
 
 
 
 

Calculator  for  Solving Two-Person       
Zero-Sum Games 

 
 
 
 
 
 
 

 
Solonas Argyr ides  

 
 

 
 
 

BSc (Hons) Computer Science 
 
 
 

2005 



 2

 
Title: “ Calculator  for  solving Two-Person Zero-Sum games”  
 
Submited by Solonas Argyr ides 
 
 
 
 

COPYRIGHT 
 
Attention is drawn to the fact that copyr ight of this thesis rests with its author . 
The Intellectual Proper ty Reights of the products produced as par t of the project 
belong to the University of Bath(see http://www.bath.ac.uk/ordinance/# intelprop). 
 
This copy of the thesis has been supplied on condition that anyone who consults 
it is understood to recognise that its copyr ight rests with its author  and that no 
quotation from the thesis and no information der ived from it may be published 
without the pr ior  wr itten consent of the author . 
 
 
 
 

DECLARATION 
 
This disser tation is submitted to the University of Bath in accordance with the 
requirements of the degree of Batchelor  of Science in the Depar tment of 
Compuer  Science. No por tion of the work in this disser tation has been submitted 
in suppor t of an application for  any other  degree or  qualification of this or  any 
other  university or  institution or  learning. Except where specifically 
acknowledged, it is the work of the author . 
 
 
 
 
 
 
 
 
Signed: …………………… 
 
This thesis may be made available for  consultation within the University L ibrary 
and my be photocopied or  lent to other  librar ies for  the purposes of consultation. 
 

 
 
 



 3

 
Abstract 
 
 
 
 
 
 
 
 
Game theory aroused much interest due to the mathematical properties and the 
number of applications to economics, political and social problems. Game theory can 
be used in complex situations that involve more factors than somebody’s choice and 
chance as a tool for making decisions. In this dissertation, the type of games 
considered is the two person zero sum. A program has been developed for solving any 
given matrix game. The program, which works as a calculator, returns the optimal 
strategies for two players and the value of a game. The method that is used for solving 
the matrix games is by using linear algebra and the simplex method. This program can 
be used as a learning program for teaching game theory applications together with 
simplex method process. Additional to that, it can be used as a calculator for finding 
quick solutions as well as for checking all the steps of simplex method since this 
method is a complicated and a time consuming method when performed by hand. The 
design and the implementation of this program are presented within. The testing of the 
system through several methods then follows. The dissertation is concluded with a 
discussion on the program produced together with further additions that could be 
made. An appendix is also included that contains a reference manual for the program.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4

 
 

Acknowledgements 
 
 
 
 
 
I would like to thank my project supervisor Dr Nicolai Vorobjov, for his ongoing 
support, help and invaluable advice throughout this project. I would also like to thank 
my family back in Cyprus for the psychological support that they gave me during this 
difficult for me time. 
  



 5

Table Of Contents 
 
 
 
 

      Chapters                                                                                                    Pages 
 
1 Introduction --------------------------------------------------------------------------------8 
 
2 Literature Review------------------------------------------------------------------------ 10 

2.1 Introduction ------------------------------------------------------------------------ 10 
2.2 Discussion and background theory---------------------------------------------- 11 

2.2.1 Definition of a game -------------------------------------------------------- 11 
2.2.2 General Definitions---------------------------------------------------------- 11 
2.2.3 The Two-Person, Zero-Sum Games--------------------------------------- 13 
2.2.4 Pure Strategies --------------------------------------------------------------- 14 
2.2.5 Mixed Strategies------------------------------------------------------------- 15 
2.2.6 The Minimax Theorem ----------------------------------------------------- 16 
2.2.7 Optimal Strategies----------------------------------------------------------- 18 
2.2.8 Linear Programming -------------------------------------------------------- 21 
2.2.9 Simplex method-------------------------------------------------------------- 22 

2.3 Summary---------------------------------------------------------------------------- 23 
 
3 Requirements Analysis & Requirements Specification ---------------------------- 25 

3.1 Requirements Analysis ----------------------------------------------------------- 25 
3.1.1 Introduction ------------------------------------------------------------------ 25 
3.1.2 Scope of the product -------------------------------------------------------- 25 
3.1.3 Purpose of the product ------------------------------------------------------ 25 
3.1.4 Requirements Elicitation and Analysis ----------------------------------- 25 

3.2 Requirements Specification ------------------------------------------------------ 27 
3.2.1 Requirements drawn from Literature Review---------------------------- 28 
3.2.2 Functional Requirements--------------------------------------------------- 28 
3.2.3 Non-Functional Requirements--------------------------------------------- 30 
3.2.4 Hardware Requirements---------------------------------------------------- 33 
3.2.5 User Requirements ---------------------------------------------------------- 33 

3.3 Requirements Validation --------------------------------------------------------- 34 
 
4 Design------------------------------------------------------------------------------------- 37 

4.1 Introduction ------------------------------------------------------------------------ 37 
4.2 Module Overview ----------------------------------------------------------------- 37 
4.3 Data Structures--------------------------------------------------------------------- 39 
4.4 Mode Selection -------------------------------------------------------------------- 41 
4.5 Minmax Maxmin Method -------------------------------------------------------- 41 
4.6 Simplex Method ------------------------------------------------------------------- 43 
4.7 User Interface Design------------------------------------------------------------- 45 

4.7.1 User input--------------------------------------------------------------------- 45 
4.7.2 User feedback ---------------------------------------------------------------- 45 

4.8 Error Handling--------------------------------------------------------------------- 45 
 



 6

5 Detailed Design and Implementation ------------------------------------------------- 47 
5.1 High Level Implementation Decisions ----------------------------------------- 47 

5.1.1 Platform----------------------------------------------------------------------- 47 
5.1.2 Implementation Language-------------------------------------------------- 48 
5.1.3 Development Environment------------------------------------------------- 48 

5.2 Overall System architecture------------------------------------------------------ 48 
5.3 Mode method----------------------------------------------------------------------- 49 
5.4 Data Input methods---------------------------------------------------------------- 50 

5.4.1 Game Matrix Dimensions-------------------------------------------------- 50 
5.4.2 Game Matrix Elements ----------------------------------------------------- 51 

5.5 Truth checking methods---------------------------------------------------------- 52 
5.6 Display functions------------------------------------------------------------------ 54 
5.7 Minimax Maximin method------------------------------------------------------- 55 
5.8 Simplex method-------------------------------------------------------------------- 58 

 
6 Testing and Evaluation ----------------------------------------------------------------- 64 

6.1 Unit testing ------------------------------------------------------------------------- 64 
6.2 Verification and Validation ------------------------------------------------------ 66 
6.3 Defect Testing---------------------------------------------------------------------- 67 

6.3.1 Black Box Testing----------------------------------------------------------- 67 
6.3.2 Structural Testing------------------------------------------------------------ 67 

6.4 Integration Testing ---------------------------------------------------------------- 67 
 
7 Conclusion-------------------------------------------------------------------------------- 70 
 
Bibliography ----------------------------------------------------------------------------------- 71 
 
APPENDIX A --------------------------------------------------------------------------------- 73 

A1 Evaluation of existing systems--------------------------------------------------- 73 
A2 Questionnaire for potential users------------------------------------------------ 75 
A2     Use Casess---------------------------------------------------------------------------76 

APPENDIX B---------------------------------------------------------------------------------- 85 
B1 Inspection and Evaluation testing ----------------------------------------------- 85 
B2 Defect Testing---------------------------------------------------------------------- 86 
B3 Book Testing----------------------------------------------------------------------- 89 

APPENDIX C---------------------------------------------------------------------------------- 92 
C1 Reference Manual ----------------------------------------------------------------- 92 

APPENDIX D --------------------------------------------------------------------------------114 
D1 The Code --------------------------------------------------------------------------114 

 
 
 
 
 
 
 
 



 7

�
�

� �������	 �

�����������

 
 

 
 
 
 
 
 
 
 
 
 
 
 

To obtain a real understanding of the problem  
of exchange by studying it from an altogether  
different angle; this is, from the perspective of  
a “ game of strategy.”  
 
 John von Neuman  
The theory of Games and Economic Behaviour 

 

 
 
 
 
 



 8

1 Introduction 
 
 
John Von Neumann in 1928 laid the foundations of game theory by proving the basic 
minimax theorem. The field was establish in 1944 when he published the ‘Theory of 
games and Economic Behaviour’ , where it was shown that social events can be 
described better by some models of the appropriate games of strategy. John Von 
Neumann was describing situations that were competitive and the loss of one player 
was the gain of another, therefore the name zero sum was given for these situations. 
After John Nash’s improvements, game theory can now describe and find optimum 
strategies for a number of different types of games, which are not limited in the zero 
sum type constraint. That is the reason why game theory is of great importance in the 
social sciences field. 
 
The purpose of this dissertation is to develop a program that is used for solving any 
given matrix game that is of the two person zero sum type. The program is going to be 
able to find the optimal strategies for the two players and the value of the game given. 
The program will be implemented in finding the solutions in two ways. One way is 
the minimax theorem and the other way is with the use of linear algebra and the 
simplex method. Furthermore, another program’s aim will be to provide all steps of 
the simplex method when performed, so as to be feasible for people to use it when 
solving linear program problems since it is a difficult and time consuming method.   
  
The material to be presented can be read from anybody that is interested in the field 
even if his/her background is not strong in mathematics. The literature review, chapter 
number 2, provides an in-depth description for understanding the mathematics needed 
for the purpose of solving game matrices. Furthermore, definitions are provided for 
the language and symbols that are used. Additional information and descriptions 
about the algorithms used are provided, as well as step-by-step explanations. 
 
Chapter number 3 describes all the methods that were used for gathering the 
requirements for the program to be developed. Chapter number 4 describes all the 
design methods that were used for the development of the final system. Also a 
detailed description of the simplex algorithm can be found in chapter 4, with a step-
by-step guidance for solving with this method. 
 
A complete description of how the methods that were implemented and why they 
were implemented in the way that they did, can be found in the chapter number 5, 
which is the detailed design and implementation chapter. The testing follows in 
chapter number 6, describing all the method used for the purpose of testing together 
with explanations on what aim had each test that was used. 
 
Conclusions of this dissertation can be found at the last section, chapter number 7, 
together with suggestions for further improvements. At the end of this document, an 
enclosed CD can be found that includes the program developed. 
    
 



 9

�
� �������� �

������������ ����� �
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter’s aim is to introduce the 
mathematics needed for understanding how 
game theory problems can be solved. Also, 
methods and algorithm needed are also 
mentioned and explained… 

 
  

 
 
 



 10

2 L iterature Review 
 
 

2.1 Introduction 
 
Defining what game theory is can be very general, because it is a broad topic. There 
are many theories for games but there is not one theory of games. The theory is how 
someone should make certain decisions, and how he makes these decisions. When 
you know what you want to achieve, the set of actions which you can chose from and 
the consequence of each action, it should be fairly easy to reach your goal. But 
decision-making is harder when chance is involved. “Game theory was designed as a 
tool for making decisions in complex situations that many factors are operating, not 
only luck and someone’s choice.”1 
 
Parlor games like chess, bridge, roulette and many others, all begin from a start point 
and after a sequence of moves that the players choose from, among several 
possibilities, “strategies” , they all finish due to the rules of each individual game has. 
(In game theory, strategy is what a player will do, what plan he is going to follow 
under all possible circumstances.) Rules are for example whether communication is 
allowed or not between players, binding agreements, what information they have, if 
they have the ability to share the “payoff”  and so on. Also, since the game is finite, 
the players have a finite number of strategies as well. The number of players involved 
is really important as well as how much the players interests clash or overlap. When 
the game finishes, there is some “payoff”  for the player that wins. This payoff can 
either be satisfaction, prestige or even money.2  
 
Parlor games can be based entirely on luck, like roulette, or they can be entirely based 
on skills, like chess. Also there are some others, like bridge, where luck plays an 
important role but still skills are also needed. 
  
Furthermore, in games like chess, checkers, tick-tack-toe, both players know all the 
moves that have been made at any time. These kinds of games are called games of 
perfect information, and they offer some conceptual problems. In games like bridge 
and poker however, the players’  knowledge is usually imperfect because the players 
are kept in the dark. That is why these kinds of games are more complex. For example 
the kids’  game of matching pennies, although it is simple, has an extra dimension of 
complexity due to the fact that players do not know the opponents decision. 
 
In general, a game should be concerned with three elements. Move changing either by 
chance or by personal, the knowledge that one might have or not have, and the payoff 
function.3 
 
The mathematical approach that it will be followed to explain how everything works 
is based on the approach that Guillermo Owen followed in his book Game Theory, 2nd 
edition, in 1982.  

                                                 
1 Morton Davis (1970), ’Game Theory - A non technical introduction’  Rev. Ed. , p.4, Basic Books, Inc. 
2 Owen Guillermo (1968), ’Game Theory’  1st ed. p.2, W. B. Saunders. 
3 Owen Guillermo (1982), ’Game Theory’  2nd ed. p.1, Academic Press,Inc. 



 11

2.2 Discussion and background theory 
 
2.2.1 Definition of a game 
 
We can represent a game by a ‘game tree’ , also called a ‘ topological tree’ . It includes 
vertices, which are a collection of nodes, which are connected by arcs, straight lines. 
That is a connected figure that does not include simple closed curves. So, if we have 
vertices A and B, there is a sequence of arcs and nodes that is unique and joins vertex 
A and vertex B. 
 
If in a topological tree there is a distinguished vertex A, and the sequence of arcs 
joining A to C passes through B then we say that vertex ‘C follows B’ . We say that C 
follows B ‘ immediately’  if B is just before C and an arc exists that joins B to C. Also 
we say that a vertex is terminal if no other vertex follows after it. 
 
 
2.2.2 General Definitions4 
 
A) A topological tree G, of a game G, with a distinguished vertex A is called the 
starting point of G. Since a game always has a starting point. 
 
B) The payoff function is a function that assigns an n-vector to each terminal vertex 
of G. That gives the payoff when the game is finished. Mathematically is represented 
by: )),...,((...),...,),,...,((),...,,( 121121 nnnn ssppsspsssp =  where player i  is using 

strategy �Î iis . 

 
C) A partition of the non-terminal vertices of G into n+1 sets 0S , 1S , …, nS , called 

the player sets. That is a partition of the chance moves 0S  and the player (n) moves 

into iS , …, nS . 
 
D) A probability distribution is defined at each vertex of 0S , among the immediate 
followers of this vertex. That is to define a random scheme at every chance move. 
 
E) For each ni ,...,1=  a sub partition of iS  into subsets j

iS , called information sets, 
such that two vertices in the same information set have the same number of immediate 
followers and no vertex can follow another vertex in the same information set. This 
means players moves are divided into information sets. The players know the 
information set are following but the vertex of that information set is unknown to 
them though. 
 
F) For each information set j

iS , an index set, an index set j
iI , together with a 1-1 

mapping of the set j
iI  onto the set of immediate followers of each vertex of j

iS .   
 

                                                 
4 Owen Guillermo (1982), ’Game Theory’  2nd ed. p.2-8 Academic Press, Inc. 



 12

G) A strategy for a player i  is a function that assigns to every information sets j
iS  of 

player i , one of the arcs that come after a representative vertex of j
iS . 

 
H) We define a set with all strategies� i  for the player i . 

 
Lets take for example a simple game of Heads and Tails. Player A chooses first. Then 
Player B chooses without knowing what Player A has chosen. If they both have 
chosen the same, then Player A wins a pound from Player B. But if the selection of 
pennies side was different then Player B wins a pound from Player A. 
 
The topological tree for this simple game is shown below. At each terminal vertex 
there is a vector that shows the payoff function. At the other vertices before the 
terminals, the player whose turn it is to play is shown. Moves that belong to the same 
information set are shown by the red line, which encloses them.  
 
      START 

 
 
In a game, there sometimes exists a point, one or more, that is called equilibrium 
point. That point(s), gives the players a stable outcome associated with a pair of 
strategies. This point is always considered to be stable due to the fact that if a player 
changes his strategy by his own will and the opponent does not then the former is hurt 
by that change. If equilibrium points exist then in general we can find them easily. 
 
Definition: The point ( 0X , 0Y ) is called equilibrium situation if for any X , Y :  
 

H ( X , 0Y ) £  H ( 0X , 0Y )£  H ( 0X ,Y )  

 
For X  to be the optimal strategy for Player A, and Y  to be the optimal strategy for 
Player B.  
 
In a game G we will call normal form of the game a matrix that its rows and columns 
represent the strategies of Players A and B respectively. For example the Heads and 
Tails game described above has the normal form: 
 

 
            Heads Tails 
Heads   � �1,11,1 --  

Tails     � �1,11,1 --  
 

 



 13

Where Player A has the strategies Heads [ ]1,11,1 --  and Tales [ ]1,11,1 --  and 

Player B has the strategies Heads �
�

�
�
�

�
-

-

1,1

1,1
and Tales �

�

�
�
�

�
-

-

1,1

1,1
. 

 
This particular game though does not have any equilibrium points, due to the fact that 
players try to outguess each other’s strategies keeping their own strategy secret. In 
games with perfect, complete information though equilibrium points and strategies 
exist. 
 
 
2.2.3 The Two-Person, Zero-Sum Games 
 
These are games that played by two players or two teams, against each other. That is 
why they also called strictly competitive games. They are referred to as zero sum 
because they work as a closed system. That is everything that Player A will win is 
exactly the same amount that Player B will lose. Most parlor games are of this type. 
Since in this type of games whoever wins the other one loses, there is no need, and 
there is no point for negotiation between the players, or teams.  
 
Definition: If and only if at every terminal vertex the payoff function ( npp ,...,1 ) 

satisfies �
=

=

n

i
ip

1
0  then a game G is said to be of zero sum. 

 
Since the payoff function that assigns a vector to the winner at the terminal vertex is 
going to be the same number that the other player lost, so only the first component of 
the vector is given. The other component is the same as the first but negative. 
   
For the two-person, zero-sum type games, when equilibrium points exist, and if 
equilibrium points are more than one, then all of them will have the same payoff. Also 
if equilibrium points exist then they are called the solution of the game or the value of 
the game.   
 
Since in these types of games the payoff function is reverse analogical, if equilibrium 
points5 exist then an important theorem comes from this condition. It states that if 
( 21,ss ) and ( 21,tt ) are two equilibrium points then: 
 

a) ( 21,ts ) and ( 21,st ) are also equilibrium points, 
b) p ( 21,ss )=p ( 21,tt )=p ( 21,ts )=p ( 21,st ). 

 
This theorem though is not true for different type of games. 
 
Here, the normal form consists of a simpler matrix since we only need the first 
component of the vector. The payoff is going to be the element ija  of this matrix 

                                                 
5 Owen Guillermo (1982), ’Game Theory’  2nd ed. p.10 and also more detail can be found in the book of 
Binmore, Ken. Fun and Games - A Text on Game Theory. 1992-p.131-133. 



 14

when Player A chooses his ith row strategy and when Player B chooses his jth column 
strategy.  
 
For example, lets consider the game matrix below: 
 

M = 

�
�
�

�

�

�
�
�

�

�

123

656

321
 

  
If Player A chooses the first row as his strategy, and Player B chooses as his strategy 
the third column of the matrix, then the payoff6 function will be 3. Also in this game 
there is an equilibrium strategy. The 2,2a  element of the game matrix above is the 

biggest in its column and at the same time the smallest in its row.  
 
That is: iBijAj aaa ££   

 
This element is also called a saddle point, when it exists. In the Head and Tails game 
described above, saddle points did not existed. The importance of saddle points is that 
when they do exist there is no need for the Players to keep their strategies secret. They 
just stick to the specific strategy. Even if one of the Players outguesses what the other 
Players strategy is, there is no point in not following it since both players want to 
maximize their payoff and minimize the payoff of their opponent. In this type of 
games though, since the vector consists only of the first element, Player B will try to 
do that by minimising the payoff function since his outcome will be more when the 
outcome of Player A is going to be negative.  
 
