
S t r ing [] subPart ;
S t r ing toRet = ”” ;
subPart = part [1] . s p l i t (” ”) ;

boolean f i r s t = true ;
toRet = toRet . concat (subPart [0]) ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
84

//System . out . p r i n t l n (”TO RET =
”+toRet+subPart . l en g t h) ;

for (int i = 1 ; i <subPart . l ength ; i++){
i f (! f i r s t) {

toRet = toRet . concat (” , ”) ;
}
else {

toRet = toRet . concat (” (”) ;
}
toRet = toRet . concat (subPart [i]) ;
f i r s t = fa l se ;

}
i f (part . l ength > 2) {
St r ing re s tOf =

opts . sub s t r i ng (opts . indexOf (” (” ,2)) ;
toRet = toRet . concat (” , ”+parseOption (re s tOf)) ;
//System . out . p r i n t l n (”TO RET = ”+toRet) ;
}
//System . out . p r i n t l n (”OUTPUTTING = ”+toRet) ;

return toRet ;
}

public void updateGameState (ArrayList<Str ing>
playerMoves) {

St r ing r o l e ;
S t r ing newMoves ;
S t r ing checkMove = playerMoves . get (0) ;
i f (! checkMove . equa l s (” n i l ”)) {

try{
FileOutputStream newParse = new

FileOutputStream (”ASPlayerData/ASPRulesDef/”+
” javaParse . lp ” , true) ;

PrintStream p = new PrintStream (newParse) ;
for (int i = 0 ; i<r o l e s . s i z e () ; i++){

newMoves = playerMoves . get (i) ;
r o l e = r o l e s . get (i) ;
System . out . p r i n t l n (”MOVE =

occurs (”+newMoves+” , ”+turn+” , ”+r o l e+”) . ”) ;
p . p r i n t (” occurs (”+newMoves+” , ”+turn+” , ”+r o l e+”) . ”) ;

}
}
catch (Exception e) {

e . pr intStackTrace () ;
}

updateTurn () ;

}
}

public void s e tRo l e s (ArrayList<Str ing> rolesNew) {
St r ing r o l e ;
r o l e s . c l e a r () ;
for (int i = 0 ; i<rolesNew . s i z e () ; i++){

r o l e = rolesNew . get (i) ;
r o l e =

r o l e . sub s t r i ng (r o l e . indexOf (” (”)+1, r o l e . indexOf (”) ”)) ;
r o l e s . add (r o l e) ;

}
}

}

C.2 File: ruleReader.java

package ASPlayer . r u l e s ;
import java . i o . ∗ ;
import java . u t i l . ArrayList ;
import java . u t i l . regex . Pattern ;
import java . u t i l . regex . Matcher ;

public class ru leReader {
ArrayList<Str ing> l i n e = new ArrayList<Str ing >() ;
ArrayList<Str ing> ASPline = new ArrayList<Str ing >() ;
int p l aye r s ;
S t r ing turns ;
S t r ing myRole ;

public ru leReader (S t r ing ru le , S t r ing r o l e) throws
Exception {

myRole = r o l e ;
p l ay e r s = 0 ;
turns = ”” ;
ArrayList<Str ing> newLines = new ArrayList<Str ing >() ;
S t r ing r u l e s = ru l e . toLowerCase () ;
S t r ing l ineRep ;
S t r ing [] v a r Sp l i t ;
S t r ing vars ;
parse Input (r u l e s) ;
vars = f indVars () ;
v a r Sp l i t = vars . s p l i t (” ; ”) ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
85

for (int i =0; i<va rSp l i t . l ength ; i++){
f indVarPos (v a rSp l i t [i]) ;

}
removeNoDom() ;
for (int i =0; i<l i n e . s i z e () ; i++){

l ineRep = (St r ing) l i n e . get (i) ;
l ineRep = rep laceVars (l ineRep) ;
newLines . add (l ineRep) ;

}
l i n e = newLines ;
convertASP () ;
i f (turns . equa l s (””)) {

turns = ”20” ;
}
c r e a t eRu l eF i l e () ;

}

public void c r e a t eRu l eF i l e () {
try {

FileOutputStream newParse = new
FileOutputStream (”ASPlayerData/ASPRulesDef”+

”/ javaParse . lp ”) ;
PrintStream p = new PrintStream (newParse) ;
for (int i =0; i<ASPline . s i z e () ; i++){
p . p r i n t ((S t r ing) ASPline . get (i)+”\n”) ;

}
Fi leReader f r = new

Fi leReader (”ASPlayerData/ASPRulesDef/nonDom. lp ”) ;
BufferedReader br = new BufferedReader (f r) ;
S t r ing s ;
while ((s = br . readLine ()) != null) {

p . p r i n t (s) ;
}
f r . c l o s e () ;

p . c l o s e () ;

}
catch (Exception e) {

e . pr intStackTrace () ;
}

}

private void parseInput (S t r ing r u l e s) {
try{

St r ing ru l e = ru l e s ;
int bracket s = 0 ;
S t r ing ru l eL ine =”” ;
for (int i = 0 ; i<r u l e . l ength () ; i++){

i f (r u l e . charAt (i) == ’ (’) {
bracket s++;

}
else i f (r u l e . charAt (i) == ’) ’) {

brackets−−;
i f (bracket s == 0) {

ru l eL ine =
ru l eL ine . concat (S t r ing . valueOf (r u l e . charAt (i))) ;

l i n e . add (ru l eL ine) ;
ru l eL ine = ”” ;