 
2.2.4 Pure Strategies 
 
Pure strategy i  of a Player A is a mixed strategy having components equal to 0 except 
from the i th place: ( )

thi -
0...010...0  

 
Lets take for example the matrix game below that does not have any saddle points as 
the previous game: 
 

G = ��
	



��
�


62

48
  

 
Let us suppose that the numbers within the matrix represent the number of pounds. If 
Player A tries to select a strategy that will give him the biggest payoff, which here is 
the first row, Player B will understand it and vice versa. This is because we consider 
that both players are fairly clever. 
 
The proper thing to do, is for Player A to select the strategy ( )48 , for the reason that 
in this strategy A will win at least 4 pounds whereas the other strategy will give 
                                                 
6 More on payoff can be found: Binmore, Ken. Fun and Games - A Text on Game Theory. 1992.p.149. 



 15

Player A, only 2 pounds payoff. We will call this ‘gain-floor’  since it gives Player A 
the certain win of at least 4 pounds. The gain-floor is denoted by: 

 
For Player B, the choice is to select the second strategy. The conditions of the choice 
will be the same. This is called the ‘ loss-ceiling’  and in this case will be three pounds. 
The ‘ loss-ceiling’  is denoted by: 

 
Also ©

Av £ ©©
Bv . When the two are equal then saddle points exists. If not, then we know 

that the game does not have any saddle points. If a game does not have any saddle 
points, both Players A and B must keep their strategies secret in order to do better. If 
they do not manage to keep their strategies secret then the best they can hope for, is to 
get either the ‘gain-floor’  or the ‘ loss-ceiling’  respectively.   
 
 
2.2.5 Mixed Strategies 
 
It is always better for a Player to keep his strategy secret, but as in the previous 
example though, a clever Player can reconstruct his opponents strategy by thinking “ if 
I was my opponent, what would I select…?” At the same time if players choose 
strategies irrationally though, then there is no point for analysing it. The solution is 
that the players should choose their strategies randomly but under a rational 
randomization scheme. 
 
In general, a mixed strategy of a player of a no cooperative game is a mixed strategy 
that gives the probability weight to all pure strategies available to the players. Players’  
mixed strategy is a probability distribution on the set of the players’  pure strategies. 
When a player has a finite number of pure strategies, m, a mixed strategy is a vector 
with dimension m, such that: 
 

),...,( 1 mxxx = , Which satisfies 0³ix  and 

 �
=

=
m

i
ix

1

1.  

 
In a game G the payoff when Player A chooses a mixed strategy x and Player B 
chooses a mixed strategy y, will be: 
 

G ( yx, ) = ��
==

n

j
jiji

m

i

yx
11

a . In a matrix notation that would be represented as: 

 
G ( yx, ) = x G Ty  



 16

Now if Player B discovers Players A strategy, then Player B will choose y  so as to 
minimize G( yx, ). That is because if Player A uses strategy x  his gain-floor will be 

T

Yy
yxxv G=

Î
min)( , and TyxG  is the average of the payoffs for Player A when uses 

strategy x  against Player’s B pure strategies. Therefore, a pure strategy j will be used, 
to get the minimum by: jxxv .min)( G= , with jx .G  to be the jth column of the game 
matrix G.  
 
So Player A should choose strategy x  in order to make )(xv  maximum, and therefore 
to obtain: jxv

jXx
A .minmax G=

Î
. This x  strategy for Player A is called the maximin7 

strategy. The number Av  that we get is called the value of the game for player A.  

 
The same concept stands for Player B as well, meaning that to obtain the ‘ loss-
ceiling’  T

i
i

yyv .max)( G= , he has to choose strategy y . Here, the .iG , is the ith row 

of the matrix G. Furthermore, as with Player A, Player B will choose y  in order to 

obtain: T
i

iYyB yv .maxmin G=
Î

. 

This y  strategy for Player B is called the minimax8 strategy. The number Bv that we 
get is called the value of the game for player B. 
 
So, in conclusion to that, if a Player chooses a mixed strategy, the payoff will be the 
same whatever strategy his opponent will choose. That means both players will get 
the payoff on average. 
 
 
2.2.6 The Minimax Theorem 
 
The Minimax theorem, which was given by von Neumann and proved by him in 
1928, is one of the fundamental and most important theorems of game theory. It states 
that we can assign a value to all finite two-person zero-sum games. This value, V, is 
the average amount that Player A is able to win from player B when both players play 
sensibly. This is true because of the following reasons: 
 

a) There is a strategy that Player A can follow that will protect his payoff return 
of the value V. Player B can not do anything to prevent Player A from getting 
an average win of V. For this reason Player A will not compromise with 
anything less than V. 

  
b) There is a strategy that Player B can follow that guarantees that Player B is not 

going to lose more than the average value of V. 
 

c) Since the games are of zero-sum, whatever Player A wins, Player B must lose. 
Player B tries to limit Player’s A average return of V, since Player’s B aim is 
to minimise his losses. 

 
                                                 
7 Owen Guillermo (1982), ’Game Theory’  2nd ed. p.13-14 
8 Owen Guillermo (1982), ’Game Theory’  2nd ed. p.13-14 



 17

The last assumption is very important, because in games that are not zero sum type, 
statement c does not hold. Those games are called non-zero-sum type and the payoff 
function is not equal in the way that whatever Player A wins, Player B has to loose .It 
does not hold because Player B is able to limit Player’s A winnings, and Player A will 
have to do so. This is also the reason that equilibrium points can have different payoff 
functions in non-zero-sum games and some can be more attractive than others9.   
 
More formally, when X and Y are mixed strategies for Player A and Player B 
respectively, and let G be the payoff matrix, then: 
 

 
VYXYX T

XY

T

YX
=G=G maxminminmax  

 
 
Where V  is the value of the game and X and Y are the solutions. When more than 
one optimal mixed strategy exists, then there exists infinitely many. 
 
Lets take for example the game matrix below: 
 

=G ��
	



��
�


43

21
 

 
The first row is ( )21 . The minimum between the two elements is 1. The second 
row is ( )43 . The minimum between the two elements is 3. The maximum between 

these two minimums is 3. Now lets take the two columns. The first column is ( )T31 . 

The maximum element between the two is 3. The second column is ( )T42 . The 
maximum between the two is 4. The minimum between these two maximums is 3.  
So 3minmax =ijji

a  and 3maxmin =ij
ij

a , so ijji
aminmax = ij

ij
amaxmin . Furthermore, 

the element 1,2a , which has the value 3, is the value of this game. 

 
Below is an example of a matrix game that ijji

aminmax ¹ ij
ij

amaxmin  and that is why 

equilibrium situations do not exist in this game. 
 

��
	



��
�


-

-
=G

11

11
 

 
The maximum of the minimums of the rows here is –1. The minimum of the 
maximums of the columns is 1. That is -1¹ 1. 
 
Even though it is not certain what will happen in this game, one thing is certain: 

ijji
aminmax £ ij

ij
amaxmin . That is Player A, should win at least the value of his ‘gain-

                                                 
9 Morton Davis (1970), ’Game Theory - A non technical introduction’  Rev. Ed. , p.38-39.  



 18

floor’ . And also, Player B should loose at the most what the value of his ‘ loss-ceiling’  
is. 
 
 
2.2.7 Optimal Strategies 
 
Definition: A row ith in a matrix G is said to dominates10 another row kth when 

jkji aa ,, ³  for all j  and jkji aa ,, >  for one j  at least. 

 
Definition: A column jth in a matrix G is said to dominates another column mth when 

miji aa ,, £  for all i  and miji aa ,, <  for one i  at least. 

 
This means pure strategies can dominate other pure strategies, since in a game matrix 
G, strategies are represented by rows and columns. The undominated strategies in a 
game are always better than the ones that can be dominated. 
 
So, in a matrix game G if kii ,...,1  rows are dominated, then Player A has the optimal 

strategy X  with 0...,1 === iki XX . The same holds for Player B and column 

domination. With all the dominations of rows and columns the matrix game G 
becomes smaller and furthermore it is easier for us to work.  
 
Lets take for example the game matrix: 
 

�
�
�

	




�
�
�

�


=G

4628

61042

8204

 

 
The third row, ( )4628 , dominates the first one, ( )8204 . 

The 2nd column, ( )T240 , dominates the 4th one, ( )T468 . 
Then the 2nd column dominates the 3rd one.  
 
After these three dominations we get the game matrix G that is a 2x2 matrix: 
 

 
 
When a saddle point exists, an element jia ,  that is the minimum in its row and 

maximum in its column, then it is easy to find the optimal strategies. In this case, the 
pure strategies i  and j  are going to be the optimal strategies for Player A and Player 
B. Also, if X  and Y  are the mixed strategies of Player A and Player B respectively, 

                                                 
10 More about domination see: Binmore, Ken. Fun and Games - A Text on Game Theory. 1992-p.146. 



 19

and 1=iX , and 1=jY , and also the rest of the components are equal to zero, then X  

and Y  are going to be optimal strategies as well for Players A and B.     
 
 
If no saddle points exist, and the game matrix G is a 2x2, then we follow the way that 
solves “2x2 Games” . We get the optimal strategies from the following two equations: 
 

 

 
TH

H

JJ
J

X
G

G
=  ,   

TH

TH

JJ
J

Y
G
G

=  

  
 
Also we can get the value of the game as well by: 
 

 

 
TH JJ

V
G

G
=

||
  

 
 
Where J is the vector (1,1), HG  the adjoint of G, and || G  the determinant of G. The 
example11 below, it is based on this particular case. Consider the matrix game G 
below with no saddle points and HG  being the adjoint of G: 
 

��
	



��
�


-

=G
21

01
   ��

	



��
�


=G

11

02H  

 || G =2 

)1,3(=GHJ   

)2,2(=G TH J  

4=G TH JJ .  
 
From the above, we get the following strategies:  
 

 
 

The payoff value will then be: 
 

  
 

                                                 
11 The example is taken from Owen Guillermo (1982), ’Game Theory’  2nd ed. p.26 



 20

Other type of games are the “ n´2  and 2´m  Games” . In these kinds of Games, one 
of the two Players has only two strategies. For the n´2  games Player’s A problem is 
to make }{min)( 2211 xaxaxv jjj

+=  the maximum. 

21 1 xx -=   

 
So:   

 
 
Then, since )(xv  is the minimum of all the linear functions, n, of 1x , a single variable, 
we can plot all these and their minimum )(xv  is going to be maximized by graphic 
methods. Lets take for example the game matrix G: 
 

��
	



��
�


=G

01228

10264
  

 
The functions jaxjaa j 1212 )( +-  can be plotted easily since they all pass from the 

points ),1( 2 ja  and ),0( 2 ja . The plot is going to look like the plot below: 

 

 
 
Where the red line represents the )(xv  function and X is the highest intersection point 
of this red line. Since the abscissa of that point equals to 2/7 and ordinate equals to 
17/7, then we get that the value of this game is 7/17=v  and the optimal strategies 
are )7/2,7/5(=x . 
 
Another type of games is the “Symmetric Games”12. Symmetric games are the ones 
that their matrices are skew-symmetric. A skew-symmetric matrix is a matrix that its 

jiij aa -=  for every i  and j . For example the game matrix below is skew symmetric: 

 

�
�
�

	




�
�
�

�



-

-

-

=G

041

402

120

  

 
Therefore, the above is a symmetric game.  
 
                                                 
12 More about symmetric games can be found in the book: Owen Guillermo (1982), ’Game Theory’  2nd 
ed. p.28 



 21

The value of the game, for symmetric games, is always zero. Furthermore, if Player A 
has an optimal strategy X then X is an optimal strategy for Player B as well. 
 
Since matrices represent games, elements of matrices can be treated as equations’  
coefficients. That is why and how linear programming comes to play.  
 
 
2.2.8 L inear  Programming 
 
Generally, linear programming is a method for handling complex problems arising in 
the direction and management of large systems. Linear programs are problems of 
maximizing and minimizing linear functions that are called objective functions. They 
are focus to linear constraints. The constraints might be equations or variables. 
 
The mathematical form is to find ),......,,( 21 mxxx  in order to maximizez , where z is: 
 

 
 
with nj ,....,2,1=  and 0³ix .  
 
Where z  is called the value of the program when maximized. The solution of any 
matrix game can be represented as a linear program. When Player A uses his strategy 

),......,,( 21 mxxx  then he can expect the minimum a number equal to l , where l  is:  
 

l³� iij xa   

 
For nj ,....,2,1=   
 
So in order to get an optimal strategy for Player A, we maximize l  subject to 
 

0
1

£+- �
=

l
n

j
iij xa   

 
with nj ,....,2,1=    and  
 

�
=

=
m

i
ix

1

1  

 
with 0³ix  and mi ,....,2,1= . 
 
 
 
 
 



 22

2.2.9 Simplex method 
 
Many activities of organisations can be seen and represented as linear programming 
problems as described above. Simplex method is a way that George Dantzig 
represented in a conference in 1949 for solving these problems, where it became 
clearer that the application where this was to be applied was quite wide. “The simplex 
method is an iterative procedure that proceeds from a vertex of the feasible region to 
an adjacent vertex, moving in a direction that improves the objective function”13 
 
Over the last 40 years, they have only been some computational improvements have 
been made. Recently some methods called interior point methods have been 
developed, which are effective in some problems. 
 
The detailed algorithm is difficult to be described precisely here, because of the 
various choices of basic variables and rows that the notation copes in the tableau that 
they will be solved. 
 
But for a better understanding a geometrical example14 will be used here. For example 
to maximize yxw += 2  subject to: 

,1£x  
,1£y   

,322 £+ yx   
.0, ³yx  

 
 Consider the following hyper polyhedron below. 
 

 
 
The area shaded in grey is the constraint set. The slope of the objective functions is 
shown by the arrow. Starting from the origin, w  is getting increased along any of the 
edges that start from the origin. If we take for example the edge that ends at (1,0), 
then w  is increased towards (1,1/2).  Also, at this point, w  decreases along both of 
the edges that meet at (1,1/2). Therefore, the point (1,1/2) is the solution. The simplex 
method solves this kind of problems algebraically. 
 
 
                                                 
13 Brigden, Michael Lecture Notes for MA30087: Optimization methods of Operational Research. 
University of Bath – UK, 2004. 
14 The example is taken from Owen Guillermo (1982), ’Game Theory’  2nd ed. p.41-42 



 23

The simplex algorithm can be found in detail with many examples as well as the 
simplex tableau and the simplex method in Michael BrigdenÁs lecture notes for the 
MA30087-Optimization methods of Operational Research module at university of 
Bath.  

 
 
2.3 Summary 
 
People over the years solve game theory problems in many different ways depending 
on what the type of the game is. It was concluded that the best way of solving any 
given game matrix G that is of two-person zero-sum type, is with the use of linear 
programming and with the help of the simplex method. Examples of calculators that 
solve game matrices can be found on the Internet at: 
  
URL: ‘www.mkaz.com/math/MatrixCalculator.java’  
URL:‘http://math.hws.edu/eck/cs124/javanotes1/c5/s1.html’  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 24

�
� �������� �

� ������� ������ ���� ����� ���
� ������� ������ �������������

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

In this chapter, all the methods that were used 
for collecting and gathering the requirements 
needed for the development of the system are 
explained from the initial steps to the complete 
and final requirements specification… 

 
 

 
 
 
 



 25

3 Requirements Analysis &  Requirements 
Specification 
 
 

3.1 Requirements Analysis 
 
 
3.1.1 Introduction 
 
This section is concerned with an in-depth analysis of the project, system domain. 
Requirements by definition is what the system is suppose to do, in what way it will do 
the various tasks that the users require, as well as things the system should not do. It is 
the functionality of the system. It is of great importance that the developer will truly 
understand what the stakeholders want from the system from the initial stages in order 
to develop the system correctly fulfilling the users desires. The failure of many 
systems has been traced back to the requirements elicitation and analysis. So it is of 
vital importance not to just get the requirements right, but get the right requirements 
as well.    
 
 
3.1.2 Scope of the product 
 
The scope is to develop a program that will be able to calculate the value of any given 
dimensions matrix game. The product will also be able to find the optimal strategies 
for the two players as well as give to the user feedback for every step of the procedure 
made in finding the final solution. This product can be used by maths students, 
computer science students, who want to check their results, by lecturers to teach game 
theory or by anyone that is interested in game theory. Also, this system can be used 
from economists to find equilibrium points for some strategies that they may want to 
pursue.  
 
 
3.1.3 Purpose of the product 
 
The purpose of this product is to give feedback and quick solutions to matrix 
problems, value of a game, as well as optimal strategies for the two players. The 
product can be used for educational purposes as well as for a quick calculator for 
game theory problems. Also, if the data will be given in another format the calculator 
can solve linear programming problems with simplex method. 
 
 
3.1.4 Requirements Elicitation and Analysis  
 
Requirements elicitation is the process that the requirements can get discovered and 
gathered in order to guide the developers in developing the system right and also most 
importantly the right system. 
 



 26

Figure 3.1.4 Requirements analysis process15: 
 

 
 
3.1.4.1 Sources of requirements 
 
The first method that was used was interviews with potential users, such as computer 
scientists, mathematicians, PhD students, economists and lecturers of the domain. 
Notes were kept in each interview for later use and analysis. By doing that though it 
was realised that something more was needed, since these people were the actual 
people that would use the system in the future.  
 
From the interview notes were collected, some guidelines were raised. Then with the 
help of the notes and some imagination of the system some questions were written in 
order to get even more useful information from the users. The second method that was 
then used was questionnaires. 
Questionnaires were given to people with different background in connection with 
game theory and linear algebra. People that do or did maths in the past were more 
familiar so they were preferred. That is why more than 50 percent of the 
questionnaires were given to them. Some of the questionnaires can be found in the 
appendices. 
 
After collecting back all the questionnaires and reading through each one of them 
what all the people said and wrote, a very good picture of the system started getting 
created. After the first two methods, a third method was used to get a better 
approximation for what had to be developed. This did not involve users. The method 
used then was the method of brainstorming. Having all the information inside a room, 
a blackboard was used to write on it different ideas for the creation of the system. 
Staring the blackboard for a few hours and by reading again and again questionnaires 
and notes a complete picture of the system requirements was developed. 
 
Additional to the above three methods, a supplementary method was used as well. 
That was the evaluation of already existing systems. It was really helpful for finding 
out what other people did in the past and how they approached different aspects of the 
problem as well as different methods that they have used for solving the problem, 

                                                 
15 Ian Sommerville, Software Engineering, 6th edition, p.125 



 27

although it did not have the users involvement like the first two methods. Some of 
them were really efficient in contrast with some others that were really slow and 
inefficient. Some of them were giving wrong values as well. Examples of some of the 
systems that were evaluated can be found in the appendices. 
 
The four methods used were proven to be very efficient since in a relatively quick 
amount of time requirements were gathered and a picture of how the system would 
work was generated. Moreover, in the questionnaires a question was included for 
what the system should not do. In this way information was gathered for what to stay 
away from and how to stay away from it, in the designing process.   
 
After the elicitation of the requirements two main methods were used for analysing 
these requirements. The methods used were the ‘CRC’  cards and the Use Cases 
method. 
 
Definition: “A Use Case is a sequence of transactions in a system, whose task is to 
yield a measurable value to an individual actor of the system.” 16 
 
Use cases are really good in representing the functionality of the system throughout. 
Each use case that has been used for this project includes a title, a primary and a 
secondary actor, precondition, goal in context, scope and level, triggers, success end 
condition, failed end condition and priority. The use cases can be found in the 
appendices. 
 