}
}

i f (bracket s != 0) {
ru l eL ine =

ru l eL ine . concat (S t r ing . valueOf (r u l e . charAt (i))) ;
}

}
}
catch (Exception e) {

e . pr intStackTrace () ;
}

}

private void f indTurns (S t r ing toFind) {
i f (toFind . matches (” \\(succ .∗ ”)) {

//System . out . p r i n t l n (”FOUND IN ”+toFind) ;
boolean found = fa l se ;
int i = toFind . l ength () −1;
while (! found) {

St r ing ch = St r ing . valueOf (toFind . charAt (i)) ;
i f (ch . equa l s (” ”)) {

turns =
toFind . sub s t r i ng (i +1, toFind . l ength ()−1) ;

found = true ;
}
else {

i−−;
}

A
P

P
E

N
D

IX
C

.
C

O
D

E
86

}
}

}

public St r ing getTurns () {
return turns ;

}

private void convertASP () {
St r ing l i n e S t r i n g ;
for (int i =0; i<l i n e . s i z e () ; i++){

l i n e S t r i n g = (St r ing) l i n e . get (i) ;
f indTurns (l i n e S t r i n g) ;
i f (l i n e S t r i n g . matches (” \\(r o l e .∗ ”)) {

//System . out . p r i n t l n (”IN ROLE ”) ;
addRole (l i n e S t r i n g) ;

}
else i f (l i n e S t r i n g . matches (” \\(i n i t .∗ ”)) {

//System . out . p r i n t l n (”IN INIT ”) ;
addIn i t (l i n e S t r i n g) ;

}
else i f (l i n e S t r i n g . matches (”\\(<= \\(l e g a l .∗ ”)) {

//System . out . p r i n t l n (”IN EXEC ”) ;
addExec (l i n e S t r i n g) ;

}
else i f (l i n e S t r i n g . matches (”\\(<=

\\(next .∗\\ (does .∗ ”)) {
//System . out . p r i n t l n (”IN CAUSE ”) ;
addCause (l i n e S t r i n g) ;

}
else i f (l i n e S t r i n g . matches (”\\(<= \\(goa l

”+myRole+” .∗100\\) .∗ ”)) {
//System . out . p r i n t l n (”IN GOAL ”+l i n e S t r i n g) ;
addGoal (l i n e S t r i n g) ;

}
else i f (l i n e S t r i n g . matches (”\\(<=

\\(goa l .∗\\) .∗ ”)) {
//System . out . p r i n t l n (”IN GOAL LESS THAN 100”) ;

}
else i f (l i n e S t r i n g . matches (”\\(<= \\(next .∗ ”)) {

//System . out . p r i n t l n (”IN NEXT HOLDS1
”+l i n e S t r i n g) ;

addNextHolds (l i n eS t r i n g , true) ;
}
else i f (l i n e S t r i n g . matches (”\\(<= termina l .∗ ”)) {

}
else i f (l i n e S t r i n g . matches (”\\(<= [a−z]∗ .∗ ”)) {

//System . out . p r i n t l n (”IN NEXT HOLDS2 ”) ;
addNextHolds (l i n eS t r i n g , fa l se) ;

}
else i f (l i n e S t r i n g . matches (”\\(<= \\ ([a−z]∗ .∗ ”)) {

//System . out . p r i n t l n (”IN NEXT HOLDS2 ”) ;
addNextHolds (l i n eS t r i n g , fa l se) ;

}
else i f (l i n e S t r i n g . matches (”\\(<=.∗”)) {

//System . out . p r i n t l n (”IN IGNORE ”) ;
}
else i f (l i n e S t r i n g . matches (” \\(l e g a l .∗ ”)) {

//System . out . p r i n t l n (”IN LEGAL ALL ”) ;
addConsMove (l i n e S t r i n g) ;

}
else {

//System . out . p r i n t l n (”IN OTHER”) ;
addOther (l i n e S t r i n g) ;

}
}
//System . out . p r i n t l n (”DONE”) ;

}

private void addRole (S t r ing k ixLine) {
p l aye r s++;
St r ing [] roleName = kixLine . s p l i t (” r o l e ”) ;
S t r ing ASPrule = ” r o l e (”+roleName [1]+ ” . ” ;
ASPline . add (ASPrule) ;

}

public int ge tP laye r s () {
return p l aye r s ;

}

private void addIn i t (S t r ing k ixLine) {
St r ing [] i n i t S p l i t = kixLine . r ep l a c e (’) ’ , ’

’) . s p l i t (” \\(”) ;
S t r ing ASPrule = ” holds (” ;
S t r ing r e s t o f =

kixLine . sub s t r i ng (6 , k ixLine . tr im () . l ength ()−1) ;

i f (i n i t S p l i t . l ength != 2) {
ASPrule =

ASPrule . concat (parseOption (r e s t o f)+” ,1) . ”) ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
87

}
else {

St r ing [] part = i n i t S p l i t [1] . s p l i t (” ”) ;
ASPrule = ASPrule . concat (part [1]+ ” ,1) . ”) ;

}
ASPline . add (ASPrule) ;

}

private void addOther (S t r ing k ixLine) {
St r ing ASPrule =

” holds (”+parseOption (k ixLine)+” ,T) . ” ;
ASPline . add (ASPrule) ;

}

public St r ing parseOption (St r ing opt) {
St r ing opts =opt ;
i f (opt . indexOf (” (”) == −1){

return opt ;
}
St r ing [] part = opts . s p l i t (” \\(”) ;
S t r ing [] subPart ;
S t r ing toRet = ”” ;
subPart = part [1] . s p l i t (” ”) ;

boolean f i r s t = true ;
toRet = toRet . concat (subPart [0]) ;

for (int i = 1 ; i <subPart . l ength ; i++){
i f (! f i r s t) {

toRet = toRet . concat (” , ”) ;
}
else {

toRet = toRet . concat (” (”) ;
}
toRet = toRet . concat (subPart [i]) ;
f i r s t = fa l se ;

}
i f (part . l ength > 2) {
St r ing re s tOf =

opts . sub s t r i ng (opts . indexOf (” (” ,2)) ;
toRet = toRet . concat (” , ”+parseOption (re s tOf)) ;
}

return toRet ;
}

private void addExec (S t r ing k ixLine) {
St r ing toRet = ” executab l e (” ;

ArrayList ru l ePa r t s ;
S t r ing [] subPart ;
int bracket s = 0 ;
S t r ing ru l eL ine =”” ;
S t r ing ac t i on ;
ArrayList o r s = new ArrayList () ;
boolean foundOr = true ;
boolean currOr ;

ru l ePa r t s = parseBracket (k ixLine) ;
subPart = ((S t r ing) ru l ePa r t s . get (0)) . s p l i t (” ”) ;
toRet = toRet . concat (subPart [1]+ ” , ”) ;
i f ((((S t r ing) ru l ePa r t s . get (0)) . indexOf (” (”)) ==

((St r ing) ru l ePa r t s . get (0)) . l a s t IndexOf (” (”)) {
toRet =

toRet . concat (subPart [2] . r ep l a c e (”) ” , ””)+” ,T)
”) ;

a c t i on = ” ac t i on (”+subPart [2] . r ep l a c e (”) ” , ””)+”) . ” ;
ASPline . add (ac t i on) ;

}
else {

ac t i on =
parseOption (((S t r ing) ru l ePa r t s . get (0)) . s ub s t r i ng (1)) ;

a c t i on = act i on . sub s t r i ng (0 , a c t i on . l ength ()−1) ;
ASPline . add (” ac t i on (”+act i on+”) . ”) ;

toRet = toRet . concat (ac t i on) ;
//Remove ex t ra) .
// toRet = toRet . s u b s t r i n g (0 , toRet . l en g t h ()−1) ;
toRet = toRet . concat (” ,T) ”) ;

}

toRet = toRet . concat (” :− ”) ;
for (int i =1; i<ru l ePa r t s . s i z e () ; i++){

currOr = fa l se ;
S t r ing ru l eSec = (St r ing) ru l ePa r t s . get (i) ;
i f (ru l eSe c . matches (” \\(t rue .∗ ”)) {

ru l eSec = ru l eSec . sub s t r i ng (ru l eSec . indexOf (””+
” (” ,1) , ru l eSe c . l ength ()−1) ;

toRet = toRet . concat (”
ho lds (”+parseOption (ru l eSec)) ;

toRet = toRet . sub s t r i ng (0 , toRet . l ength ()) ;
toRet = toRet . concat (” ,T) ”) ;

}
else i f (ru l eSe c . matches (” \\(d i s t i n c t .∗ ”)) {

A
P

P
E

N
D

IX
C

.
C

O
D

E
88

// ru leSec = rep laceVars (ru l eSec) ;
subPart = ru l eSec . s p l i t (” ”) ;
for (int j = 2 ; j<subPart . l ength ; j++){

toRet =
toRet . concat (subPart [j−1]+”!=”+subPart [j]) ;

}
toRet = toRet . sub s t r i ng (0 , toRet . l ength ()−1) ;

}
else i f (ru l eSe c . matches (” \\(not .∗ ”)) {

toRet = toRet . concat (parseNot (ru l eSec)) ;
}
else i f (ru l eSe c . matches (” \\(or .∗ ”)) {

or s . add (ru l eSe c) ;
System . out . p r i n t l n (”IN OR”+ru l eSec) ;
foundOr = true ;
//Decides whether a comman shou ld be p laced o f

not
currOr = true ;

}
else {

toRet =
toRet . concat (” ho lds (”+parseOption (ru l eSe c)+” ,T) ”) ;

}

i f (i != ru l ePa r t s . s i z e ()−1 && ! currOr) {
toRet = toRet . concat (” , ”) ;

}
}

i f (toRet . matches (” .∗ :− ”)) {
toRet = toRet . sub s t r i ng (0 , toRet . l ength ()−3) ;

}
i f (toRet . charAt (toRet . l ength ()−1)==’ , ’) {

toRet = toRet . sub s t r i ng (0 , toRet . l ength ()−1) ;
}
i f (foundOr) {

o rCon t r o l l e r (toRet , o r s) ;
}
else {

System . out . p r i n t l n (” toRet =”+toRet+” l a s t l e t t e r =
”+toRet . charAt (toRet . l ength ())) ;

toRet = toRet . concat (” . ”) ;
ASPline . add (toRet) ;

}

}

private ArrayList parseBracket (S t r ing toParse) {
ArrayList toRet = new ArrayList () ;
S t r ing [] subPart ;
int bracket s = 0 ;
int posStar t = 0 ;
int posEnd ;
S t r ing ru l eL ine =”” ;
//System . out . p r i n t l n (” Sec 1 PB”) ;
for (int i = 1 ; i<toParse . l ength () ; i++){