Definition: “A Class Responsibility Collaborator (CRC) card is a physical index card 
that is annotated and used in a group setting to represent a class of objects the 
behaviour and interactions of both class and object.”17 
 
 

3.2 Requirements Specification 
 
In this section, all the requirements that were gathered from the interviews with 
potential users, questionnaires, evaluation of existing systems and brainstorming are 
included, as well as requirements that arise from the literature review. 
 
The product is going to consist of seven main parts. The first part is going to be the 
“mode selection”  that will give the user the option to select whether feedback is to be 
provided or just quick solutions and results. Then the “matrix dimensions insertion”  
will follow, which here the user is going to specify what dimensions the game matrix 
will have. After that a “confirmation step”  will follow, where the system is going to 
display to the user what dimensions have been inserted and ask the user whether to 
proceed or not. Then the “matrix elements insertion”  will follow where the user puts 
in the system all the elements of the game matrix and again a section follows for 
“confirmation”  where a complete display of the game matrix is shown to the user. 
Then at the next step, the system “checks”  how the specific problem can be solved 

                                                 
16 Jacobson©s Ivar Object-Oriented Software Engineering: A use case Approach (ACM Press 
S.)  
17 Brown, Pad Lecture notes for K268 SENG2100: Object Oriented Analysis and design. Dublin 
Institute of Technology, 2004  



 28

and informs the user about the solution method that is going to be performed. Then 
the system will solve the problem in the way that is appropriate and as for the “ final 
step”  the system will give back to the user the value of the game together with the 
optimal strategies for the two players and any supplementary feedback needed for the 
user to understand how and why the solutions where generated. 
 
 
3.2.1 Requirements drawn from L iterature Review 
 
The requirements that are described in this section, are the requirements that come 
from the literature review. They are more concerned with the mathematical theory 
behind the program. 
 

1. The program must be able to solve any dimension two-person zero-sum 
game. 

 
2. The program should be able to decide if any saddle points exist within a 

matrix game. 
 

3. The program should be able to find the saddle points when they exist. 
 

4. The program should be able to use the simplex method in the case of 
absence of saddle points. 

 
5. The program should be able to maximize a linear function subject to linear 

constraints. 
 

6. The program should be able to minimize a linear function subject to linear 
constraints. 

 
7. The program should be able to find the value of the game by maximizing 

(minimizing) a linear function, using the simplex method. 
 

8. The program should be able to find the optimal strategies for the two 
players using the simplex method. 

 
 
3.2.2 Functional Requirements 
 
Functional requirements are the requirements that describe the functionality that the 
system provides. 
 

1. The user must be able to put any matrix dimension, m´ n, that the user desires. 
 

2. The system must include a method for error checking on the matrix 
dimension. This must include: 

 
a. The system must understand when the user did not put an integer or a 

positive number for the row dimension of the matrix. Also the system 



 29

must understand when a zero dimension was given as input for the 
rows of the matrix. 

 
b. The system must understand when the user did not put an integer or a 

positive number for the column dimension of the matrix. Also the 
system must understand when a zero dimension was given as input for 
the columns of the matrix. 

 
c. The system must understand when the user did not put numbers for the 

row and column dimensions of the matrix. 
 

d. The system should also be able to check that the user did not leave any 
of the fields blank. 

 
e. System must be able to explain to the user what the error was in the 

case of the existence of an error. 
 
3. The system should provide the user a facility for selecting between different 

modes. 
a. The system should provide a mode for providing feedback. 

i. The system should be able to show all the tableaus and pivots 
chosen for each tableau to the user together with the pivoting 
step at each step of the algorithm. 

 
b. The system should provide a mode for quick results.  

 
c. The system must understand and not fail when the user has selected an 

invalid option for the mode or when the user left the selection field 
blank. 

 
4. The user should be able to enter any number when inserting the elements for 

the game matrix. 
a. The system must include a method for checking that the user has 

entered numbers and not something irrelevant. 
 
b. The system should be able to accept any double numbers for the 

elements of the matrix. 
 
c. The system must be able to accept negative numbers for the elements 

of the matrix. 
 
d. The system must be able to check that the user did not leave any of the 

fields blank. 
 
e. System should be able to explain to the user what the error was in the 

case of the existence of an error. 
 

5. The system must display to the user the game matrix, dimensions and 
elements, which has been inserted before solving the game.  

 



 30

6. The system must be able to check how the problem can be solved. That is 
either by finding a saddle point, which is when minmax is equal with maxmin, 
or if not then by using linear algebra and the simplex method. 

a. The system must display to the user how the game matrix is going to 
be solved. 

 
b.  The system must be able to proceed to the method that is going to be 

used for solving the problem automatically. 
 

7. The program must be able to solve the problem by any method needed for 
solving the desired game. 

a. The program should be able to give feedback for what is going on to 
the user. 

 
8. The system must be able to display to the user the final result, the value of the 

game, together with the optimal strategies for the two players. 
 
9. The system must provide a way for the user to exit the program at any given 

time. 
 

10. The system should work in a way that minimises the possibilities for errors 
from the user. System must interact with the user only when necessary.  

 
11. The system must guide the user in a straightforward manner. 

 
 
3.2.3 Non-Functional Requirements 
 
Non-functional requirements are the requirements that are not concerned with the 
functionality of the system. They do not directly consider the specific functions that 
are going to be delivered by the system. They are separated into three main 
categories: 

 
- Product Requirements 

o These specify the behaviour of the product. 
 

- Organisational Requirements 
o These come from organisational policies and organisational 

procedures. 
 

- External Requirements 
o  These come from irrelevant factors. They are external to the 

system and the system s development process. 
 
 
3.2.3.1 Product Requirements 
 

- Usability Requirements 
 



 31

o The system will be developed according to the six usability principles 
specified by Ian Sommerville. These are: 

 
� � User familiarity 

·  The interface should use terms and concepts that come 
from the experience of the people that will make the 
most use of the system. In the two-person zero-sum 
calculator case, the people that are going to use it more 
frequently are mathematicians, economists and 
computer scientists. So the system must have a 
consistent UI throughout the program.  

 
� � Consistency 

·  The interface should be consistent. Same operations 
should be performed in the same way. For example, the 
user will have to put the matrix dimensions. Later when 
the system will require the user to fill the matrix, the 
system should use the same way for asking the user to 
do it.  

.  
� � Minimal Surprise 

·  Users should never be surprised by the behaviour of the 
system. For example if the user inserts zero for the 
dimensions, system should explain that this is not 
allowed, and not throw the user out of the program. 

 
� � Recoverability 

·  The interface should include mechanisms to allow the 
user to recover from errors. For example a “Cancel”  
button can be included in the system for the user to 
cancel an operation. 

 
� � User Guidance 

·  The interface should provide meaningful feedback when 
errors occur and provide context-sensitive user help 
facilities. In the case of the calculator a detailed step-by-
step description of the tableaus together with all 
relevant information for what and why each thing the 
program did. 

 
� � User Diversity 

·  The interface should provide appropriate facilities for 
different types of the system users. The system should 
therefore provide facilities for novice and experienced 
users of the system, without hindering either one or the 
other. For that purpose the system will have two modes 
in the beginning. 

 
o Also apart from those requirements, some other usability requirements 

that are not specified in the above are:  



 32

 
� � Going from the starting point to the end point should be easy 

for any kind of user and the system should be able not to give 
many and complicated options to the user but to do everything 
for him/her. That is why the calculator will ask the user only 
when something is needed at the time needed. 

 
� � The system should also give the user options that are easy to 

choose, such as “OK” in order to proceed with the operation, or 
”Cancel” . In that way mistakes are minimised and user does not 
have to think of what to do. 

 
- Efficiency Requirements 
 

o Performance requirements 
� � The system must be quick and correct 

 
� � The system must be able to find solutions in less than 2 seconds 

from the time the user clicks enter. 
 

� � The user should be able to restart from the beginning in less 
than 3 seconds. 

 
o Space Requirements 
 

� � The program should take no more than 5 Mbs to store on the 
computer. 

 
- Reliability Requirements  

 
� � The system will not fail when completely wrong data has been 

inputted. 
 

� � The system will automatically proceed to the next stage if 
possible, otherwise it will tell the user what went wrong and 
how that can be avoided next time.  

 
- Portability requirements 

 
� � The system should be able to run on any operating system 

including Windows, Linux, and Mac operating environments. 
 

� � The system should be able to run even in slow computers with 
32 Mb of RAM. 

 
3.2.3.2 Organisational Requirements 
 

- Delivery Requirements 
 

o Deliver Requirements 



 33

 
� � The system must be operating fully by Monday the 16th May 

2005.  
 

� � The deliverable shall consist of a single document in seven 
parts: the literature review, requirements document, design 
document, detailed design and implementation document, test 
plan with testing and a user manual. 

 
� � A securely attached and clearly labelled CD-ROM containing 

the calculator ready for installation. 
 

- Implementation Requirements 
 

o The programming language that is going to be used is Java. 
 

o The platform, environment that is going to be used is Eclipse 
 
3.2.3.3 External Requirements 
 

- Ethical Requirements 
 

o The system should not be offensive within any culture where the 
system will be made available. 

 
3.2.4 Hardware Requirements 
 
Hardware requirements are the requirements that are describing what the system 
needs in order to operate in connection with the hardware. 
 

- The system will require: 
o A computer with: 

 
� � Any processor 
� � Any operating system (e.g. Windows, Linux, Mac) 
� � 32 Mb of RAM 
� � 20 Mb of hard disk available 
� � A keyboard 
� � A mouse 
� � A monitor  
� � Optionally a printer so that all the results of the matrix game 

can be printed together with the feedback for each game. 
 
3.2.5 User  Requirements 
 

·  Some modest knowledge on linear algebra 
·  Some knowledge on game theory 
·  Some basic computer skills 
·  Interest in the area 



 34

3.3 Requirements Validation 
 
Requirements Validation method, or activity, is for checking that all the requirements 
are realistic, consistent and complete. Therefore, performing this activity, errors are 
being discovered in the requirements. These errors have to be modified and corrected. 
Additional to that even new requirements will come to light during the performance 
of this activity.  
 
Requirements validation is extremely important because if there are errors in the 
requirements document, this can lead to extensive rework especially when the errors 
are discovered later during development or even worst during testing. 
 
The tests18 that are involved with the requirements validation include various checks 
like: 
 
1. Validity checks 
2. Consistency checks  
3. Completeness Checks 
4. Realism Checks 
5. Verifiability Checks 
 
To be able to deal with all these checks, Somerville suggests a number of techniques 
that can be used either in conjunction or individually to ensure that all the checks are 
made in the correct and appropriate way. These techniques are: 
  
1. Requirements reviews 
 

- Requirements are analysed systematically by a team of reviewers 
 
2. Prototyping 
 

- By demonstrating to the users a model of the system and then users can 
comment on that model whether it satisfies their needs or not. 

 
3. Test-case generation 
 

- Since requirements are ideally testable, if a test is difficult to be designed 
for, then it must be difficult or impossible to implement it. So that 
requirement will need reconsideration. 

 
4. Automated consistency Analysis 
 

- When the requirements are expressed as a system model, then CASE tools 
can be used to check if that model is consistent. The figure 3.3.119 below 
shows an automated consistency checking of requirements. 

 
 

                                                 
18 Ian Sommerville, Software Engineering, 6th edition, p.137 
19 Ian Sommerville, Software Engineering, 6th edition, p.138 



 35

Figure 3.3.1 
 

 
 
 
All these four methods are used in conjunction with each other for the purpose of the 
calculator requirements. The requirements evolution in connection with time can be 
seen in the figure 3.3.220 below.   
 
 
Figure 3.3.2 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
20 Ian Sommerville, Software Engineering, 6th edition, p.141 



 36

�
� �������� �
 ���!� 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this chapter, it is explained how the system 
is going to be developed. That involves how the 
system is split into units and how these units 
are going to be developed as well as how these 
units work, since some units involve methods 
and algorithms… 

 
 

 
 



 37

4 Design 
 
 

4.1 Introduction 
 
There are many ways of performing a software process and many models for all the 
different software process approaches. The model that was used for the purpose of the 
calculator development is the waterfall model. This model takes all the core process 
activities of specification, development, validation and evolution and represents them 
separately as requirements specification, software design, implementation and testing 
as separate process phases.    
 
This process is widely used for practical systems development. However, “ this 
approach is likely to be influential in the 21st century as assembling systems from 
reusable components is essential for rapid software development.” 21 For the purpose 
of the calculator development it is the most suitable one. The waterfall model, which 
takes its name from the cascade phase-to-phase structure, is also known as software 
life cycle. 
 
Figure 4.1 The Water fall Model22 
 

 
4.2 Module Overview 
 
For better understanding, the system has split up in different modules that together 
construct a complete system. Each module can be interpreted as a function or a 
collection of functions, that together structure the functionality of the system. Each 
module in this system depends upon another, but each one of the modules has a 
unique role and can be implemented and tested individually. The dependencies of the 

                                                 
21 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.44 
22 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.45 



 38

system as well as the general and complete system structure can be seen in the figure 
below: 
 
Figure 4.2 Modules Overview and modules relationships: 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Direction of dependencies 
 
 
Mode module – This is the mode that the user is going to select for the program to 
follow. It will have two options available to the user and these options will be either 
to select a feedback mode with explanations of every step the program follows in 
order to find the solutions or either a quick mode that will only provide the user with 
quick solutions.  
 
Data module – This module is included basically for handling the users input. It will 
contain routines for truth checking and also routines that will display to the user what 
he/she has inputted. 
 
MaxMin module – This is a utility module that checks if the game matrix that the 
user has inputted contains an element, which is itself a saddle point. That means 
maxmin is equal with minmax. If such an element exists then it directs the flow of 
control of the system to the solutions module, the last module of the system, since the 
solutions can be read off. 
 
Simplex method module – This module is the simplex method algorithm module. 
The flow of control reaches this module when saddle points do not exist and the 
program has to work another way for finding the solutions. It is itself a function of 
functions since the simplex method is a nested operations and steps algorithm. 
 

      Mode 

       Data  

Simplex 
Method 

    Maximin  

Solutions 



 39

Solutions module – This module is the final module of the system. The flow of 
control ends there independently of the direction that was followed. This module is 
responsible for reading off the solutions. Then it displays the solutions to the user.   
 
 

4.3 Data Structures 
 
For the purpose of this program different data structures are going to be used. The 
main one is a hierarchical structure that will be used for placing and positioning the 
elements of the game matrix. Also, that hierarchical structure is going to be used for 
storing numbers in the tableau’s that are going to be used when performing the 
simplex method. Simple small data structure are going to used throughout the 
program for the storing of things like mode selection and labels of the final solutions.    
 
The hierarchical structure was chosen for the game matrix because it works like a 
tree. Since any given matrix is of 2 dimensions, then for every element in a row of 
that matrix, a series of more elements correspond to that element. For example the 
matrix below is a 4x3 matrix. The first row is composed from three elements. These 
are the elements “1” , 2” , ”3” . For every one of these elements, another three elements 
correspond to them. The tree representation for each node looks like the one below:    
 
Figure 4.3.1 
 
 
 

��
�
�
�

	




��
�
�
�

�



121110

987

654

321

 

 
 
 
Therefore, for the game matrix that the user is going to insert, the first row is going to 
be stored and then for every element of that row, a column of elements is going to be 
stored that corresponds to each element.  
 
The same hierarchical structure is going to be used for storing the tableaus of the 
simplex method. This can be seen in the Figure 4.3.2 below.   
 
That is, because every object in the first row will have a connection with every object 
in its column. Furthermore, when a comparison will be needed among all the elements 
of the same column for finding the pivot, this way is going to be more efficient, faster 
and easier to implement. 

 
 
 
 

3 

6 9 12 

2 

5 8 11 

1 

4 7 10



 40

Figure 4.3.2 
  

 
X1 X2 X3   

 
Y1 1 2 3 1 
 
Y2 4 5 6 1 
 
Y3 7 8 9 1 
 

-1 -1 -1 Answer
  
 
A small structure will be used for other sections of the system. The mode system for 
example will use a simple binary structure. After the user has selected the option that 
is desired, the system will store that as a simple Boolean operation and, as the system 
proceeds, in every step the program will recall the mode and act in the appropriate 
way. 
 
 
Figure 4.3.3 
 
 
 
 
 
 
 
 
 
 
A small structure will also be used for ordering and storing the labels of each one of 
the optimal strategies of the two players. The figure below describes that: 
 
 

1X  2X  … … nX  

 
 

1Y  2Y  … … nY  

 
 
Although the ordering and storing of the labels uses a small structure, later when the 
results will have to be stored and be displayed to the user in an ascending order, the 
system will use a hierarchical structure of the form that is displayed below: 
 
 

1X  2X  … … nX  

0.25 0.75 … … … 

Mode Yes 

No Continue 

Flow of Control 



 41

That is for every label of the game matrix, a value will correspond to it. This can also 
be seen as a tree with a one-child parent relationship. The diagram for this can been in 
figure 4.3.4 
 
 
Figure 4.3.4 
 

 
 
 
 
 
 

4.4 Mode Selection  
 
This will provide the user with two main selections. First selection is to proceed with 
feedback. This option is going to provide the user with a step-by-step description as 
well as general useful information for checking, learning and understanding the basis 
of game theory and linear programming and the simplex method. The second option 
available to the user is going to be a quick mode selection. By selecting this option, 
the user will be able to get quick solutions without getting feedback steps and 
generally information that will delay him from getting the solutions straight away.   
 
The mode selection is going to be implemented by holding into the memory of the 
system the selection that the user made. As the system will proceed, the system will 
remember the selection made by the user and will act the appropriate way.   
 
For example when the quick mode is selected, the system skips all steps that are 
involved with any output that was going to be displayed to the user as well as other 
feedback information and performs only those steps that are concerned in finding the 
solutions. In the same way, if the feedback mode is selected, the system will identify 
that, and in every step that will be performed the system will give the appropriate 
feedback to the user. 
 
  

4.5 Minmax Maxmin Method 
 
This important method will take the game matrix that the user will give to the system 
and will perform a check. It will check if maxmin is equal to minmax. If the method 
finds that the two are equal, then that means that the particular element of the game 
matrix is a saddle point and that also means that the program will not need to proceed 
with any further procedures in order to find the result.  
 
For example in the 3x3 matrix below, the maximum from all the minimums is seven. 
The minimum from all the maximums is seven as well. So both maxmin and minmax 
are 7, therefore equal. So since a saddle point exists, the element 31A  of this matrix, 

1 2 … … N 



 42

then there is no need for preceding any further. The program will skip everything that 
is followed and go to the final section where the solutions are. 
  

 
 
If saddle points do not exist, then the function will understand it and it will pass the 
flow of control to the simplex method, a method that includes an algorithm for finding 
the solutions. That is the value of the game and the optimal strategies for the two 
players. Below pseudo code is provided for the maxmin function. 
 
 
4.5.1 Pseudo-Code for  Maxmin function 
 
temp= 11A ; 
temp2= 1MA ; 
 
for  ( 11A    to    NA1 ) 
 {    
   for ( jA1    to    ijA ) 

     {  
if( temp > Aij   ) 
temp= Aij  

        }  
            if ( temp2   £    temp ) 
             {  
               temp2=temp;  
               }  
       }  
 
In a similar way, the system will include a function that is called Minmax. This 
function, will find the maximum elements from all columns of the game matrix and 
then the minimum among them, the opposite that Maxmin did, which is finding all the 
minimums from all the rows and then the maximum among them. 
 