//System . out . p r i n t l n (”For LOOP PB ”+i+”
LENGTH”+toParse . l en g t h ()) ;

i f (toParse . charAt (i) == ’ (’) {
bracket s++;

}
else i f (toParse . charAt (i) == ’) ’) {

brackets−−;
i f (bracket s == 0) {

ru l eL ine =
ru l eL ine . concat (S t r ing . valueOf (toParse . charAt (i))) ;

i f (! ru l eL ine . matches (”\\(<= \\(goa l .∗ ”)) {
toRet . add (ru l eL ine) ;

}
ru l eL ine = ”” ;

}
}
else

i f (S t r ing . valueOf (toParse . charAt (i)) . matches (” [a−z] ”)
&& bracket s == 0) {

posStar t = toParse . indexOf (” ” , i −1) ;
posEnd = toParse . indexOf (” ” , posStar t+1) ;
i f (posEnd == −1){

posEnd = toParse . indexOf (”) ” , posStar t+1) ;
}
toRet . add (toParse . sub s t r i ng (posStart , posEnd)) ;
posStar t = toParse . indexOf (” ” , posStar t+1) ;
i = posStar t ;

}

i f (bracket s != 0) {
ru l eL ine =

ru l eL ine . concat (S t r ing . valueOf (toParse . charAt (i))) ;
}

}

A
P

P
E

N
D

IX
C

.
C

O
D

E
89

return toRet ;
}

private St r ing rep laceVars (S t r ing toReplace) {
St r ing i n t e rn = toReplace ;
S t r ing toRet = ”” ;
int spaceEnd ;
int bracEnd ;
int endOfVar ;
while (i n t e rn . indexOf (”?”) != −1){

spaceEnd = in t e rn . indexOf (” ” , i n t e rn . indexOf (”?”)) ;
bracEnd = in t e rn . indexOf (”) ” , i n t e rn . indexOf (”?”)) ;
i f (i n t e rn . sub s t r i ng (i n t e rn . indexOf (”?”)) . indexOf (”

”) == −1){
endOfVar = bracEnd−1;

}
else {

i f (spaceEnd < bracEnd && bracEnd != −1){
endOfVar = spaceEnd−1;

}
else {

endOfVar = bracEnd−1;
}

}
toRet = in t e rn . sub s t r i ng (0 , i n t e rn . indexOf (”?”)) ;
toRet = toRet . concat (

i n t e rn . sub s t r i ng (i n t e rn . indexOf (”?”)+1,
endOfVar+1) . toUpperCase ()) ;

toRet = toRet . concat (i n t e rn . sub s t r i ng (endOfVar+1)) ;
i n t e rn = toRet ;

}
return i n t e rn ;

}

private void addCause (S t r ing k ixLine) {
St r ing ru l eL ine = ” causes (” ;
ArrayList ru l ePar t = parseBracket (k ixLine) ;
ArrayList o r s = new ArrayList () ;
boolean foundOr = fa l se ;
boolean currOr ;
S t r ing [] subPart ;
S t r ing ac t i on ;
//Keep t rack o f r e a l Does as opposed to not does ’ s
int noDoes = 0 ;

for (int i =0; i<ru l ePar t . s i z e () ; i++){
St r ing part = (St r ing) ru l ePar t . get (i) ;
i f (i == 0) {

St r ing a = part . sub s t r i ng (part . indexOf (”
” , part . indexOf (” ”)) , part . l ength ()−1) ;

a = parseOption (a) ;
ASPline . add (” f l u e n t (”+a+”) . ”) ;
ru l eL ine = ru l eL ine . concat (a) ;

}
i f (part . matches (” \\(does .∗ ”)) {

noDoes++;
int r o l e S t a r t = part . indexOf (” ”) ;
int roleEnd = part . indexOf (” ” , r o l e S t a r t +1) ;
ru l eL ine = ru l eL ine . concat (” , ”+part . sub s t r i ng (

r o l eS t a r t , roleEnd)) ;
i f (part . indexOf (” (” ,1) != −1){

ac t i on = parseOption (part . sub s t r i ng (
roleEnd , part . indexOf (”) ”)+1)) ;

}
else {

ac t i on =
part . sub s t r i ng (roleEnd , part . indexOf (”) ”)) ;

}
ru l eL ine = ru l eL ine . concat (” , ”+act i on) ;

}
}
i f (noDoes > 0) {

ru l eL ine = ru l eL ine . concat (” ,T) :− ”) ;
}
else {

ru l eL ine = ru l eL ine . sub s t r i ng (6 , ru l eL ine . l ength ()) ;
ru l eL ine = ” holds ” . concat (ru l eL ine) ;
ru l eL ine = ru l eL ine . concat (” ,T) :− ”) ;

}

for (int i =1; i<ru l ePar t . s i z e () ; i++){
currOr = fa l se ;
S t r ing ru l eSec = (St r ing) ru l ePar t . get (i) ;
i f (i == ru l ePar t . s i z e ()−1){

ru l eSec = ru l eSec . sub s t r i ng (0 , ru l eSe c . l ength ()) ;
}
i f (! ru l eSec . matches (” \\(does .∗ ”)) {

i f (ru l eSe c . matches (” \\(t rue .∗ ”)) {

A
P

P
E

N
D

IX
C

.
C

O
D

E
90

ru l eSec =
ru l eSec . sub s t r i ng (ru l eSe c . indexOf (” (” ,1) ,
ru l eSec . l ength ()−1) ;

ru l eL ine = ru l eL ine . concat (”
ho lds (”+parseOption (ru l eSec)) ;

ru l eL ine =
ru l eL ine . sub s t r i ng (0 , ru l eL ine . l ength ()) ;

ru l eL ine = ru l eL ine . concat (” ,T) ”) ;
}
else i f (ru l eSe c . matches (” \\(d i s t i n c t .∗ ”)) {