After both functions find solutions, an operation is going to be performed to check 
whether these two functions give back the same number. If the number is the same 
then system will understand that saddle points were found. The system will then pass 
the flow of control to the final step of the program, to give the user the solutions. If 
the number is not the same, then it will pass the flow of control to the simplex 
function as stated above in order to work out the solutions. 
 
 



 43

4.6 Simplex Method 
 
Simplex method is the most important method of the system. It is basically a method 
that will perform the simplex algorithm. The flow of control reaches this method 
when no saddle points exist in the game matrix that the user has inserted. Then, this 
function takes the game matrix that the user has inserted and from the elements of that 
matrix the system creates a semantic tableau. Lets take the example of the 3x4 matrix: 
 

�
�
�

	




�
�
�

�



1211109

8765

4321

 

 
The system will then take this matrix and it will create the following semantic tableau, 
which will also be the starting point of the simplex method: 
 
Figure 4.6 

  
If negative elements exist in the original game matrix the system will make them 
positive by adding a number which is the same as the biggest negative. In that way the 
elements numbers in the matrix will be from zero and more. That number will be 
subtracted at the end, after finding the final tableau.  
 
The system will then follow a procedure for choosing a pivot. As long as negative 
numbers exist in the last row, the system will choose any column. After choosing 
column the system will divide each element of that column with the respective row 
element of the last column. The element that will have as a result the smallest positive 
among the three will be selected to be the pivot. This operation is going to be 
recursively done in the system until no negative elements remain in the last column. 
 
After finding the pivot, the system will then perform an operation that is called the 
pivot step. Basically the system will change all the elements in the matrix by doing 
the following calculations: 
 

·  The elements that belong to the pivot’s row will be replaced with an element 
that is the result of the original element divided by the pivot. 

 
·  The elements that belong to the pivot’s column will be replaced with an 

element that is the result of the original element divided by the pivot, together 
with a sign change. 

 
·  The elements that do not belong to pivot’s row or column will be changed 

with new elements that are the result of the original element minus the product 



 44

of the elements that are in the same row and column positions of the pivot, 
divided by the pivot. 
That is: A(i,j) = A(i,j) - A(p,j)A(i,q) / A(p,q) 

 
·  The pivot element it is going to be replaced by its reciprocal. 

 
Symbolically the above operations would be: 
 
 

�
�

�
�
�

�
--

¾®¾��
	



��
�


)/(/

//1

abcdac

aba

dc

ba
 

 
Where a  is the pivot, b  is any number in the same row as the pivot, c is any number 
in the same column as the pivot and d  is any number that does not belong in the 
pivot’s row or column.  
 
After the system has finished with the pivot step, it will exchange the X and Y labels 
that exist on the left column and at the top row of the pivot, respectively, as shown 
below: 
 

 
 
The system will continue to recursively perform the three last operations, selection of 
the pivot, the pivot step and the label exchange steps, until all the negative elements in 
the last row of the tableau become positive. 
 
After performing the recursive operations, at some point the system will detect that no 
negative entry remains at the bottom row. At that point, the system will manage to get 
the final tableau. The final tableau contains the optimal strategies for the two players 
as well as the value of the game matrix. 
 
The value of the game can be found at the bottom right-most place of that tableau. It 
is the reciprocal of that element. If the system has already added a positive big 
number in the beginning it will subtract it here. 
 
The optimal strategies for the two players can be calculated by dividing the values of 
the elements of the bottom row with the value of the game, for the first player. 
Similarly for the second player, we divide the elements of the right column with the 
value of the game. In this way the system will find the probabilistic answers for the 
two players. 
 
 



 45

4.7 User  Inter face Design 
 
The user interface design is very important, since this is a calculator for people. Users 
must find it simple and easy to use. It is very important that the system will be 
designed with an interface that is straightforward to use, that it will literally guide the 
users through all the steps of the system in finding the solutions. This section is 
divided into two sub-sections. The user input section and the user feedback section. 
 
 
4.7.1 User  input 
 
The system’s usability is based on the input that the user is going to provide. The way 
that the system is going to interact with users is through the mouse and the keyboard. 
Different operations will be performed in different ways. For example, the matrix 
game that the user will give to the system will be given by typing numbers from the 
keyboard. When the user will finish typing he/she can also use the mouse for pressing 
an “OK” button for the system to accept the matrix and proceed to the next step. Also, 
the user will be able to press the “enter”  button for complete keyboard interaction 
instead of using the mouse.  
 
 
4.7.2 User  feedback 
 
The system will give the user feedback for several different things. Two main 
methods are going to be used. The first method is with the help of a console, which is 
going to keep the user up-to-date with what is going on behind the scenes. Another 
method will be the use of pop ups for explaining and guiding the user throughout the 
program.   
 
 

4.8 Error  Handling 
 
As the error handling is important, the system will have mechanisms for recovering 
and retrieving from possible errors. For example, when a number format is not 
appropriate, the system will explain that to the user and exit, rather than showing to 
the user a big series of numbers and say that was the error.  
 
The system will also contain mechanisms to retrieve from bad user input. Whatever 
input the user puts even if that is completely irrelevant of what he/she should have 
inserted the system will understand it and exit. The system will give the user feedback 
for what went wrong in a nice and polite way. 
 
 
 
 
 
 
 



 46

�
� �������"�

 ������� ���!���
� ��
� ���� �������� 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the following chapter, all methods routines 
functions and algorithms that were used for the 
system’s development are described and 
explained in detail. Pseudo code is provided 
within the chapter for a better understanding…  

 
 
 
 
 
 
 



 47

5 Detailed Design and Implementation 
 
 
In this section, the procedures for implementation as well as decisions that were taken 
for producing the two-person zero-sum game calculator based on the design chapter 
that was described previously are discussed in detail. First, the tools and platforms are 
described and then the what follows is the important and more difficult steps that were 
more harder to implement and more vital in the system’s development procedure.     
 
 

5.1 High Level Implementation Decisions 
 
After a short investigation of what was available, the high level decisions were made 
for what and how to be used. The use of a top down method was also decided on 
because it seemed to be most appropriate since the system was divided into modules 
and these modules could be tested individually later on in the implementation and in 
testing. 
 
The implementation order, as stated in the design section, of the components is as 
follows: 
 

·  Mode component 
·  Data component 
·  Maximin Minimax component 
·  Simplex method component 
·  Solutions component 

 
Testing was carried out through all the stages of the top down development method 
when every one of the components above was implemented following the exact order 
that is stated above. 
 
 
5.1.1 Platform 
  
A decision was made about the system to be targeted in a Windows platform. That 
was mainly decided because the system would be mostly used by mathematicians and 
all the mathematicians that were involved at the requirements procedure stated that 
they do not like the Linux environment. Since the author is a computer scientist and 
familiar with the Linux environment it was decided that the system be compatible 
with both environments so the procedures that would be followed for the development 
would make the system compatible with all main platforms. This platform choice had 
a great influence in the other tools that would be used for development and 
implementation. These are described in the sections followed.  
 
 
 
 



 48

5.1.2 Implementation Language 
 
After considering the availability of languages, Java was decided to be the language 
for implementation. Java is a language that can directly interface with all the main 
platforms. Additional to that, the Java language offers an in-depth and various array 
manipulation methods that were extremely useful for the purpose of the development 
of the game theory calculator since matrices can be stored and manipulated in a Java’s 
2 Dimensional arrays. Furthermore, the author has some familiarity with Java and 
array manipulation and that made implementation faster. The alternative language 
was C due to the fact that the C language has pointers that may have been helpful 
when manipulating the tableaus and selecting the pivot, as well as when the pivoting 
step operation would have been implemented. The overall advantages though made 
Java to be selected as the one for the purpose of the implementation of the system. 
The decision about choosing Java influenced the selection of other tools as well.   
 
 
5.1.3 Development Environment 
 
The integrated development environment (IDE) that was chosen for developing and 
implementing the system is the Eclipse 3.0.1 platform with the Java plug-in. Eclipse 
has an excellent source browsing facilities that together with the syntax highlighting 
options that are provided make Eclipse very usable and user friendly. This made the 
development of the system quicker since the production of the code was done at a 
quicker rate. Furthermore, the use of this environment did not limit the requirement of 
operating system compatibility and the system did not loose its independence.     
  

 
5.2 Overall System architecture 
 
With the help of the requirements specification and the design section, the overall 
architecture of the system was decided. The overall structure is described in the next 
paragraph.   
 
After the user runs the program, the system displays to the user a popup page, which 
is a welcome page explaining what the program is all about and also in this popup 
page the user is asked what behaviour the system should have according to the user’s 
preferences. In this popup page there is a blank field that the user can use for typing 
what the option the system must follow. Two buttons are provided, one for accepting 
the user’s selection and proceeding and one for cancellation. After selecting the 
behaviour that the system will have, the system displays to the user a confirmation of 
the behaviour that was selected in the Eclipse console and the system continues by 
asking the user to define the dimensions of the game matrix that the system will solve. 
Afterwards, the user enters the rows and the columns dimensions in the appropriate 
fields that the system provides. Then the system gets these numbers and performs a 
truth check on them, so as to see if the numbers are valid. For example, a dimension 
with the zero number of rows is not a realistic dimension, as well as a negative 
number for defining the dimensions would not be appropriate. When the system 
approves the numbers that the user has inserted for the game matrix dimensions, a 
confirmation page is displayed to the user showing the dimensions entered, together 



 49

with a button for proceeding and a button for cancellation. When the user proceeds, 
the system guides the user to fill all the elements of the game matrix. In the fields that 
are provided to the user for entering the elements of the game matrix, the user is able 
to insert any number, negative or positive, with decimal or not, even zero for some 
elements of the game. This is because the system must accept any number for any 
element of the game. The system at this point will also check that the user has not 
inputted a string in the place of a number. After the completion of the construction of 
the game matrix, the system then displays to the user the game matrix that was 
entered for confirmation, and again as for the dimensions of the matrix, this screen 
has a button for proceeding and a button for cancellation. After the system has 
received the ok to proceed, it gets that matrix and with the minimax-maximin method 
function, it searches the game matrix for saddle points. If this method succeeds and 
saddle points exist then the value of the game is displayed to the user together with 
the solutions. If the method fails in finding saddle points the system continues by 
passing the flow of control to the simplex method function. The system at this point 
informs the user with a popup screen that saddle points do not exist and that simplex 
method is going to be used for solving this game matrix. The system then finds the 
solutions with this method and it then displays to the user the optimal strategies for 
the two players together with the particular value of the game. At all stages a console 
is used for a step-by-step description of what the system is doing and how the system 
does it. 
 
This is the overall structure of the system. A more detailed description for all the 
important components, methods, algorithms and functions is going to be described in 
what follows. 
 

 
5.3 Mode method 
 
The first page of the system is the mode page. This popup page appears after the 
program has started, consists of information about the system, a mode selection, a 
blank text field, two normal buttons, and a small exit button that is located at the top 
right corner. The information about the system mainly informs the user that this 
system’s usage is for solving two person zero sum games. Below that in the page, it 
displays that the user has mainly two options available for what behaviour the system 
can follow. These two options are the feedback mode and the quick mode. These two 
options are built in a Yes No manner, a binary way. That is, the system asks the user 
to fill the text field with a “Y”  letter for “Yes”  to give feedback. Thus the system 
follows a feedback mode, or an “N”  for “No”  to give feedback meaning a quick mode 
for quick results and solutions only. When the user has presses the “OK” button for 
the selection, the system stores that selection in a string variable and as the system 
proceeds, in every main step, if in that string the value is “Yes”  then feedback is 
provided in the Eclipse console. If the value of the mode string is a “No”  then all the 
operations are performed normally as before, apart from the ones that involve printing 
out feedback to the user.   
 
Below in table 5.3 some pseudo code is provided showing how the mode function is 
implemented. 
 



 50

Table 5.3 
 

 
String Mode= JOptionPane.showInputDialog("Press Y for feedback"); 
String Y="Y"; 
… 
… 
IF ( Mode.equalsIgnoreCase(Y))  
   {    
      System.out.println("Feedback mode selected"); 
     }  
… 
… 
IF (  Mode.equalsIgnoreCase(Y)  ) 
   {  
     System.out.println("This here is some feedback"); 
    }  
 

 
 
Table 5.3 shows the case that the user has selected the “Y”  for yes to feedback. If the 
user’s selection is  “No”  then the bottom line “This here is some feedback” , is never 
be displayed. Similarly, this method appears throughout in the program in all the 
places that feedback can be provided. The system also has some methods and routines 
for testing whether the user inserts invalid options or not. How the system is 
implemented for doing that, will be explained and described in the section 5.5, truth 
checking methods, that follows.     
 

 
5.4 Data Input methods 
 
After the user has chosen a mode for the system behaviour, the system guides the user 
for providing the data that is needed for the game matrix to be solved. First the system 
asks for the game matrix dimensions and then for the actual elements of the matrix.  
 
 
5.4.1 Game Matr ix Dimensions 
 
In order for the system to get the matrix dimensions from the user, the system asks the 
user to insert the number of rows and the number of columns to blank text fields that 
the system provides with some option popup panes. The numbers that the user gives 
for the matrix dimensions, that is for the rows and the columns of the matrix, are 
stored in two string variables called rows and columns respectively. Then the system 
parses these two numbers into integers, since dimensions have to be in an integer 
form. The system, at this point performs check operations to be sure before continuing 
that the user has inserted valid numbers for the dimensions. How the system performs 
these validity checks, will be described in the section 5.5, truth-checking methods, 
that follows. Pseudo code for how this is done is showed in table 5.4.1.1. 
 



 51

Table 5.4.1.1 
 

 
String rows = JOptionPane.showInputDialog("Enter the number of rows:"); 
 

 
Similarly, the system gets the number of columns from the user as for the rows. After 
the insertion the system parses the two numbers in a way that the table 5.4.1.2 shows.    
 

 
Table 5.4.1.2 
 

 
int Matrix_Rows = Integer.parseInt(rows); 
  

 
After the system does that for both rows and columns dimensions it stores these 
numbers in two integer variables and uses them later on, in the construction of the 
game matrix. 
 
 
5.4.2 Game Matr ix Elements  
 
After the system checks and confirms that the dimensions that the user has given are 
valid it proceeds in getting the full game matrix from the user. First, the system 
constructs an array for storing the elements of the game matrix. This array is a two 
dimensional array. The size of this array gets defined from the variables that the 
system holds for rows and columns from before. Furthermore, this array accepts not 
only integers but double numbers as well, negative numbers, zero numbers, and 
generally all type of numbers that a game matrix can have.  
 
Then the system displays a popup screen to the user asking him to insert the first 
element of the game matrix. In this little popup screen two buttons are provided to the 
user, one for the system to accept the first element, and one for cancellation. After the 
user enters the first element, the system continues asking the user in a recursive way 
to fill all the elements of the game matrix.  At this point the system, with the help of 
an exceptional handler, makes sure that the user has not inputted something that is not 
of a numerical type (i.e. a string).  When this is the case, the system identifies this and 
informs the user for the invalid insertion. When the array of elements is filled 
completely, that means that the game matrix is ready, and the system informs the user 
that the game matrix is ready.  
 
The table 5.4.2 below shows how this is implemented with the help of some pseudo 
code. 
 
 
 
 
 



 52

Table 5.4.2 
 

… 
double[][] matrix = new double[rows][columns]; 
… 
… 
For (int i=0; i<matrix.length; i++)   
{  
   For(int j=0; j<matrix[i].length; j++) 
     {  
 String Aij =JOptionPane.showInputDialog("Enter Aij"); 
 
 double Element_Aij=Double.parseDouble(Aij); 
 matrix[i][j]=Aij;  
      }   
}     
… 

 
The pseudo code that is provided in the table above is not exactly how this was 
implemented in the code when the system was created due to the fact that the arrays in 
Java start from zero. That means some extra variables were used for counting and 
therefore placing the right element of the game matrix in the right position of the 2D 
array. 
 
 
5.5 Truth checking methods 
 
In this section, the various methods for truth method are described. The methods for 
truth checking were used throughout the system for different parts and different 
operations. 
 
First, in the mode selection function in the initial page of the system, the program 
checks whether the user has inserted something or not. Then it checks if what the user 
has inserted is a valid selection or not. The pseudo code in table 5.5.1 describes how 
the system manages to perform these operations. 
 
 
Table 5.5.1 
 

 
If  ( (Mode==null) || ( Mode.length()==0) )  
 {    …   }  
Else If( Mode.equalsIgnoreCase(Y))  
 {    …   }  
Else If(Mode.equalsIgnoreCase(N) ) 
 {    …   }  
Else 
 {    …   }  
 



 53

When the system is sure of what the user has inserted then it stores it and continue. If 
the system understands that the user did not behave the way he/she is supposed to 
concerning the input, then the system tries to either recover and proceed, or if 
necessary exit. But the system in no circumstance stops working. 
 
Concerning the game matrix dimensions, the system makes sure that the user has not 
inserted a negative number or zero. Also the system checks if the text field has been 
left empty. This is implemented as the following pseudo code describes in the table 
5.5.2. 
 
Table 5.5.2 
 

 
If ( ( string_rows==null ) | | ( string_rows.length()==0 ) ) 
{    …   }  
 
If ( ( rows==0) | | ( rows<0 ) ) 
{   …   }  
 

 
The pseudo code in the above table describes how the system understands the wrong 
input when given from the users concerning the rows. In the same way, the system 
has similar methods for understanding when the number of columns given by the user 
is not appropriate for any game matrix.  
 
The system also has a method for checking that the elements of the game matrix that 
the user is going to solve are properly given. Since zero elements are allowed as well 
as negative numbers, the system does not need to check in a way that it will be 
checking for the dimensions. It does, however, need to check that the user has actually 
inserted something, and moreover something numerical.  For the former, this is 
implemented in the way illustrated by the black arrow in pseudo code in table 5.5.3 
below.  For the latter, this implemented in the way that the red arrow illustrates in the 
same table. These truth-checking methods that are described here are used throughout 
the system. 
 
Table 5.5.3 
 

 
For ( int i=0; i<matrix.length; i++)   
 {  
    For ( int j=0; j<matrix[i].length; j++) 
      {  
  String Aij =JOptionPane.showInputDialog("Enter Aij"); 
 

       If ( ( Aij==null ) | | ( Aij.length( ) == 0) ) 
      Try{ double Aij=Double.parseDouble(Aij);  }  
      Catch(Exception e){ }  

         }   
     }  
    



 54

5.6 Display functions 
 
The system has various ways for displaying the necessary output to the user. For 
different staff different operations are used. The system mainly uses popup screens 
and the Eclipse console.    
 
For the Eclipse console the command “System.out.println”  is used. Where the array, 
that is the game matrix, has to be displayed, the use of two nested loops will be 
necessary. This is done in a why that for every row element the column of that 
element is displayed. 
 
To display the popup screens, the combination of “System.out.printl”  command 
together with the help of the “JOptionPane.showMessageDialog”  command is used. 
Furthermore, the system holds in its memory all digits of a double number, but to the 
user the system only displays two digits. This is implemented with the help of the 
following command: 
 

 
 “DecimalFormatprecisionTwo=new DecimalFormat("0.00");”   
 

 
For example, to display the game matrix that the user has inserted the program does it 
in a similar way that the pseudo code describes in the table 5.6 below. 
 
Table 5.6 
 

 
String output ="";   
stop:  
 
  {  // matrix block 
 
   for(int i=0; i<matrix.length; i++) 
     {  
      for (int j=0; j<matrix[i].length;j++)  
        {     
   if(i==matrix.length) 
   break stop; 
   double output2=0; 
    output2 = matrix[i][j]; 
    output+="   "+output2; 
       }   
            output += "\n";  
  }  
     output += "\nThis is the matrix inserted"; 
} // End of matrix block     
JOptionPane.showMessageDialog(null,output,"TheGameMatrix", 
JOptionPane.INFORMATION_MESSAGE ); 
 



 55

5.7 Minimax Maximin method 
 
This fundamental theorem of game theory, which was given and proved by Von 
Neumann in 1928, is implemented in the following way. First the function minimax 
takes place. This function searches all the array’s columns one by one, and it holds in 
memory the maximum elements from each column. Then it stores in another variable 
the minimum element among those maximums. 
  
Then the maximin function takes place. This function searches all the array’s rows 
one by one, and it holds in memory all the minimum elements from each row. Then it 
stores in another variable the maximum element among those minimums.  
 
After both functions are finished, the system checks whether the two variables are the 
same, or with other words, if the two numbers belong to the same element. If that is 
the case, and minimax is equal with maximin, then the system has found a saddle 
point, the value of that element that both functions returned and the system is able to 
give the solution. If this function fails to find a saddle point, then the system passes 
the flow of control to the next function, the simplex method function.    
 
For the implementation of the function, maximin, two nested loops are enough for 
going through all the elements of the matrix, which is basically going through all the 
numbers that are stored in the 2D array. This is because in Java this is done easily 
with the “matrix.length”  command for getting the array’s 1st dimension first, and then 
for each recursion the command “matrix[i].length”  is used for getting the 2nd 
dimension of the array. So in our case, for every element of the first row we are able 
to manipulate all the numbers below it, and that comprises all the rows of the game 
matrix. So for every row, as we go along the array, a temporary variable is used for 
storing the minimum element for that particular row. Then, when moving to the next 
row, if the minimum element of the current row is bigger than the variable that was 
stored before in the previous row, the system stores the new number to that variable. 
So when the system goes through the whole array, the value that is last stored in that 
variable is the maximum from all the minimum elements from all the rows, and in this 
way the system finds a value for maximin. The table 5.7.1 below describes with the 
help of pseudo code how this is implemented.       
 
Table 5.7.1 
 

 
For(int i=0; i<matrix.length; i++)  
   {     min = matrix[i][0];  //First row element for i row 
   For ( int j=0; j<matrix[i].length; j++)   
      {     If  (min > matrix[i][j] )  
             {    min=matrix[i][j];   }  
        }  
            If ( maxmin < min) //The Maximum element from all the minimums 
              {   maxmin=min;  }  
      }     
 

 



 56

For the implementation of the other function, minimax, the method described above is 
not efficient and will not work for the simple reason that in Java the arrays are always 
manipulated from the first dimension. Therefore, some changes have been made on 
the array. What has been done is first to get the transpose of the game matrix and store 
it in another array, a temporary array, as in the example below. 
 
 

�
�
�

�

�

�
�
�

�

�
¾¾¾ ®¾

�
�
�

�

�

�
�
�

�

�
-

963

852

741

987

654

321
becomewill  

 
 
So from the array number 1 that is shown below, the array number 2 will be created as 
the diagrams show: 
 

 
 
Then the method follows a similar path as the maximin method. First, two nested 
loops are used for going through all the elements of the matrix, which is basically 
going through all the numbers that are stored in the 2D array. This is achieved again 
with the use of the “matrix.length”  command for getting the array’s 1st dimension, and 
then for each recursion the command “matrix[i].length”  is used for getting the 2nd 
dimension of the array. So in this case, for every element of the first row we are able 
to manipulate all the numbers below it, and that comprises all the rows of the game 
matrix. So for every row, as we go along the array, a temporary variable is used for 
storing the maximum element for that particular row. Then, when moving to the next 
row, if the maximum element of the current row is less than the variable that was 
stored before in the previous row, the system stores the new number to that variable. 
So when the system goes through the whole array, the value that is last stored in that 
variable is the minimum from all the maximum elements from all the rows, and in this 
way the system finds a value for minimax. 
 
 The table 5.7.2 below describes with the help of pseudo code how the temporary 
array is implemented. 
 
As stated earlier, the minimax is implemented similarly as the maximin, but not in the 
array that contains the original game matrix but in the temporary array that is created 
by transposing the original one. That lets the columns get manipulated whilst they are 
in a row form. The pseudo code that describes how the minimax is implemented can 
be seen at the table 5.7.3. 
 
 
 



 57

Table 5.7.2 
 

 
… 
 double[][] temp_matrix = new double[columns][rows]; 
 … 
 For ( int i=0; i<matrix.length; i++) 
  {       w=0;        
          For ( int j=0; j<matrix[i].length; j++) 
     {  
          temp_matrix[w][q]= matrix[i][j]; 
        w++; 
      }  
        q++; 
      }  
 

 
 
Table 5.7.3 
 

 
For ( int i=0; i<temp_matrix.length; i++)   
   {  
      max = temp_matrix[i][0]; //First column element for i row 
      For ( int j=0; j<temp_matrix[i].length; j++)  
         {  
     IF ( max < temp_matrix[i][j] )  
        {    max = temp_matrix[i][j];    
                       }  
          }   
         IF(minmax > max)//Minimum element from all the maximums 
           {  
    minmax=max; 
              }  
      }     
        

 
At this stage, both minimax and maximin functions each return a value. These values 
are the variables minmax and maxmin respectively. By then comparing these two 
variables, the system is able to find out if saddle points exist and therefore the system 
can provide the solution to the user. If the two are not equal the system passes the 
flow of control to the simplex method. 
 
Table 5.7.4 
 

IF  ( minmax = = maxmin ) 
{       Saddle points exist - Give answers to the user -  Exit    }  
ELSE 
{       Start simplex method       }  
 



 58

5.8 Simplex method 
 
When the minimax maximin function fails to find a saddle point, the system’s flow of 
control is then passed to the simplex method function. This function gets the array 
that represents the game matrix, and then it performs a number of steps, operations, so 
as to give back the value of the game and the optimal strategies for the two players. 
The theory behind this method and how this performs the various steps 
mathematically has been described fully in the previous section, the Design section. In 
what follows here is how the system is implemented in order to perform all the steps 
that are necessary for the system to be able to find the solutions. 
 
The first step, operation, of the simplex function that is performed is to check if the 
game matrix consists of positive elements only, or both positive and negative 
elements. The system is implemented to do that by the use of two nested loops in 
order to go through all the elements of the array one by one, and a variable that is 
initialised to zero in order to be compared with every element within the game matrix 
array. If any of the elements within the array are less than the zero value variable, then 
that element is stored in that variable replacing the zero value. When the system has 
gone through all the elements of the array, the variable used contains the element with 
the smallest value of the game matrix. By then checking what that value is, the system 
is able to understand if negative elements exist and which element has the smallest 
value. If the variable’s value is zero, then the system continues to the next step 
leaving all the elements of the array as they are. If the variable contains a negative 
value, then the system subtracts that negative value from all the elements of the array. 
In this way, since the variable used contains the smallest value, a negative value, all 
the elements of the array become positive and that value stays stored in the system in 
order to be added in the end. The pseudo code in the table 5.8.1 below, describes how 
this first operation is implemented.    
 
 
Table 5.8.1 
 

 
check_for_negative=0;  
FOR ( int i=0; i<matrix.length; i++)  
   {       FOR ( int j=0; j<matrix[i].length; j++) 
           {        IF ( matrix[i][j] < check_for_negative ) 
          {      check_for_negative=matrix[i][j];      }   
                }   
        }  
IF(check_for_negative<0) 
{      FOR( int i=0; i<matrix.length; i++)  
           {     FOR ( int j=0; j<matrix[i].length; j++) 
         {       matrix[i][j]=matrix[i][j] - check_for_negative; 
        }  
    }  
    }  
 



 59

The next step, after making the array positive, was to create another array for storing 
and manipulating the semantic tableaus. This new array has one more extra row and 
one more extra column. The reason for that is explained in the Design section. This 
was achieved by using the command “double[] [] new_array = new double 
[rows+1][columns+1]” . Then this new array was filled using two nested loops and the 
original array. To the extra column the values of “1”  was inserted and to the extra row 
the values of “ -1” . For the extra row and column, the use of two nested loops was not 
necessary, so they were filled only by a single loop. For the last element of this new 
array, which is the 1,1 ++ columnsrowsA  element, the value of zero was inserted. For this 

value insertion, the use of any loop was not needed. The command 
“new_array[rows][columns]=0;”  was efficient. The variables rows and columns have 
been used because arrays in Java start from zero and end up in one number less from 
the one they were created, so the numbers that the variables rows and columns 
represent, are the suitable ones. 
 
Furthermore, inside the two nested loops, some local variables have been needed in 
order to count what is being filled at every loop and so as to insert the new elements 
when the time is appropriate.  
 
The pseudo code in the table 5.8.2 below shows the way the new array is filled with 
the help of the local variables.  
 
Table 5.8.2 
 

 
int  ii , jj = 0; 
… 
FOR ( int i=0; i<matrix.length; i++ ) 
     {   jj=0; 
 FOR ( int j=0; j<matrix[i].length; j++) 
        {  
  new_array[ii][jj]= matrix[i][j]; 
  jj++; 
         }  ii++; 
   }  
 

 
For creating the extra bottom row and for the insertion of the last element, the pseudo 
code looks like the table 5.8.3 below. In a similar way as for the extra row, the extra 
column was created. 
 
Table 5.8.3 
 

 
FOR ( int j=0; j < columns; j++ )  
     {      new_array[rows][j] = -1 ;     }  
… 
… 
new_array[rows][columns]=0; 
 



 60

The next step that the system does is to choose a pivot. Before the system chooses a 
pivot, it first checks that the bottom row includes at least one element with a negative 
value. The reason for doing this is explained in the description of the algorithm in the 
Design section. So from this point onwards the system recursively does the following 
operations until no elements have a negative value in the bottom row. The element 
where the value of the game is placed is excluded from this checking.  The system 
then proceeds with the help of nested loops. It gets the elements of the new array and 
with the criteria for pivot selection it decides which element is appropriate for being 
the pivot. This is implemented by nested loops for criterion after criterion. The system 
by reaching the final loop for the pivots conditions, stores this element in a variable 
called pivot and then with the help of nested loops again inside the original recursion 
and after the final pivot selection loop, it then performs the operation that is called 
pivot step by the help of the variable that the pivot is stored. After all the elements 
have been changed and replaced with what is appropriate the system interchanges the 
“X”  and “Y”  labels that respect to the pivot in order to keep track on the final 
solutions. These labels are stored in two different one-dimensional arrays. Where 
necessary, local variables are used for keeping track of all the arrays as well as in all 
the nested loops. Once the system has finished the first loop of these operations, 
which is it does all the operations once, it performs a check to see whether the 
elements of the bottom rows are all positives. If that is the case, it then ends the 
recursion and proceeds to the final step, gets the solutions from the final tableau and 
then gives the solutions to the user. If a negative element still exists, then the system 
re-does all the operations from the beginning. The overall structure that has been 
described here can be seen in the table below: 
 

 



 61

For the pivot selection, the table 5.8.4 describes with the help of pseudo code how the 
three criteria are checked.   
 
Table 5.8.4 
 

… 
IF( new_array[pivot_i][pivot_j] > 0 )  //1st condition 
  {  … 
   IF ( new_array[rows][pivot_j] < 0 )  //2nd condition 
     {  … 
      IF ( smaller_positive_ratio > temp_ratio && temp_ratio>0) // 3rd Condition 
        {             …  
              }       … 
              break outerloop; 
           }  
       }  
 

 
For the pivot step process, the table 5.8.5 describes with pseudo code how this is 
implemented.  
 
Table 5.8.5 
 

 
FOR ( int i=0; i < new_array.length; i++)  {  
     FOR ( int j=0; j<new_array[i].length; j++)  {  
 
//Elements that do not belong to neither pivot’s row or column    
//Element=element-(element(in pivotÁs row)*element(in pivotÁs column))/pivot 
IF( i  ! =  pivot_i  &&  j  !=  pivot_j )   
 {  new_array[i][j]=new_array[i][j]-(([pivot_i][j]*new_array[i][pivot_j])/pivot);  }  
 
//Elements that belong to pivot’s row 
IF( i  = =  pivot_i  &&  j != pivot_j ) 
  {    new_array[i][j]=new_array[i][j] / pivot ;   }  
 
//For elements that belong to pivot’s column 
IF( i  != pivot_i  &&  j  = =  pivot_j ) 
{    new_array[i][j]= -new_array[i][j] / pivot ;   }  
 
//For the pivot to be substitute with its reciprocal 
IF ( i = = pivot_i  &&  j = = pivot_j ) 
{    new_array[i][j]= 1 / new_array[i][j] ;   }   
  
     }  
}    
 

 
 
 



 62

Once the system breaks from the recursion, it gets the solutions from the final tableau 
and displays them to the user. This is done in the way the pseudo code describes in 
table 5.8.6. The “ left_col_labels”  and the “hor_row_labels”  arrays seen in the table 
below are the two one-dimensional arrays that were used from the system to store the 
solutions, optimal strategies for the two players, in the right order.  
 
 
Table 5.8.6 
 

 
… 
… 
double value_of_the_game = 1 / new_array[rows][columns] ; 
value_of_the_game = value_of_the_game + check_for_negative ; 
… 
… 
FOR ( int I=0; I<left_col_labels.length; I++) 
  {   System.out.print ( left_col_labels[I] +”   “ ) ;  }  
… 
… 
FOR ( int I=0; I<hor_row_labels.length; I++) 
  {   System.out.print( hor_row_labels[I] + “   “  ) ;  }  
… 
… 
System.out.println(“Optimal Value of the game:”+ 
           precisionTwo.format( value_of_the_game ) ); 
… 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 63

�
� �������#�
$�����!�� ��
%��������� 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter provides the reader with a detail 
explanation about the methods used for the 
testing purpose of the system. That includes 
methods descriptions and explanations on how 
these methods were applied… 

 
 

 
 
 
 



 64

6 Testing and Evaluation 
 
The testing process is an essential stage of any software product since it ensures the 
correctness of a system. During this process any errors that might exist and rest in the 
system together with any miss functionality of the system can be discovered, 
recognised and therefore fixed and rectified. Additional to that, the system will 
become more reliable and anything that will force the system to have an unexpected 
behaviour can be discovered and corrected. Since the system is aimed at people that 
are more concerned in the mathematical way of solving game theory problems, it 
must be ensured that all the functions that the system provides run correctly without 
any fault and without giving any errors and moreover all the functions return the 
correct result. 
 
The system was developed according to the waterfall model approach, as described in 
the Design chapter, and that consequently led to the development of the system by 
developing a number of incremental steps for all the methods and functions developed 
in the top down approach. That made possible for each unit to be tested whilst 
developing, and errors were discovered early and throughout the whole development 
process of the system. Moreover, in that way, it was ensured that errors would not 
become more complicated when the system was going to be fully developed, in a 
nested error hierarchy. In conclusion to that, the system was able to verify all the 
requirements and the functionality that was desired during development. 
 
Testing phases Figure23  
 

 
 
After the completion of the first prototype, several techniques were used in order to 
test and evaluate the whole system. These techniques were mainly the verification and 
validation process, the defect testing technique, which included a black box testing 
technique and a structural testing technique, and the integration testing technique, that 
involved a combination of both top-down testing and bottom-up testing techniques. 
The errors that were identified, together with any unexpected behaviour that the 
system had during the above techniques, were fixed and the system was again retested 
until full and correct functionality was established.  
 

6.1 Unit testing 
 
The unit testing that took place during the development of the system ensured that all 
routines had the correct behaviour and consequently that they were returning the 
correct and desired output. The routines and methods that were involved are grouped 
into units and they are as shown in the diagram 6.1 below in the exact order that they 
were developed and tested. 

                                                 
23 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.441 



 65

 
Diagram 6.1   
 
 
 
 
 
 
 
 
 
 
 
The first unit that was developed was the mode selection unit. The mode selection 
unit was tested in the following way. First, by trying to select every one of the options 
among all the different ones that are available and then test that the system was 
performing the operation correctly. After it was concluded that the selected options 
were correctly stored in the system, the program was also tested for the behaviour it 
would have in the case of entering an invalid selection. 
 
The next unit that was developed and tested was the Data insertion unit. This unit 
included both matrix dimensions insertion and matrix elements insertion. This unit 
was tested by inserting in the system all kind of different matrices with all kind of 
different dimensions. The arrays holding the matrices were then tested to see whether 
they held the complete and correct matrix elements. 
 
The Display data unit was tested after being developed by combining it with the data 
insertion unit. This was basically done by giving any matrix to it and then displaying 
it on the console by the display Data unit that was going to be used throughout the 
system. 
 
For the testing of the minmax function, pen and paper was needed. Basically, as a 
matrix was given as input to the system, that same matrix was solved parallely on 
paper for the existence of saddle points as well as which element of the matrix was the 
saddle point. This operation was done several times until the system was giving the 
same results for all different kind of matrices. 
 
Similarly, for the testing of the simplex method function, paper and pen were used as 
well to find the value of the game and the optimal strategies for the two players. Also, 
examples from books were used in order to compare the system solutions with book 
solutions.    
 
After all the above units were developed, tested, corrected and retested, the last unit 
was developed and tested. That was the Display results to the user unit. This unit was 
tested with the help of the eclipse console, and pop up screens. It combined all the 
above units and everything that the system had to provide to the user were checked 
that they were actually being provided. Further testing that was used can be found in 
the appendices. 
 
 

Mode 
Selection 

Data 
Insertion 

Display 
the Data  

MinMax 
Function 

Simplex 
Function 

Display 
Results 



 66

6.2 Ver ification and Validation 
 
Verification and validation (V&V) is a life-cycle process. V&V “ is the name given to 
the checking and analysis process that ensure that software conforms to its 
specification and meets the needs of the customers…” 24  
 
During the verification and validation process, two main techniques were used, the 
software inspections and the software testing. The figure 6.2.1 below shows how 
these two techniques were used in the different stages of development with the help of 
the arrows. 
  
Figure25 6.2.1 
 

 
 
Furthermore, establishing the defects that existed in the system was the first step. The 
next step was to locate and correct these defects. That was archived by the debugging 
process. The debugging process steps and operations are shown in detail in the figure 
6.2.3 below: 
 
Figure26 6.2.3 
 

 
 
The questionnaires together with the evaluation conclusions that were used for the 
purpose of software inspections and software testing techniques can be found in the 
appendices. 

                                                 
24 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.420 
25 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.421 
26 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.423 



 67

6.3 Defect Testing 
 
Defect testing was used for the system testing as well. It is a technique that is used to 
make the system fail in many various ways possible. It forces the system to perform 
incorrectly and therefore to expose any defect that might exist and rest in the system. 
This is exactly the opposite of the validation testing technique, which gave the system 
acceptance test cases and checked whether the system performed correctly. Both are 
needed in order to fully test and correct a system. The defect testing was performed in 
two ways, the black box testing and the structural testing since they are both required 
for a complete software examination.   
 
 
6.3.1 Black Box Testing 
 
Black box testing, or functional testing, as many people call it, is “an approach to 
testing where the tests are derived from the program or component specification. The 
system is a ‘black box’  whose behaviour can only be determined by studying its 
inputs and the related outputs”27.  
 
Following this approach, the system has been given various inputs and the outputs 
were examined in detail to see whether these outputs corresponded to the given 
inputs. When the outputs were not the ones expected, then the test was considered to 
be successful, as the testing had revealed a problem within the system. The process 
was performed several times until no errors could be detected. The tests that were 
made can be found in the appendices.    
 