// ru leSec = rep laceVars (ru l eSec) ;
subPart = ru l eSec . s p l i t (” ”) ;
for (int j = 2 ; j<subPart . l ength ; j++){

ru l eL ine = ru l eL ine . concat (subPart [j−1]+”!=”
+subPart [j]) ;

}
ru l eL ine =

ru l eL ine . sub s t r i ng (0 , ru l eL ine . l ength ()−1) ;
}
else i f (ru l eSe c . matches (” \\(or .∗ ”)) {

or s . add (ru l eSe c) ;
foundOr = true ;
currOr = true ;

}
else i f (ru l eSe c . matches (” \\(not .∗ ”)) {

ru l eL ine = ru l eL ine . concat (parseNot (ru l eSec)) ;
}
else {

ru l eL ine =
ru l eL ine . concat (” ho lds (”+parseOption (
ru l eSec)+” ,T) ”) ;

}

i f (i != ru l ePar t . s i z e ()−1 && ! currOr) {
ru l eL ine = ru l eL ine . concat (” , ”) ;

}
}

}

i f (ru l eL ine . charAt (ru l eL ine . l ength ()−1) == ’ , ’) {
ru l eL ine =

ru l eL ine . sub s t r i ng (0 , ru l eL ine . l ength ()−1) ;
}

i f (ru l eL ine . matches (” .∗ :− ”)) {

ru l eL ine =
ru l eL ine . sub s t r i ng (0 , ru l eL ine . l ength ()−3) ;

}

i f (foundOr) {
o rCon t r o l l e r (ru l eL ine , o r s) ;

}
else {

ru l eL ine = ru l eL ine . concat (” . ”) ;
ASPline . add (ru l eL ine) ;

}
}

private void addGoal (S t r ing k ixLine) {
St r ing ru l eL ine = ” f i n a l l y (” ;
S t r ing ruleAc =”” ;
S t r ing r o l e ;
S t r ing l i n ePa r t ;
ArrayList par t s = parseBracket (k ixLine) ;

int r o l e S t a r t = kixLine . indexOf (” ” ,
k ixLine . indexOf (” goa l ”)) ;

int roleEnd = kixLine . indexOf (” ” , r o l e S t a r t +1) ;
r o l e = kixLine . sub s t r i ng (r o l e S t a r t +1, roleEnd) ;
for (int i = 1 ; i<par t s . s i z e () ; i++){

l i n ePa r t = (St r ing) par t s . get (i) ;
System . out . p r i n t l n (l i n ePa r t) ;
//Remove enc l o s ing true , o therwi se j u s t parse

b racke t s .
i f (l i n ePa r t . matches (” \\(t rue .∗ ”)) {

l i n ePa r t = l i n ePa r t . sub s t r i ng (l i n ePa r t . indexOf (”
”) , l i n ePa r t . l ength ()−1) ;

}
//System . out . p r i n t l n (l i n ePar t) ;
ASPline . add (” f l u e n t (”+parseOption (l i n ePa r t)+”) . ”) ;
ruleAc =

ru l eL ine . concat (parseOption (l i n ePa r t)+” ,R) . ”) ;
ASPline . add (ruleAc) ;

}
}

public St r ing f indVars () {
St r ing vars =”” ;
S t r ing toCheck ;
int po s i t i o n = 0 ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
91

int endPos ;
for (int i = 0 ; i<l i n e . s i z e () ; i++){

toCheck = (St r ing) l i n e . get (i) ;
p o s i t i o n = toCheck . indexOf (”?” , p o s i t i o n) ;
while (p o s i t i o n != −1){

i f (p o s i t i o n != −1){
i f ((toCheck . indexOf (” ” , p o s i t i o n) <

toCheck . indexOf (”) ” , p o s i t i o n)) &&
toCheck . indexOf (” ” , p o s i t i o n) !=−1){

endPos = toCheck . indexOf (” ” , p o s i t i o n) ;
}
else {

endPos = toCheck . indexOf (”) ” , p o s i t i o n) ;
}
i f (vars . indexOf (toCheck . sub s t r i ng (p o s i t i o n +1,

endPos)+” ; ”) == −1){
vars = vars . concat (

toCheck . sub s t r i ng (p o s i t i o n +1,endPos)+” ; ”) ;
}

}
po s i t i o n = toCheck . indexOf (”?” , p o s i t i o n +1) ;

}
po s i t i o n = 0 ;

}
vars = vars . sub s t r i ng (0 , vars . l ength ()−1) ;
return vars ;

}

//Find the po s i t i on o f v a r i a b l e s wi th in func t i ons .
public void f indVarPos (S t r ing va r i ab l e) {