 
6.3.2 Structural Testing 
 
Structural testing approach is also called glass-box, clear-box, or even white-box 
testing to be distinguished from the black box testing. This is because in this approach 
“ the tests are derived from knowledge of the software’s structure and 
implementation… The tester can analyse the code and use knowledge about the 
structure of a component to derive test data”28. This testing process was performed 
several times during the development process as well as after the completion and 
integration of the whole system. Since the author and the developer is the same 
person, no test cases were needed. The author knew exactly how to test all the several 
paths of the code since he knew the structure and how it was implemented. Additional 
to that, every routine and sub-routine was tested as soon as they were being 
developed.   
 

6.4 Integration Testing 
 
After individual components of the system were tested, they were integrated to make 
up the complete system. The integration tests that were made were drawn from the 
system specification and integration testing started as soon as usable components of 

                                                 
27 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.443 
28 Ian Sommerville, ‘Software Engineering, 6th edition’ , p.448-449 



 68

the system were put together, component after component. The testing involved in 
this section used a combination of top-down testing, starting from a high-level system 
and replacing individual components as it goes along, and bottom-up testing, which 
was integrating components in levels until the complete creation of the system.  
 
Since the author and the developer is the same person, no test cases were needed. The 
author knew exactly how to test all the several units of the code after integration since 
he knew the structure of all units and perform the integration of the system himself.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 69

�
�

� �������&�
� ����������

 
 

 
 
 
 
 
 
 
 
 
 
 
 

After having finished this dissertation, 
some conclusions were summarised 
together with some further additions 
and improvements. This is what this 
chapter describes. 

 

 
 
 
 
 
 



 70

7 Conclusion 
 
 
 
The objective of this dissertation was to develop a program for solving two person 
zero sum games. The program produced is able to find optimal strategies for two 
players and the value of any game of two person zero sum type given. The program 
uses both minimax theorem, and the linear algebra with the simplex method in finding 
the solutions. The system produced meets the requirements described in chapter 3.  
 
One of the main keys to a reliable and successful software system that always returns 
quick and correct solutions is solving according to a correct algorithm that is proved 
to be efficient and works. For this reason, the algorithm used for the purpose of this 
calculator was the simplex algorithm, a well-known algorithm. The top down 
approach to the design and the incremental development steps upon the system 
enabled the complexity of the simplex algorithm to be handled and has also resulted 
in a stable modular system that can be extended easily.  
 
Although the system conformed to its requirements, some further improvements and 
additions could be made. These considerations could form part of any future work 
upon the system. The system was designed in a way that finds all the solutions 
algebraically. The system can be implemented to include a method that will be finding 
the solutions graphically, in order to give to the user a better understanding on 
maximization. Furthermore, the system can be extended in containing methods for 
solving games that are not of the zero sum type. Games like two person general sum 
or even n-person games. Additional to that, the system can include an option for 
teaching users that they have no experience on game theory how to solve a game 
matrix from the initial steps providing them with all the mathematics needed within 
the actual system. Furthermore, the system can also include a detail description 
within, for explaining and performing the simplex method to users with no previous 
experience in solving linear programming problems and consequently use the system 
as a tutor on the subject. 
 
The user interface of the system provides the user with the basic functionality. Even 
though the user interface was not one of the primary concerns, it can be improved 
since it plays a big role in the system’s interaction with the users. It can give the 
ability to the user to insert different game matrices without having to exit the system 
and start all over again. Graphical comparisons between different game matrices can 
be provided to the user as well.         
 
Having achieved the goal of implementing a calculator for solving two person zero 
sum games, the system was successful. Moreover, the system provides a function 
within that allows users to see the step-by-step calculations that are performed by the 
simplex algorithm, which can be helpful in other areas of mathematics.   
 



 71

 
 

Bibliography 
 
 
 
 
Binmore, Ken., 1992. Fun and Games - A Text on Game Theory. United States of 
America: D. C. Heath and Company. 
 
Binmore, Ken., 1990. Essays on the Foundations of Game Theory. United States of 
America: Basil Blackwell Inc. 
 
Davis, Morton D., 1970. Game Theory-A Nontechnical Introduction . Revised ed. 
New York: Basic Books, Inc. 
 
Owen, Guillermo., 1968. Game Theory. 1st ed. Philadelphia: W. B. Saunders 
Company. 
 
Owen, Guillermo., 1982. Game Theory. 2nd ed. London: Academic P, Inc. 
 
Sommervile, Ian.,  2001. Software Engineering. 6th ed. Essex: Pearson Education 
Limited. 
 
Kottaridi, Konstantina., Siourounis, Grigoris., 2002. Theoria Paignion. Athens: 
Eurasia Publications. 
 
Deitel, Harvey., Deitel, Paul., Deitel, J Paul.,  2001. Java How to program. 3rd ed. 
Prentice Hall 
 
Tucker, A. W., Luce, R. D., 1959. Contibution to the theoty of games 
 
Brigden, Michael., 2004. Lecture Notes for MA30087: Optimization methods of 
Operational Research. University of Bath – UK. 
 
Jacobson, Ivar., Object-Oriented Software Engineering: A use case Approach (ACM 
Press S.)  
 
Brown, Pad Lecture notes for K268 SENG2100: Object Oriented Analysis and 
design. Dublin Institute of Technology, 2004  
 
Eclipse 2005, ‘The Eclipse home page http://www.eclipse.org/ ’ . Checked May 2005.  
 
 
 
 



 72

�
�

� ' ' %(  
) �*�� �
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 73

APPENDIX A 
 

A1 Evaluation of existing systems 
 
Two-Person Zero-Sum and The Gambler ’s Games with Applications 
From: Professor Hossein Arsham 
 
 

 
 
 
This system works by inserting the numbers of the matrix that the user desires in the 
white slots provided inside the purple box. Although this system gives the correct 
solutions, and the probabilistic numbers are correct, they answers were swapped and 
not in the correct place. First it gives the optimal strategy for player II but that it’ s just 
an interface selection. The numbers that were misplaced are 0.75 and 0.25, the 
optimal strategy for Player I. Although to the eye does not make any difference, in 
mathematics that means either the algorithm is slightly wrong or changed, or either a 
completely different algorithm was used for finding the solutions which might not be 
as efficient and fast as solving it with linear programming and the simplex method. 
The optimal value of the game, that is 1.5, is correct. 
 
 
The interface is really good though. It is simple, easy to use and straightforward. It 
does not confuse the user and everything the user needs is there in a logical place 
leaving the user no choice for mistakes or confusion.    
 



 74

Program for  teaching game theory 
From: Stamatis Mandalakas� �
 
 

 
 
 
 
The above program for solving two-person zero-sum games is accurate and the 
solutions are all correct but for the purpose of solving a game matrix is a little bit 
difficult to read. The answers are displayed in a graphical way, which at a first glance 
makes the user discontented. The program does not uses linear programming for 
solving the problem but it uses the graphical way or as a lot of people nowadays call it 
“ the envelope method”  because of the shape that gets created from the lines that 
intersect and looks like an envelope.   
 
 
Also this program has too much unnecessary interface that makes it difficult for the 
user to use it quickly and efficiently.  
 
 
 
 
 
 
 
 
 



 75

A2 Questionnaire for  potential users 
 
 
Please fill the questions below with a black or blue pen 
 

1. If you are currently studying, what is it that you do? If not, what is it that you 
studied? 

 
 
2. Are you familiar with game theory? 

 
 

3. Are you familiar with linear programming and the simplex method? 
 
 
If your answers were “No”  in questions 2 and 3, proceed to question number 8.  
 

4. Have you ever solved a problem with linear programming and the simplex 
method? 

 
 
5. Would you be interested in having a program for solving the two person zero 

sum games for you? 
 
 
6.  What exactly do you want from the program to do?  

 
 
 
 

7. Is it something in particular that you want the program not to do? 
 
 
 
 
If you have answered questions 4, 5, 6 and 7 then you are done. 
 
8. Are you interested in learning what game theory is about? 
 
 
9. What do you think is the best way of learning about this? 

 
 
 
 
Thanks a lot for your time. 
 
 



 76

A3 Use Cases 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

1. User runs the program 
 
Title Program starting 
Primary Secondary 
Actors 

User, System 

Precondition Installation file was copied somewhere on the 
computer 

Goal in Context To start the calculator program 

Scope and level System Primary Task 
Triggers User runs the program file 
Success End Condition Program started 

Failed End Condition Program failed to start 
Priority High 

2. Program mode 
 
Title Mode selection 

Primary Secondary Actors System, User 

Precondition Program started and running 

Goal in Context To ask the user whether feedback should 
be provided or just quick solutions 

Scope and level System Primary Task 

Triggers User started the program 

Success End Condition The options have been displayed 

Failed End Condition Program fails to display the options 
available to the user 

Priority High 



 77

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

3. User selection 
 
Title User chooses mode 

Primary Secondary Actors User, System 

Precondition Program displayed the options available 

Goal in Context For the user to select what mode the 
program will follow. Feedback or just 
solutions 

Scope and level System main Task 

Triggers The user started the program 

Success End Condition Program accepted users selection and 
proceeds in the mode selected 

Failed End Condition Program fails to pass in the desired mode 

Priority High 

4. Matrix Row Dimension 
 
Title Row Dimension 

Primary Secondary Actors User, System 

Precondition User has selected the desired mode 

Goal in Context To get the matrix row dimension from the 
user 

Scope and level System main Task 

Triggers The user selected the mode and program 
continued 

Success End Condition User gives the row dimension of the 
matrix and program accepts it 

Failed End Condition Program failed to accept the row 
dimension of the matrix  

Priority High 



 78

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

5. Matrix column dimension 
 
Title Row Dimension 

Primary Secondary Actors User, System 

Precondition User has input row dimension and system 
has accepted it 

Goal in Context To get the matrix column dimension from 
the user 

Scope and level System main Task 

Triggers The user pressed enter after inserting row 
dimension for the matrix 

Success End Condition User gives the column dimension of the 
matrix and program accepts it 

Failed End Condition Program fails to accept the column 
dimension of the matrix 

Priority High 

6. Display Dimensions of the game matrix 
 
Title Matrix dimensions 

Primary Secondary Actors System, User 

Precondition User has input row and column 
dimensions of the matrix game 

Goal in Context To display the dimension of the matrix to 
the user 

Scope and level System main Task 

Triggers The user inserted column dimension and 
pressed enter 

Success End Condition The dimension of the matrix are displayed 
to the user 

Failed End Condition Dimension failed to be displayed 

Priority Low 



 79

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

7. Filling all the elements of the matrix 
 
Title Filling the matrix 

Primary Secondary Actors User, System 

Precondition Program accepted and displayed the 
dimensions of the desired matrix 

Goal in Context For the user to fill the matrix with 
elements, numbers of the game 

Scope and level System main Task 

Triggers The user pressed continue at the display 
dimension screen 

Success End Condition Program accepted users inputs and stores 
all the elements of the game matrix in a 
two dimensional array 

Failed End Condition Program fails to get the values of the 
elements of the array from the user 

Priority High 

8. Confirmation and display 
 
Title Confirmation and display  

Primary Secondary Actors System, user 

Precondition User has filled the matrix with all the 
elements and program accepted the values 

Goal in Context To show to the user what is going on at 
the present time 

Scope and level System main Task 

Triggers The user entered the last element of the 
array and pressed enter 

Success End Condition System displays to the user a matrix of the 
dimension entered and filled with the 
elements entered 

Failed End Condition Program failed to display the matrix that 
the user has entered  

Priority Medium 



 80

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

9. System checks for saddle points 
 
Title Saddle point checking 

Primary Secondary Actors System, User 

Precondition Program displayed the game matrix filled 
with the desired elements to the user 

Goal in Context To check the matrix and find a saddle 
point. An element where maxmin is equal 
with minmax 

Scope and level System main Task 

Triggers The user have pressed the continue button 
after the game matrix was displayed 

Success End Condition Program will find a saddle point 

Failed End Condition Program will fail to find a saddle point 

Priority Low 

10. When saddle points exist  
 
Title Saddle points 

Primary Secondary Actors System, User 

Precondition User has pressed the continue button after 
the game matrix was displayed and 
program started looking for saddle points 

Goal in Context Display to the user which element of the 
game matrix is the saddle point and what 
the value of that element is. Value of the 
game is now found 

Scope and level System main Task 

Triggers The user selected the continue button after 
game matrix was displayed 

Success End Condition Program displayed to the user the saddle 
point, value of the game, and exits 

Failed End Condition Program failed to display to the user the 
results  

Priority High 



 81

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

11. When saddle points do not exist 
 
Title No saddle points found 

Primary Secondary Actors System, User 

Precondition Program has checked for saddle points 
and was not able to find any 

Goal in Context The system will understand that saddle 
points do not exist and try to find the 
solutions with the simplex method 

Scope and level System main Task 

Triggers The user selected the continue button after 
game matrix was displayed 

Success End Condition Program understood that saddle points do 
not exist and will perform another method 
for finding the solutions 

Failed End Condition Program fails to pass in the desired mode 

Priority High 

12. Another method for finding solutions 
 
Title Simplex method 

Primary Secondary Actors System, User 

Precondition System has understood that saddle points 
do not exist and an alternative method has 
started for finding the solutions 

Goal in Context To solve the game matrix with simplex 
method and find the optimal strategies for 
the two players and the value of this 
matrix game 

Scope and level System main Task 

Triggers The user selected the continue button after 
game matrix was displayed 

Success End Condition Program performed simplex method and 
managed to find the optimal strategies for 
the two players and the value of the game 

Failed End Condition Program failed to perform simplex method 

Priority High 



 82

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13. Simplex method and solutions  
 
Title Final solutions after simplex method had 

been performed 
Primary Secondary Actors System, User 

Precondition Program has used the simplex method in 
order to solve the game matrix 

Goal in Context The system will display to the user the 
final value of the game and the optimal 
strategies for the two players 

Scope and level System main Task 

Triggers The user selected the continue button after 
game matrix was displayed 

Success End Condition Program will display the value of the 
game and the optimal strategies for the 
two players to the user 

Failed End Condition Program fails to display the value of the 
game as well as the optimal strategies to 
the user 

Priority High 

14. Quick mode  
 
Title Quick mode 

Primary Secondary Actors System, User 

Precondition When the user had the option to select a 
mode, the feedback mode was selected 

Goal in Context The system must perform all the 
operations quick and give the user quick 
results. Nothing else will be displayed. 
Only the answers of the game matrix 

Scope and level System additional Task 

Triggers The user selected the quick mode and 
pressed enter 

Success End Condition Program understood that quick mode was 
selected and will give the user quick 
solutions. Only solutions will be 
displayed. 

Failed End Condition Program fails understand that quick mode 
was selected 

Priority Medium 



 83

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15. Feedback mode  
 
Title Feedback mode 

Primary Secondary Actors System, User 

Precondition When the user had the option to select a 
mode, the feedback mode was selected 

Goal in Context To give the user a step by step description 
of how the game was solved and results in 
each step as well as show all the semantic 
tableau’s that were used and how these 
tableau’s were modified  

Scope and level System additional Task 

Triggers The user selected the feedback mode and 
pressed enter 

Success End Condition Program understood that feedback mode 
was selected and will give a description of 
all the steps that made in finding the 
solutions. Also additional information for 
pivoting and the semantic tableau’s that 
were used from the creation of the first 
one to the final one will be displayed 

Failed End Condition Program will fail to give the user feedback 

Priority Medium 

16. User wants to exit  
 
Title Program closing 

Primary Secondary Actors User, System 

Precondition Program is running 

Goal in Context User will press the “x”  button in the top 
right corner in order to exit from the 
program 

Scope and level System main Task 

Triggers The user opened the program 

Success End Condition User exits and program closes  

Failed End Condition Program fails to close 

Priority Medium 



 84

�
�

� ' ' %(  
) �*�+�
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 85

APPENDIX B 
 

B1 Inspection and Evaluation testing 
 

Two-Person Zero-Sum Calculator  
Questionnaire   
 
Please run and try the two-person zero-sum calculator and then answer the questions 
in section A.   
 

Section A 
 
1. Did you find it easy to start the program?  

 
 
2. Was it easy to follow the instructions given by the system? Were the 

instructions clear and concise? 
 
 
3. Did you find it easy to insert the matrix game? If not, why? 
 
 
4. Were you satisfied with the solutions given by the system? 
 
 
5. Any suggestions and recommendations? 
 
 
 
 
 
Thanks for your time. 
 
 

Section B      
 
Please do not fill this section in. I t is for  the use of the development team 
 
Conclusions and Remarks 
 
 
 
 
 
 
 



 86

B2 Defect Testing 
 
 
 

Requirement being 
tested 

Input Output Result 

The user must be able to put 
any matrix dimension, m´ n, 

that it is desired 

A 200x200 
matrix 

Data Accepted Test Successful 

The system must understand 
when the user did not put an 
integer number for the row 
dimensions of the matrix 

A floating 
number for 

the row 
dimension 

System 
identified that 

Test Successful 

The system must understand 
when the user did not put an 

integer number for the column 
dimensions of the matrix 

A floating 
number for 
the column 
dimension 

System 
identified that 

Test Successful 

The system must understand 
when a zero dimension was 

given as input for the rows of 
the matrix 

Zero for the 
row 

dimensions 

System 
identified that 

Test Successful 

The system must understand 
when a zero dimension was 

given as input for the columns 
of the matrix 

Zero for the 
columns 

dimensions 

System 
identified that 

Test Successful 

The system must understand 
when the user did not put 
numbers for the row and 
column dimensions of the 

matrix 

Strings for the 
dimensions 

System 
identified that 

Test Successful 

The system should check that 
the user did not leave any of 

the fields blank 

Fields left 
blank 

System 
identified that 

Test Successful 

The system should provide the 
user a facility for selecting 
between different modes 

N/A Different 
system modes 

provided 

Test Successful 

The system should provide a 
mode for providing feedback 

N/A Feedback mode 
is provided 

Test Successful 

The system should provide a 
mode for quick results 

N/A Quick mode is 
provided 

Test Successful 

The system must understand 
when user has given a not 

numeric value for the 
elements of the matrxix 

A string for 
input 

System 
identified that 

Test Successful 

 
 
 
 



 87

Requirement being 
tested 

Input Output Result 

The system should be able to 
show all tableaus, pivots and 
pivoting step at each step of 

the algorithm 

A game 
matrix and 
feedback 

mode selected 

Tableaus, pivots 
and pivoting 

step at each step 
of the algorithm 

Test Successful 

The system must not fail 
when the user has selected an 
invalid option for the mode 

Invalid option 
selected 

System 
identified that 
and continued 

Test Successful 

The system must not fail 
when the user has left the 

selection field blank 

Selection field 
left blank 

System 
identified that 
and continued 

Test Successful 

The user should be able to 
enter any number for the 

elements insertion 

The numbers 
–23.54, 0, 

426.57 

Data Accepted Test Successful 

The system must display to 
the user the game matrix, 
dimensions and elements, 
which has been inserted 
before solving the game 

A game 
matrix 

Everything was 
displayed 

before solving 

Test Successful 

The system must be able to 
check how the problem can be 

solved 

A game 
matrix 

System 
identified what 
method has to 

be used 

Test Successful 

The system must be able to 
find a saddle point when 

saddle points exist 

A game 
matrix with 

saddle points 

System 
identified the 
saddle point 

Test Successful 

System must be able to find 
maxmin and minmax and 

compare them and display that 
to the user 

A game 
matrix 

System found 
both values and 
displayed the 

values  

Test Successful 

System must inform the user 
when minmax is equal with 

maxmin 

A game 
matrix with 

saddle points 

System 
informed about 

the equality 

Test Successful 

System must inform the user 
when minmax is not equal 

with maxmin, and the system 
will use linear algebra and the 

simplex method 

A game 
matrix with 
no saddle 

points 

System 
informed the 
user about the 

absence of 
saddle points 
and for the 
usage of the 

simplex method 

Test Successful 

The system must be able to 
proceed to the method that is 
going to be used for solving 
the problem automatically 

A game 
matrix 

System proceed 
to the solving 

method 

Test Successful 

The system must be able to 
find the value of any game 

A game 
matrix 

System found 
the game value 

Test Successful 



 88

Requirement being 
tested 

Input Output Result 

The system must be able to 
display to the user the value of 

any given game 

A game 
matrix 

System display 
the value 

Test Successful 

The system must be able to 
find the optimal strategies for 
the both players of any game 
of the two-person zero-sum 

type 

A random 
two-person 
zero-sum 

game 

Optimal 
strategies for 

the two players 
found 

Test Successful 

The system must be able to 
display to the user the optimal 
strategies for the both players 
of any game of the two-person 

zero-sum type 

A random 
two-person 
zero-sum 

game 

Optimal 
strategies for 

the two players 
displayed 

Test Successful 

The system must provide a 
way for the user to exit the 
program at any given time 

N/A System 
provides exit 

buttons during 
all stages  

Test Successful 

The system should work in a 
way that minimises the 

possibilities for errors from 
the user 

N/A System guides 
the user from 

the beginning to 
the end  

Test Successful 

System must interact with the 
user only when necessary 

N/A The choices 
provided are 
limited. Only 

necessary ones 

Test Successful 
 

System must be able to 
explain to the user what the 
error was in the case of an 

error 

Zero 
dimensions 

given as input 

System 
informed that 

zero dimensions 
not allowed 

Test Successful 

The system must guide the 
user in a straightforward 

manner 

N/A System guides 
the user in a 

straight forward 
manner 

Test Successful 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 89

B3 Book Testing 
 
The following example is taken from the book Game Theory. Written by Guillermo 
Owen at page 54. 
 