ArrayList va rPo s i t i on s = new ArrayList () ;
S t r ing l i n e S t r i n g ;
S t r ing [] l i n e S p l i t ;
S t r ing posFound = ”” ;
S t r ing cur rent ;
S t r ing [] func ;
int [] pos ;
S t r ing l i t s=”” ;
int arrayPos=0;
S t r ing domain ;

for (int i =0; i<l i n e . s i z e () ; i++){
l i n e S t r i n g = (St r ing) l i n e . get (i) ;
i f (l i n e S t r i n g . indexOf (”?”+va r i ab l e+” ”) != −1 | |

l i n e S t r i n g . indexOf (”?”+va r i ab l e+”) ”) != −1){

l i n e S p l i t = l i n e S t r i n g . s p l i t (” \\(”) ;
for (int j =0; j< l i n e S p l i t . l ength ; j++){

i f (l i n e S p l i t [j] . indexOf (”?”+va r i ab l e+” ”) != −1
| | l i n e S p l i t [j] . indexOf (”?”+va r i ab l e+”) ”)

!= −1){
cur rent = l i n e S p l i t [j] . s ub s t r i ng (0 ,

l i n e S p l i t [j] . indexOf (”
”))+” , ”+findVarLoc (var i ab l e ,
l i n e S p l i t [j])+” , ” ;

i f (! posFound . matches (” .∗ ”+cur rent+” .∗ ”) &&
! cur rent . matches (” d i s t i n c t .∗ ”)) {

posFound = posFound . concat (cur rent) ;
}

}
}

}
}
St r ing [] posVarSpl i t = posFound . s p l i t (” , ”) ;
func = new St r ing [posVarSpl i t . l ength / 2] ;
pos = new int [posVarSpl i t . l ength / 2] ;

for (int i =0; i<posVarSpl i t . l ength ; i++){
func [arrayPos] = posVarSpl i t [i] ;
i++;
pos [arrayPos] = In t eg e r . pa r s e In t (posVarSpl i t [i]) ;
arrayPos++;

}
for (int i =0; i<l i n e . s i z e () ; i++){

l i n e S t r i n g = (St r ing) l i n e . get (i) ;
for (int j =0; j<func . l ength ; j++){

i f (l i n e S t r i n g . indexOf (” (”+func [j]+” ”) !=−1){
//Exception here may mean two p r ed i c a t e s with

v a r i a b l e s and d i f f e r i n g a r i t i e s .
try{

l i t s =
l i t s . concat (f i n dL i t s (l i n eS t r i n g , l i t s , func [j]
, pos [j] , v a r i a b l e)) ;

}
catch (Exception e) {

//System . out . p r i n t l n (”EXCEPTION IN VARPOS
”+e . getStackTrace ()) ;

}
}

}
}

A
P

P
E

N
D

IX
C

.
C

O
D

E
92

//Exception here i f v a r i a b l e not i n s t a n t i a t e d .
l i t s = l i t s . s ub s t r i ng (0 , l i t s . l ength ()−1) ;
l i t s = sortDomain (l i t s) ;
l i n e S p l i t = l i t s . s p l i t (” , ”) ;
i f (l i n e S p l i t [0] . l ength () != 0) {

l i t s = va r i ab l e+”varxx (”+l i n e S p l i t [0] . s ub s t r i ng (0 ,
l i n e S p l i t [0] . l ength ()−1)+”) . ” ;

domain = ”#domain
”+va r i ab l e+”varxx (”+va r i ab l e . toUpperCase ()+”) . ” ;

ASPline . add (l i t s) ;
ASPline . add (domain) ;

}
for (int i =1; i< l i n e S p l i t . l ength ; i++){

domain = ”#domain
”+l i n e S p l i t [i] . s ub s t r i ng (1)+”varxx (”
+va r i ab l e . toUpperCase ()+”) . ” ;

ASPline . add (domain) ;
}

}

public St r ing findVarLoc (S t r ing var i ab l e , S t r ing
f i nd In) {

St r ing [] k i x Sp l i t = f i nd In . s p l i t (” ”) ;
for (int i =1; i<k i x Sp l i t . l ength ; i++){

i f (k i x Sp l i t [i] . matches (”\\?”+va r i ab l e+” \\) ∗”)) {
return St r ing . valueOf (i) ;

}
}
return ”0” ;

}

//Find l i t e r a l s o f v a r i a b l e s wi th in the r u l e s ;
public St r ing f i n dL i t s (S t r ing f indIn , S t r ing l i t sFound ,

S t r ing funct ion , int pos i t i on , S t r ing va r i ab l e) {
St r ing [] l i n e S p l i t =

f i nd In . r ep l a c e (”) ” , ””) . s p l i t (” \\(”) ;
S t r ing [] f un cSp l i t ;
S t r ing l i t ;
S t r ing found=”” ;
for (int i =0; i< l i n e S p l i t . l ength ; i++){

i f (l i n e S p l i t [i] . matches (func t i on+” .∗ ”)) {
f un cSp l i t = l i n e S p l i t [i] . s p l i t (” ”) ;
l i t = fun cSp l i t [p o s i t i o n] ;

i f (! l i t . matches (”\\?”+va r i ab l e) &&
l i t sFound . indexOf (l i t) == −1 &&
found . indexOf (l i t) == −1) {

found = found . concat (l i t+” ; ”) ;
}

}
}
return found ;

}

public St r ing sortDomain (St r ing toSort) {
St r ing toRet =”” ;
S t r ing [] s o r t S p l i t = toSort . s p l i t (” ; ”) ;
for (int i =0; i<s o r t S p l i t . l ength ; i++){

i f (s o r t S p l i t [i] . matches (” \\? .∗ ”)) {
toRet = toRet . concat (” , ”+s o r t S p l i t [i]) ;