Solve the matrix game: 
 

�
�
�

	




�
�
�

�



5341

2425

4163

 

 
Then he writes the maximizing problem in the form: 
 
Maximize l  subject to: 
 

l³++ 321 53 xxx , 

l³++ 321 426 xxx , 

l³++ 321 34 xxx  , 

l³++ 321 524 xxx , 

1321 =++ xxx , 

0,, 321 ³xxx . 
 
The final solutions that Owen finds are as follows: 
 

Optimal strategy for Player A is: �
	



�
�


8
3

,
2
1

,
8
1

. 

Optimal strategy for Player B is: �
	



�
�


2
1

,
12
5

,
12
1

. 

Value of the game is 
4

13
. 

 
Solving the same game matrix with the system produced, we find the solutions: 
 
Opt i mal  st r at egy f or  Pl ayer  A:  X1=0. 50  X2=0. 13  X3=0. 38  
X4=0   
Opt i mal  st r at egy f or  Pl ayer  B:  Y1=0. 42  Y2=0. 08  Y3=0. 50   
 
Opt i mal  Val ue of  t he game:  3. 25  
 
Which are the same with Owens book solutions since: 
 
1/8=0.13 ,  3/8=0.38 ,  1/2=0.5  AND  1/12=0.08,  5/12=0.42 ,  1/2=0.50 
 
And 13/4 = 3.25 
 
 



 90

An example of a game matrix with saddle points is the one below: 
 

�
�
�

	




�
�
�

�



- 103

423

315

 The saddle point is the element 22A  of this matrix with value 2. 

 
This example is taken from the book Game Theory. Written by Guillermo Owen at 
page 11. 
 
Solving this example with the system gives the exact result: 
 

 
 
Another two examples are the 7x2 and 2x7 matrices with saddle points below: 
 

�
�
�
�
�
�
�
�
�

	




�
�
�
�
�
�
�
�
�

�



1413

1211

109

87

65

43

21

  ��
	



��
�


141312111098

7654321
 

 
First one has the saddle point 71A  element of the matrix with the value 13. 

Second one has the saddle point 21A  element of the matrix with the value 8. 
The system correctly identified both matrices, and returned back the following results 
respectively:  

Saddl e poi nt s f ound 
El ement  A71 of  t he mat r i x  
 
Saddl e poi nt s f ound 
El ement  A21 of  t he mat r i x  



 91

�
�

� ' ' %(  
) �,�� �
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 92

APPENDIX C 
 

C1 Reference Manual 
 
 

Getting star ted with the  
“ Two-Person Zero-Sum Calculator”  

 
 

A program based on game theory and linear algebra 
 

VERSION 1.0 
 
 
 
 
 
 

 
 
 
 
                                       
 
 

REFERENCE MANUAL 
 
 



 93

 
 
Contents  
 

 
 
 
 
Sections 
 
 
 

1. Getting started with the calculator  
 

2. Mode Selection 
 

3. Feedback Mode 
3.1. When Saddle points exist 
3.2. When Saddle points do not exist 

 
4. Quick Mode 

4.1. When Saddle points exist 
4.2. When Saddle points do not exist 

 
5. Error Handling, Wrong Input and Cancellation 

 
 
 
 
 
 
 
 
For support and further information you can contact one of the members of the 
developing team.  
 
 
 
 
The development team: 
 
Argyrides Solonas: cs1sa@bath.ac.uk 
 



 94

Section 1 
Getting star ted with the Calculator  
 
 
Welcome to the Two-Person Zero-Sum Calculator system reference manual. This 
manual will provide a full reference guide to anything you need to know for using the 
system. 
 
The system can be found in the enclosed CD that was included within the document. 
 
First, copy the content of the CD in a directory or folder in your working environment 
and then follow the instructions within the txt file inside the CD. 
 
Once you have copied the file in a desired direction or folder in your workspace, the 
calculator is ready for running. Then, run the execution file that is indicated in the CD 
and the system will start.  
 
As soon as the system starts, depending on the environment you are using, the 
following screen will appear: 
 
 
Windows Environment: 
 
 

 
 
Running under the Eclipse Platform. Eclipse is free tool platform that can be 
downloaded at:  http://www.eclipse.org/    
 



 95

Linux Environment: 
 

 
 
Mac Environment: 
 

 
 
As it is shown, any operating system that you may select to use, it will not affect the 
functionality of the system. Steps and procedures are the same so it is no need for 
having all kinds of different user manuals for all the operating systems that the system 
can operate under. In what follows, Windows environment is going to be used for 
explaining and demonstrating the system throughout in this reference manual, under 
the eclipse platform. 
 
 



 96

Section 2 
Mode Selection 
 
 
The first screen that will appear when the calculator starts running, is the Mode 
Selection page. This is a page where the user can select what mode the calculator will 
follow. There are two options available. The first option is the feedback option. This 
option is offered for people that want to check either their solutions on their process. 
That includes semantic tableaus and pivots, as well as pivoting steps. The second 
option available is the quick mode selection. Selecting this option, the calculator will 
proceed with a mode that will only give the final value of the game and the optimal 
strategies for the two players. This option is good for experience users that want quick 
and correct results.  
 
The page also includes an exit button denoted by “x”  in the top right corner as well as 
a “Cancel”  button for exiting the program immediately. The page also contains an 
“OK” button for pressing it after you have input in the field provided the option that is 
desired.    
 
The page looks like this: 
 

 
 
For a feedback selection insert in the field provided a “Y”  or “y”  and then press the 
“OK” button like the in the screen above.  
 
For a quick mode selection insert in the field provided an “N”  or “n”  and then press 
the “OK” button. 
To exit just press the “Cancel”  button or the red square “x”  in the top right corner.  



 97

Section 3 
Feedback Mode 
 
3.1 
After you have selected ‘Y’  for feedback in the initial page, the calculator will 
automatically pass in the feedback mode. The next page that is displayed is the one 
below: 
 

 
 
This page now guides the user in defining the game matrix dimensions that is about to 
be solved. 
 
First, the user has to fill in the field shown above the number for the row dimension, 
and then to press enter. In our example we defined the row dimension to be 2. 
 
 

 
 
 
At this point the user can exit the program as well by pressing the “x”  button in the 
top right corner or the “Cancel”  button as well, which is located next to the “OK” 
button. 



 98

After the user has pressed enter or “OK”, system will hold the number of rows in 
memory and display to the user another screen for filling in the column dimensions. 
 
The screen will look like this:  
 
 

 
 
 
At this point the user can exit the program as well by pressing the “x”  button in the 
top right corner or the “Cancel”  button as well, which is located next to the “OK” 
button. 
 
After filling the field for the column dimensions you may proceed by pressing the 
“OK” button. The next page after the “OK” button has been pressed will look like the 
one below: 
  

 
 
 
This is more like a confirmation screen to ensure the user that the correct dimensions 
have been passed in the calculator’s memory. From here the user can either press the 
“OK” button to continue, or the red “x”  button for exiting. 
 



 99

After the user has pressed the enter button the system proceeds in the way is shown 
below: 
 

 
 
It gives the user an input field for filling the game matrix. By inserting the first 
element and pressing the “OK” button, the program will continue filling the matrix 
until the user has reaches the last element of the matrix. Lets insert for simplicity the 

2x2 matrix ��
	



��
�


43

21
. 

 

        
 
 

       
 
At any time the user can select the red “x”  button at the top right corner or the 
“Cancel”  button, for exiting and cancelling the operation respectively. 



 100

After the user has filled the game matrix, the system will tell the user that everything 
is ready and all the values have passed correctly to the memory, with a screen like 
this: 
 
 

 
 
 
Again the system provides the little red “x”  button so the user can immediately exit 
the program if she wants. 
 
By pressing the “OK” button, the system will provide the user a screen for displaying 
what the game matrix is, in order for the user to check that this is what she wants. 
 
 

 
Two options are available in this confirmation screen. The “OK” button, which it will 
make the calculator proceed. The “x”  button, which will make the operation 
cancelled. Proceeding with the “OK” button, program finds the solution if possible. In 
the example we are using, because saddle points do exist, the program found the 
solution as it is shown in the screen below.  
 



 101

 
 

In the example of the 2x2 game matrix ��
	



��
�


43

21
, the solution is 3, the 1,2A  element of 

the matrix. 
 
By pressing “OK”, system will exit and the solutions are going to be displayed in the 
Console like the screen below: 
 

 



 102

3.2 
Now, when saddle points do not exist, system will proceed with the linear algebra and 
the simplex method. Feedback for all the tableaus will be given as well as pivots and 

pivoting steps. Consider the example ��
	



��
�


=

03

21
A  of a 2x2 game matrix. the system 

will proceed like this: 
 

 
 
Instead of displaying the solution like it did when saddle points existed. This screen is 
explaining that saddle points do not exist and that maxmin is not equal with maxmin. 
Therefore, the process that has to be used now is the linear algebra and the simplex 
method.  
 
Like before the little red button “x”  in the top right corner will let the user exit the 
program immediately. 
 
The “OK” button, when pressed is going to start the algorithm for solving the 
problem. 
 
Once the “OK” button has been pressed, the system will solve the problem and give 
the user the results and feedback of the process used for solving it. Semantic tableaus, 
pivots, temporary ratios and other useful feedback is going to be given to the user. 
That is the value of the game as well as the optimal strategies for the two players.  



 103

The screen bellows shows how the system will display that to the user: 
 

 
 

 



 104

Section 4 
Quick Mode 
 
4.1 
After you have selected ‘N’  for no feedback in the initial page, the calculator 
automatically passes in the quick mode. The next page that is displayed is the one 
below: 
 

 
 
This page now guides the user in defining the game matrix dimensions that is about to 
be solved. 
 
First, the user has to fill in the field shown above the number for the row dimension, 
and then to press enter. In our example we defined the row dimension to be 2. 
 
 

 
 
 
At this point the user can exit the program as well by pressing the “x”  button in the 
top right corner or the “Cancel”  button as well, which is located next to the “OK” 
button. 



 105

 
After the user has pressed enter, system will hold the number of rows in memory and 
display to the user another screen for filling in the column dimensions. 
 
The screen will look like this:  
 
 

 
 
 
At this point the user can exit the program as well by pressing the “x”  button in the 
top right corner or the “Cancel”  button as well, which is located next to the “OK” 
button. 
 
After filling the field for the column dimensions and, you may now press the “OK” 
button to continue. The next page after the “OK” button has been pressed will look 
like the one below: 
  

 
 
This is more like a confirmation screen to ensure the user that the correct dimensions 
have been passed in the calculator’s memory. From here the user can either press the 
“OK” button to continue, or the red “x”  button for exiting. 



 106

 
After the user has pressed the enter button the system proceeds in the way is shown 
below: 
 

 
  
It gives the user an input field for filling the game matrix. By inserting the first 
element and pressing the “OK” button, the program will continue filling the matrix 
until the user has reaches the last element of the matrix. Lets insert for simplicity the 

2x2 matrix ��
	



��
�


43

21
. 

 
 

        
 
 

       
 
 
At any time the user can select the red “x”  button at the top right corner or the 
“Cancel”  button, for exiting and cancelling the operation respectively.  



 107

 
After the user has filled the game matrix, the system will tell the user that everything 
is ready and all the values have passed correctly to the memory, with a screen like 
this: 
 
 

 
 
 
Again the system provides the little red “x”  button so the user can immediately exit 
the program if she wants. 
 
By pressing the “OK” button, the system will provide the user a screen for displaying 
what the game matrix is, in order for the user to check that this is what she wants. 
 
 

 
 
 
Two options are available in this confirmation screen. The “OK” button, which it will 
make the calculator proceed. The “x”  button, which will make the operation 
cancelled. Proceeding with the “OK” button, program finds the solution if possible. In 
the example we are using, because saddle points do exist, the program found the 
solution as it is shown in the pop-up below.  
 
 

 
   
 

In the example of the 2x2 game matrix ��
	



��
�


43

21
, the solution is 3, the 1,2A  element of 

the matrix. 



 108

By pressing “OK”, system will exit and the solutions are going to be displayed in the 
Console like the screen below: 
 
 

 
    
 
4.2 
And similarly as in with the feedback mode, when saddle points do not exist, system 
will proceed with the linear algebra and the simplex method. Considering the example 

��
	



��
�


=

03

21
A  Of a 2x2 game matrix, the system will proceed like this: 

 

 
 
 
Instead of displaying the solution like it did when saddle points existed. This screen is 
explaining that saddle points do not exist and that maxmin is not equal with maxmin. 



 109

Therefore, the process that has to be used now is the linear algebra and the simplex 
method.  
Like before the little red button “x”  in the top right corner will let the user exit the 
program immediately. 
 
The “OK” button, when pressed is going to start the algorithm for solving the 
problem. 
 
Once the “OK” button has been pressed, the system will solve the problem quick and 
give the user the results. That is the value of the game as well as the optimal strategies 
for the two players.  
 
The screen bellows shows how the system will display that to the user: 
 
 

  
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 



 110

Section 5 
Error  Handling, Wrong Input and Cancellation 
 
 
The system provides some facilities for retrieving from errors and wrong inputs. For 
example, in the mode selection stage if a user instead of selecting a proper selection 
does something that the system will not expect, the system will not fail. 
 
Consider the example: 
 

  
 
The system will not fail when the “OK” enter is pressed. It will actually proceed like 
the screen below: 
 

 



 111

When a user acts in a way that he is not expected, like defining a row or a column 
dimension with zero, or inserting invalid input when filling the elements, for example: 
 

    
 
 
The system will immediately understand that and act the way is shown in the screens 
below: 
 
 

   
 
 
Also when the user on purpose tries to proceed without feeling dimensions or, and 
elements of the matrix, system will understand it and act like the screen below: 
 
 

 
 
 
I nval i d sel ect i on 
For  t he r ow di mensi ons an i nt eger  has t o be i nser t ed 
 



 112

When the user wants to exit at any time, that is done by either the “Cancel”  button or 
the little red button denoted by “x”  at the top right corner of the screen. 
 
For example in the first screen, 
 

 
 
When the user presses “x”  or “Cancel”  the system immediately exits 
 

 
 
 
 
 
 
 
 
 
 



 113

�
�

� ' ' %(  
) �,� �
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 114

APPENDIX D 
 

D1 The Code 
 
 
 
import javax.swing.* ; 
import java.text.DecimalFormat; 
 
public class game_theory {  
 
 public static void main(String[] args) {  
 
//Small tests are used frequently to help at compile time and also  
//to keep on track of what the program is doing step by step.Also 
//in this way the user gets feedback for what is done behind the scenes   
 
System.out.println("Starting...");//Testing 1 
 
 //To ask the user whether he wants to be provided with feedback or not 
 String Mode = JOptionPane.showInputDialog("This is a program for solving 
Two-Person " + "\nZero-Sum games. For a detailed step by\nstep description and 
feedback press"+  "©Y©. \n\nFor solutions only press ©N©"); 
  
//Input Validity selection check 
String Y="Y"; 
String N="N"; 
if((Mode==null)||(Mode.length()==0))  
{    System.out.println("Operation is cancelled"); 
     System.exit(0); 
}                                
   else if( Mode.equalsIgnoreCase(Y))  
   {    
     System.out.println("Feedback mode selected"); 
    }  
    else if(Mode.equalsIgnoreCase(N) ) 
    {  
     System.out.println("Quick mode selected"); 
    }  
    else 
    {  
     System.out.println("Invalid selection\n" + 
       "Program will proceed in quick mode"); 
    }  
     
//To get the game matrix rows 
String input = JOptionPane.showInputDialog("Please enter the number of rows:"); 
//Input Validity check 
if((input==null)||(input.length()==0))  



 115

 {    System.out.println("Input not found\nOperation is cancelled"); 
 System.exit(0);  }  
  
 try{  
 int matrix_row_dimension = Integer.parseInt(input);                                                                           
 }   
 catch(Exception ex) 
 {  
 System.out.println("Invalid selection"); 
 System.out.println("For the row dimensions an integer has to be inserted"); 
 String error="The input was invalid\nProgram will exit"; 

JOptionPane.showMessageDialog(null,error,"ERROR",   
JOptionPane.ERROR_MESSAGE ); 

 System.exit(0); 
 }  
 int rows = Integer.parseInt(input);//To convert the input 
   
 //To get the game matrix columns 

String input2 = JOptionPane.showInputDialog("Please enter the number of 
columns:");  
  
//Input Validity check 
 if(input2==null||(input2.length()==0)) 
 {    System.out.println("Input not found\nOperation is cancelled"); 
 System.exit(0);  }  
  
 try{   
 int matrix_column_dimension = Integer.parseInt(input2);  
 }  
 catch(Exception ex) 
 {  
 System.out.println("Invalid selection"); 
 System.out.println("For the column dimensions an integer has to be inserted"); 
 String error="The input was invalid\nProgram will exit"; 

JOptionPane.showMessageDialog(null,error,"ERROR", 
JOptionPane.ERROR_MESSAGE ); 

 System.exit(0); 
 }  
 int columns = Integer.parseInt(input2); 
   
//Checks for input validity 
if((rows==0)||(columns==0)||(rows<0)||(columns<0)) {    
 String error="The input was invalid\nProgram will exit"; 

JOptionPane.showMessageDialog(null,error,"ERROR", 
JOptionPane.ERROR_MESSAGE ); 

 System.exit(0); 
 }  
  
//Displays to the user the matrix dimensions that had been given 
 



 116

JOptionPane.showMessageDialog(new JFrame(),"The matrix" + 
   " you have given is going to be a "+rows+"x"+columns+ 
   " matrix! " + "Press enter to fill the matrix!"); 
  
int rows2=rows-1;      //Since arrays in java start at zero, these 
int columns2=columns-1;//numbers are going to be used when necessary 
//Creates the matrix of the dimensions given 
 double[][] matrix = new double[rows][columns]; 
  
 DecimalFormat precisionTwo = new DecimalFormat("0.00");  
 //The precisionTwo is going to be used throughout the program,  
 //When tableaus are being displayed and also to the final results, 
 //To make them all in two digits to the right of the decimal point 
 
if(Mode.equalsIgnoreCase(Y))    
{ System.out.println("Filling the array...");} //Testing 2 
 