}
else {

toRet = s o r t S p l i t [i] . concat (” ; ” + toRet) ;
}

}
return toRet ;

}

public void removeNoDom() {
St r ing varDoms =”” ;
S t r ing domLine ;
S t r ing domVar ;
int domStart ;
for (int i =0; i<ASPline . s i z e () ; i++){

domLine = (St r ing) ASPline . get (i) ;
i f (! domLine . matches (”\\#.∗”)) {

varDoms = varDoms . concat (
S t r ing . valueOf (domLine . charAt (0))) ;

}
}
int i = 0 ;
while (i != ASPline . s i z e ()) {

domLine = (St r ing) ASPline . get (i) ;
i f (domLine . matches (”\\#.∗”)) {

domStart = domLine . indexOf (” ”) +1;
domVar = domLine . sub s t r i ng (domStart , domStart+1) ;
i f (! varDoms . matches (” .∗ ”+domVar+” .∗ ”)) {

ASPline . remove (i) ;
} else {

A
P

P
E

N
D

IX
C

.
C

O
D

E
93

i++;
}

}
else {

i++;
}

}
}

public void addNextHolds (S t r ing kixLine , boolean
nextNow) {

ArrayList ru l ePar t = parseBracket (k ixLine) ;
S t r ing ru l eL ine = ” holds (” ;
S t r ing l i n ePa r t ;
S t r ing [] subPart ;
l i n ePa r t = (St r ing) ru l ePar t . get (0) ;
// I f have (next at f r on t o f l i n e then remove
i f (nextNow) {
// System . out . p r i n t l n (”REMVOING INFO”) ;

l i n ePa r t = l i n ePa r t . sub s t r i ng (l i n ePa r t . indexOf (”
”) , l i n ePa r t . l ength ()−1) ;

}
//System . out . p r i n t l n (l i n ePar t) ;
// Al t e r time fo r outcome .
i f (nextNow) {

ru l eL ine =
ru l eL ine . concat (parseOption (l i n ePa r t)+” ,T+1) :−
”) ;

}
else {

ru l eL ine =
ru l eL ine . concat (parseOption (l i n ePa r t)+” ,T) :−
”) ;

}

for (int i =1; i<ru l ePar t . s i z e () ; i++){
l i n ePa r t = (St r ing) ru l ePar t . get (i) ;
i f (l i n ePa r t . matches (” \\(t rue .∗ ”)) {

l i n ePa r t = l i n ePa r t . sub s t r i ng (l i n ePa r t . indexOf (”
”) , l i n ePa r t . l ength ()−1) ;

}
i f (i == ru l ePar t . s i z e ()−1){

l i n ePa r t =
l i n ePa r t . s ub s t r i ng (0 , l i n ePa r t . l ength ()) ;

}
i f (l i n ePa r t . matches (” \\(d i s t i n c t .∗ ”)) {

subPart = l i n ePa r t . s p l i t (” ”) ;
for (int j = 2 ; j<subPart . l ength ; j++){

ru l eL ine =
ru l eL ine . concat (subPart [j−1]+”!=”+subPart [j]) ;

}
ru l eL ine = ru l eL ine . sub s t r i ng (0 ,

ru l eL ine . l ength ()) ;
}
else i f (l i n ePa r t . matches (” \\(not .∗ ”)) {

ru l eL ine = ru l eL ine . concat (parseNot (l i n ePa r t)) ;
}
else {

ru l eL ine = ru l eL ine . concat (” ho lds (”+parseOption (
l i n ePa r t)+” ,T) , ”) ;

}
}

ru l eL ine = ru l eL ine . sub s t r i ng (0 , ru l eL ine . l ength ()−1) ;
i f (ru l eL ine . matches (” .∗ :− ”)) {

ru l eL ine =
ru l eL ine . sub s t r i ng (0 , ru l eL ine . l ength ()−3) ;

}
ru l eL ine = ru l eL ine . concat (” . ”) ;
ASPline . add (ru l eL ine) ;

}
//Add a move tha t can a l lways be executed .
public void addConsMove (S t r ing k ixLine) {

int currPos ;
S t r ing ru l eL ine = ” executab l e (” ;
S t r ing ac t i on ;
currPos = kixLine . indexOf (” ”)+1;
//System . out . p r i n t l n (currPos) ;
ru l eL ine = ru l eL ine . concat (k ixLine . sub s t r i ng (currPos ,

k ixLine . indexOf (” ” , currPos))+” , ”) ;
currPos = kixLine . indexOf (” ” , currPos) +1;
i f (k ixLine . sub s t r i ng (currPos) . indexOf (” (”) != −1){

ac t i on = parseOption (k ixLine . sub s t r i ng (currPos ,
k ixLine . l ength ()−1)) ;

ru l eL ine = ru l eL ine . concat (ac t i on) ;
}
else {

ac t i on =
kixLine . sub s t r i ng (currPos , k ixLine . l ength ()−1) ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
94

ru l eL ine = ru l eL ine . concat (ac t i on) ;
}
ru l eL ine = ru l eL ine . concat (” ,T) . ”) ;
ASPline . add (ru l eL ine) ;
a c t i on = ” ac t i on (”+act i on+”) . ” ;
ASPline . add (ac t i on) ;

}
//Create two sepera t e r u l e s f o r any ru l e which conta ins

an OR
public void o rCon t r o l l e r (S t r ing ru leL ine , ArrayList

o r s) {
ArrayList addLines = new ArrayList () ;
ArrayList newLines = new ArrayList () ;
addLines . add (ru l eL ine) ;
S t r ing currOr ;
S t r ing currL ine ;
S t r ing toAdd = ”” ;
S t r ing singOr ;
S t r ing [] s p l i tP a r t ;

for (int i =0; i<or s . s i z e () ; i++){
currOr = (St r ing) o r s . get (i) ;
ArrayList o r s Ind iv =

parseBracket (currOr . sub s t r i ng (currOr . indexOf (”
”))) ;

for (int j =0; j<addLines . s i z e () ; j++){
currL ine = (St r ing) addLines . get (j) ;
for (int k=0;k<o r s Ind iv . s i z e () ; k++){

singOr = (St r ing) o r s Ind iv . get (k) ;
i f (s ingOr . matches (” \\(d i s t i n c t .∗ ”)) {

// singOr = rep laceVars (singOr) ;
s p l i tP a r t = singOr . s p l i t (” ”) ;
for (int l = 2 ; l<s p l i tP a r t . l ength ; l++){
toAdd =

currL ine . concat (” , ”+sp l i tP a r t [l−1]+”!=”+
sp l i tP a r t [l]) ;

}
toAdd = toAdd . sub s t r i ng (0 , toAdd . l ength ()−1) ;
newLines . add (toAdd) ;

}
else {

toAdd =
currL ine . concat (” ho lds (”+parseOption (singOr
)+” ,T) ”) ;

newLines . add (toAdd) ;

}
}

}
addLines . c l e a r () ;
for (int j = 0 ; j<newLines . s i z e () ; j++){

addLines . add ((S t r ing) newLines . get (j)) ;
}
newLines . c l e a r () ;

}

for (int i =0; i<addLines . s i z e () ; i++){
currL ine = (St r ing) addLines . get (i) ;
cur rL ine = currL ine . concat (” . ”) ;
ASPline . add (currL ine) ;

}
}

public ArrayList<Str ing> getRo le s () {
ArrayList<Str ing> toRet = new ArrayList<Str ing >() ;
S t r ing currL ine ;
for (int i =0; i<ASPline . s i z e () ; i++){

currL ine = ASPline . get (i) ;
i f (cur rL ine . matches (” r o l e \\ (.∗ ”)) {

toRet . add (currL ine) ;
}

}
return toRet ;

}

public St r ing parseNot (S t r ing toParse) {
St r ing toRet = ”not ” ;
int endNot = toParse . indexOf (” ”) ;
S t r ing notFluent =

toParse . sub s t r i ng (endNot+1, toParse . l ength ()−1) ;
//System . out . p r i n t l n (”INTO IF ”+notFluent) ;
i f (notFluent . matches (” \\(t rue .∗ ”)) {

notFluent = parseOption (notFluent . sub s t r i ng (
1 , notFluent . l ength ()−1)) ;

toRet = toRet . concat (” ho lds (”+notFluent+” ,T) , ”) ;
}
else i f (notFluent . matches (” \\(does .∗ ”)) {

toRet = toRet . concat (” occurs (”) ;
int s ta r tSpace = notFluent . indexOf (” ”) ;
int endSpace = notFluent . indexOf (” ” , s ta r tSpace+1) ;

A
P

P
E

N
D

IX
C

.
C

O
D

E
95

St r ing r o l e = notFluent . sub s t r i ng (
startSpace , endSpace) ;

S t r ing ac t i on = notFluent . sub s t r i ng (
endSpace , notFluent . l ength ()−1) ;

toRet =
toRet . concat (parseOption (ac t i on)+” ,T, ”+r o l e+”) ”) ;

//System . out . p r i n t l n (toRet) ;
}
else {

toRet = toRet . concat (
” ho lds (”+parseOption (notFluent)+” ,T) , ”) ;

}
//System . out . p r i n t l n (”NOT FLUENT ”+toRet) ;
return toRet ;

}

}

	Introduction
	Literature Survey
	Answer Set Programing
	ASP History / Fundamentals
	Useful ASP Extensions
	The Frame Problem

	ASP Grounders / Solvers
	Smodels
	Clasp

	General Game Playing
	Playing General Games
	GGP Concepts / Features
	Previous General Game Players

	Requirements
	Requirements
	ASP requirements
	General Game Player requirements

	Design & High Level Implementation
	ASP Planner Design
	Planner Overview
	Modifications from Barals Planning Method
	Note on the Frame Problem

	ASPlayer Design
	General Design
	Parser
	At Each Turn

	Testing & Results
	Reasons for GDL Chosen
	GDL to ASP convertion
	Note on GDL being used to test
	Blocks World
	Tic-Tac-Toe

	Game Play Testing
	Single Player Games
	Multiplayer Games

	Conclusions
	Critical Evaluation
	Original Requirements
	Project Summary
	Methodology Reflection
	Results Analysis
	Suitability of ASP for GGP

	Further Work

	User Documentation
	GameTester.jar
	ASPlayer.jar

	Game Representations
	GDL Specifications
	Blocks World
	Buttons
	Maze
	Tic Tac Toe
	Hodgepodge

	ASP Representations
	Domain Indepentent
	Blocks World
	Buttons
	Maze
	Tic Tac Toe
	Hodgepodge

	Code
	File: ASPGamer.java
	File: ruleReader.java