//To fill the array with the matrix elements 
for (int i=0; i<matrix.length; i++)   
{  
 for(int j=0; j<matrix[i].length; j++) 
 {   
  //To keep track of the matrix elements 
  int count=i+1;  
  int count2=j+1; 
   
  //To get element i,j of the matrix 
  String input3=JOptionPane.showInputDialog("Please"+ 
    " enter the element A"+count+count2+":"); 
      
  //Checks for input validity 
  if((input3==null)||(input3.length()==0))  
  {    System.out.println("Input not found\nOperation is cancelled"); 
  System.exit(0);}  
  try 
  {  
   double Aij=Double.parseDouble(input3); 
   matrix[i][j]=Aij; //Places each element in the array 
  }  
  catch(Exception ex) 
  {  
   System.out.println("Invalid selection"); 
   System.out.println("Operation is canceled"); 
   String error="The input was invalid\nProgram will exit"; 

JOptionPane.showMessageDialog(null, error ,"ERROR", 
JOptionPane.ERROR_MESSAGE ); 

   System.exit(0); 
    
  }  
 }   



 117

}     
 
if(Mode.equalsIgnoreCase(Y))      
{ System.out.println("Array has been filled");} //Testing 3 
 
  JOptionPane.showMessageDialog(new JFrame(),"The Game"+ 
  " Matrix is ready. Press enter to view"); 
     
  //To display the elements of the matrix to the user 
  String output ="";   
  stop: {  // matrix block 
   for(int i=0; i<matrix.length; i++) {  
    for (int j=0; j<matrix[i].length;j++) {     
     if(i==matrix.length) 
      break stop; 
     double output2=0; 
      output2 = matrix[i][j]; 
      output+="      "+output2; 
     }   
    output += "\n";  
    }  
    output+="\nThis is the matrix inserted. Press enter to continue"; 
    } // End of matrix block 
     
  JOptionPane.showMessageDialog(null, output , "The " +     
 "Game Matrix", JOptionPane.INFORMATION_MESSAGE ); 
 
if(Mode.equalsIgnoreCase(Y)){      
System.out.println("Matrix was displayed"); //Testing 4 
System.out.println("Starting MINIMAX Theorem... " + 
   "Checking for saddle points... ");}  //Testing 5  
 
/*  To check if saddle points exists. With Minimax Theorem 
Checks all elements of all rows and takes all the minimums and then 
the maximum among them. Then checks all columns and takes the maximums  
from all and then from them the minimum among them.After that compares  
"max min" for equality with "min max" * / 
    
double min=0;//Variable to use for comparing each element of a row 
double maxmin=-999999; 
int min_i=0;//Variable to keep track of the i position of the element      
int min_j=0;//Variable to keep track of the j position of the element 
int maxmin_i=0; 
int maxmin_j=0; 
    
 for(int i=0; i<matrix.length; i++)  
 {  
  min = matrix[i][0];  //First row element for i row 
  min_i=i;  
             min_j=0; 



 118

  for (int j=0; j<matrix[i].length; j++)   
{  
  if (min > matrix[i][j] )  
    {   min=matrix[i][j];    
        min_i = i;  
        min_j= j; 
     }  
   }  
    if( maxmin < min) //The Maximum element from all the minimums 
     {  
   maxmin=min; 
      maxmin_i= min_i + 1;  
    maxmin_j= min_j + 1; 
     }  
   }     
 
if(Mode.equalsIgnoreCase(Y))   
{ System.out.println("Maximum element from all the rows minimums: "+maxmin);}  
 
    //A temporary matrix needs to be created here so as  
    //to get the columns first instead of the rows 
    int q=0; int w=0;        
    double[][] temp_matrix = new double[columns][rows];  
     
    for(int i=0; i<matrix.length; i++) 
      {  
     w=0;        
     for(int j=0; j<matrix[i].length; j++) 
       {  
      temp_matrix[w][q]= matrix[i][j]; 
      w++; 
         }  
          q++; 
         }  
     
  double max=0; //Variable to use for comparing each element of a column 
  double minmax=999999; 
    
  for(int i=0; i<temp_matrix.length; i++)   
    {  
    max = temp_matrix[i][0]; //First column element for i row 
    for(int j=0; j<temp_matrix[i].length; j++)  
      {  
          if(max < temp_matrix[i][j] )  
           {    max = temp_matrix[i][j];   }  
        }   
       
    if( minmax > max) //The Minimum element from all the maximums 
      {  
 minmax=max; 



 119

    }  
      }          
  
 
if(Mode.equalsIgnoreCase(Y))      
{ System.out.println("Minimum element from all the columns maximums: 
"+minmax);}  
 
  if(minmax==maxmin) 
   {    
    JOptionPane.showMessageDialog(new JFrame(),"The matrix " + 
 "Game has the saddle point "+ minmax + " since the minimax" + 
   " = maximin = "+ minmax +" .\nThis is the element "+ 
 "A" + maxmin_i + maxmin_j + " " + "of the matrix. "+ 
 "This is the value of the game"); 
      
System.out.println("Saddle points found");//Testing 6 
System.out.println("Element A"+ maxmin_i + maxmin_j +" of the matrix" ); 
    }  
 
  else 
     {    
    JOptionPane.showMessageDialog(new JFrame(),"This "+ 
      "Matrix Game does not have a saddle point!\n " + 
      "MinMax="+minmax+"\t\t\t   MaxMin="+ maxmin +"\n"+  
      "Minimax" + " is not equal with Maximin\n " +"\n"+ 
      "So the program has to proceed with linear algebra\n "+ 
      "It will use the simplex method to find the optimal\n "+  
  "strategies for the two players and the value of the " + 
  "game\n"+"\n" + 

 "Press enter to continue"); 
 
if(Mode.equalsIgnoreCase(Y)) 
{ System.out.println("Saddle points do not exist\nSIMPLEX Method Started...");}  
        
//Starting simplex method 
//1st STEP  
//Checks if there exists negative entries in the matrix game 
       
 double check_for_negative=0;  
 for(int i=0; i<matrix.length; i++)  
 {  
  for(int j=0; j<matrix[i].length; j++) 
  {   
   if ( matrix[i][j] < check_for_negative ) 
          {  check_for_negative=matrix[i][j]; }  
  }   
 }  
        
//If there exists a negative entrie in the matrix game, the 



 120

//program will add a number to make matrix entries positive.  
 
 if(check_for_negative<0) 
 {  
  for(int i=0; i<matrix.length; i++)  
  {  
   for(int j=0; j<matrix[i].length; j++) 
   {  
    matrix[i][j]=matrix[i][j]-check_for_negative; 
   }  
  }  
 }  
           
//2nd STEP  
//Creates the tableau  
 int simpl_matr_rows = rows + 1;  //for the rows of the tableau 
 int simpl_matr_cols = columns+1; //for the columns of the tableau 
  
//For filling the tableau 
 int ii=0;  
 int jj=0; 
  
//Array to be used for the first tableau of the simplex method 
double[][] matrix_for_simplex=new double[simpl_matr_rows][simpl_matr_cols]; 
  
for(int i=0; i<matrix.length; i++) 
 {  
 jj=0; 
 for(int j=0; j<matrix[i].length; j++) 
 {  
  //To fill the tableau 
  matrix_for_simplex[ii][jj]= matrix[i][j]; 
  jj++; 
 }  
  ii++; 
}     
  
 for(int j=0; j<simpl_matr_cols-1; j++ ) //To fill the last Row 
 {  
  matrix_for_simplex[simpl_matr_rows-1][j]=-1; 
 }  
  
 for(int i=0; i<simpl_matr_rows-1; i++ ) //To fill the last Column 
 {  
  matrix_for_simplex[i][simpl_matr_cols-1]=1; 
 }  
  
 //To fill the element where the value of the game is going to be   
 matrix_for_simplex[simpl_matr_rows-1][simpl_matr_cols-1]=0; 
  



 121

 if(Mode.equalsIgnoreCase(Y)) 
 { System.out.println("\nConstructing first tableau..\n");} //Testing 6 
  
 //To Print the first tableau 
 for(int i=0; i<matrix_for_simplex.length; i++)  
 {  
  for(int j=0; j<matrix_for_simplex[i].length; j++) 
  {  
   //To print the initial tableau 
   if(Mode.equalsIgnoreCase(Y)) 
   { System.out.print(" "+ precisionTwo.format 
     (matrix_for_simplex[i][j])+"\t");}  
  }  
  if(Mode.equalsIgnoreCase(Y)) 
  { System.out.println("\n");}  
 }  
         
 //3rd STEP  
 //Choses a pivot according to the 3 criteria for selecting pivots 
 //And then it makes pivot steps to get the next tableau 
 //Checks wether a negative entry remains in the bottom row of the tableau  
     
 //If a negative entry remains, it repeats the procedure 
         
 double temp_ratio=0; 
 double smaller_positive_ratio=1000000; 
 double pivot=0; 
 double[] pivot_col = new double[simpl_matr_rows];       
 double[] pivot_last_col = new double[simpl_matr_rows]; 
 boolean for_pivot=true; 
 boolean recurse=false; 
 int pivot_i=0; 
 int pivot_j=0; 
 String[] x_labels = new String[simpl_matr_rows-1]; 
 String[] y_labels = new String[simpl_matr_cols-1];         
 String[] left_col_labels=new String[simpl_matr_cols-1]; 
 String[] hor_row_labels=new String[simpl_matr_rows-1]; 
 int zero=0; 
 String s_zero="0"; 
  
 int initialisation_x=1; 
 int initialisation_y=1; 
  
 //Labels are used for keeping track on players strategies       
 //To fill the x labels array 
 for(int x=0; x< x_labels.length; x++) 
 {  
  x_labels[x]="X"+initialisation_x; 
  initialisation_x++; 
 }  



 122

  
 //To fill the y labels array 
 for(int y=0; y < y_labels.length; y++) 
 {  
  y_labels[y]="Y"+initialisation_y; 
  initialisation_y++; 
 }  
       
 //Since negative entries exist, program will start the method 
 //After first loop, program will recurse if negative entries  
 //remain in the bottom row of the matrix 
  
do   // START OF DO 
{          
outerloop:  
while(for_pivot != false)  
{  
  for(int inner_i=0; inner_i < matrix_for_simplex.length; inner_i++)  
   {  
    for(int inner_j=0; inner_j < matrix_for_simplex[inner_i].length; inner_j++) 
      {  
 //1st condition for selecting a pivot 
 if( matrix_for_simplex[inner_i][inner_j] > 0 ) 
 {  
  //2nd condition for selecting a pivot  
      
 if(matrix_for_simplex[simpl_matr_rows-1][inner_j] < 0 ) 
   {  
                     
  //To fill the last column for ratio                  
  for(int gg=0; gg<simpl_matr_rows-1; gg++) 
         {  
      pivot_last_col[gg] = matrix_for_simplex[gg][simpl_matr_cols-1]; 
         }   
      
  //To fill pivot s column for ratio 
  for(int gg=0; gg<simpl_matr_rows-1; gg++) 
  {  
  pivot_col[gg] = matrix_for_simplex[gg][inner_j]; 
  }                     
     
  //To find temporary ratio 
 for(int piv=0; piv<pivot_last_col.length-1; piv++) 
 {  
  temp_ratio = pivot_last_col[piv]/pivot_col[piv]; 

if(Mode.equalsIgnoreCase(Y)) 
  { System.out.print("Ratio to compare:"+ precisionTwo.format 
                                                       (temp_ratio) + "\n");}  
       
   /*  Next is to check wich is the the smallest ratio from all positives 



 123

    This also satisfies 3rd condition: Since smaller_positive_ratio is 
    bigger than temp_ratio and temp_ratio is bigger than zero, that 
    means smaller_positive_ratio is bigger than zero as well   * / 
       
      if( smaller_positive_ratio > temp_ratio && temp_ratio > 0 ) 
      {  
       smaller_positive_ratio=temp_ratio; 
       pivot=matrix_for_simplex[piv][inner_j]; 
       pivot_i=piv; 
       pivot_j=inner_j; 
      }   
     } //end of 3rd condition 
     
     for_pivot=false;                     
     break outerloop;             
      
                  } //end of 2nd condition 
      } //end of 1st condition                    
           
     }  //end inner_j loop 
    }  //end inner_i loop   
   } //boolean for pivot 
            
 if(Mode.equalsIgnoreCase(Y)) 

{  
    System.out.print("\nSmaller positive ratio is "+ precisionTwo.format 
                    (smaller_positive_ratio) +"\n"); 
    System.out.print("So the pivot at this step is "+precisionTwo.format 
                                     (pivot)+" \n"); 
    System.out.print("Performing pivot step with "+precisionTwo.format 
     (pivot)+" being the pivot\nPivot step will give the following tableau:\n\n"); 

 }  
         
 //4th STEP       
 //Pivot Step 
 //After selecting a pivot and checking for the criteria validity, 
 //program will perform the pivot step, and get the next tableau  
 //for consideration    
         
 //For elements that don t belong to pivots row or column   
 for(int piv_i=0; piv_i < matrix_for_simplex.length; piv_i++)  
 {  
 for(int piv_j=0; piv_j<matrix_for_simplex[piv_i].length; piv_j++) 
 {  
//Element=element-(element(in pivotÁs row)*element(in pivotÁs column))/pivot 
if(piv_i!=pivot_i && piv_j!=pivot_j)   
{  
matrix_for_simplex[piv_i][piv_j]=matrix_for_simplex[piv_i][piv_j]-
((matrix_for_simplex[pivot_i][piv_j]*  matrix_for_simplex[piv_i][pivot_j])/pivot); 
 }   



 124

 }  
}        
  
 //For elements that belong to pivots row 
 for(int piv_i=0; piv_i < matrix_for_simplex.length; piv_i++)  
 {  
  for(int piv_j=0; piv_j<matrix_for_simplex[piv_i].length; piv_j++) 
  {  
   //Element=element/pivot 
   if(piv_i==pivot_i && piv_j!=pivot_j) 
   {  
   
 matrix_for_simplex[piv_i][piv_j]=matrix_for_simplex[piv_i][piv_j]/pivot; 
   }   
  }   
 }  
  
//For elements that belong to pivots column 
for(int piv_i=0; piv_i < matrix_for_simplex.length; piv_i++)  
{  
   for(int piv_j=0; piv_j<matrix_for_simplex[piv_i].length; piv_j++) 
 {  
  //Element= -element/pivot 
  if(piv_i!=pivot_i && piv_j==pivot_j) 
  {  
 matrix_for_simplex[piv_i][piv_j]= -matrix_for_simplex[piv_i][piv_j]/pivot; 
   }   
  }   
 }  
      
 //For the pivot to be substitute with its reciprocal 
 for(int piv_i=0; piv_i < matrix_for_simplex.length; piv_i++)  
 {  
  for(int piv_j=0; piv_j<matrix_for_simplex[piv_i].length; piv_j++) 
  {  
   //Element(which is the pivot here)=1/pivot 
   if(piv_i==pivot_i && piv_j==pivot_j) 
   {  
   
 matrix_for_simplex[piv_i][piv_j]=1/matrix_for_simplex[piv_i][piv_j]; 
   }   
  }   
 }   
     
 //For printing tablaeu at every stage 
 for(int piv_i=0; piv_i < matrix_for_simplex.length; piv_i++)  
 {  
  for(int piv_j=0; piv_j<matrix_for_simplex[piv_i].length; piv_j++) 
  {   
   if(Mode.equalsIgnoreCase(Y)) 



 125

{   System.out.print(" "+ precisionTwo.format 
     (matrix_for_simplex[piv_i][piv_j])+"\t");}  
 }   
if(Mode.equalsIgnoreCase(Y)) 
{   System.out.println("\n");   }  
 
}   
    
//End of 4th Step - Pivot Step 
    
//5th Step   
 //Now the the program will interchange x labels 
 //with y labels to keep truck on the final solutions 
     
 String interchange = x_labels[pivot_i]; 
 String interchange2= y_labels[pivot_j]; 
  
 x_labels[pivot_i]=interchange2; 
 y_labels[pivot_j]=interchange;     
  
 //End of 5th STEP 
  
 //6th STEP 
 //The program will check if negative values remain in the bottom row 
  

int checking_for_neg = 1; 
  
 innermost: 
 for(int i=matrix_for_simplex.length-1; i<matrix_for_simplex.length; i++) 
  {  
   for(int j=0; j<matrix_for_simplex[i].length-1; j++) 
   {  
    if(matrix_for_simplex[i][j] < 0) 
    {  
     checking_for_neg=-1; 
    }   
    //If bottom rows element are positive then 
    //sets recurse to true and the loop ends 
    //Values can be read off 
    if(checking_for_neg == 1) 
    {  
     recurse=true;  
    }  
    //If bottom rows element are positive then 
    //sets recurse to false and it loops again 
    //and also initialises necessary variables   
    else 
    {  
     recurse=false; 
      



 126

     temp_ratio=0; 
     smaller_positive_ratio=1000000; 
     pivot=0; 
     for_pivot=true; 
     pivot_i=0; 
     pivot_j=0; 
             
     break innermost; 
    }  
   }  
  }  
            
 }  while(!recurse);//END OF DO (3rd STEP) together with the 6th step 
 //It will loop until no negative entries remain in the bottom row 
 //Appart from the last entrie though wich is the value of the game.        
  
  
 //7th Step(Final step)  
 //To get,read off the solutions     
    
if(Mode.equalsIgnoreCase(Y)) 
{   System.out.println("The above is the final tableau. The optimal\nstrategies for " + 
 "the two players and the \nvalue of the game can be now resolved\n");  }     
  
            
double value_of_the_game; 
double final_value_of_the_game; 
value_of_the_game=1/matrix_for_simplex[simpl_matr_rows-1][simpl_matr_cols-1]; 
final_value_of_the_game = value_of_the_game + check_for_negative;   
           
 // End of simplex method      
     
 //Sorting labels 
 for(int x=0; x < x_labels.length; x++) 
 {     
  String origin = x_labels[x].substring(0,1);  
  String tail = x_labels[x].substring(1); 
  int ord_tail = Integer.parseInt(tail); 
  int ind_tail = ord_tail-1; 
  String xx="X"; 
   
 if(origin.equals(xx)) 
 {  
 hor_row_labels[ind_tail] ="Y"+x_labels[x].substring(1)+"="+s_zero; 
 }   
 else 
 {  
left_col_labels[ind_tail] ="X"+ x_labels[x].substring(1)+"="+ precisionTwo.format 
(matrix_for_simplex[simpl_matr_rows-1][ind_tail]/matrix_for_simplex 
[simpl_matr_rows-1][simpl_matr_cols-1]); 



 127

  }      
 }    
 
 for(int y=0; y < y_labels.length; y++) 
 {  
  String origin= y_labels[y].substring(0,1);  
  String tail = y_labels[y].substring(1); 
  int ord_tail = Integer.parseInt(tail); 
  int ind_tail = ord_tail-1;  
  String yy="Y"; 
   
  if(origin.equals(yy)) 
  {  
  left_col_labels[ind_tail] = "X"+y_labels[y].substring(1)+"="+s_zero; 
  }   
  else  
  {  
hor_row_labels[ind_tail] ="Y"+y_labels[y].substring(1)+"="+ precisionTwo.format 
(matrix_for_simplex[ind_tail][simpl_matr_cols-1]/matrix_for_simplex 
[simpl_matr_rows-1][simpl_matr_cols-1]); 
  }  
 }  
 //Labels have been sorted  
 //Printing the optimal strategies for player A 
 System.out.println("Optimal strategy for Player A: "); 
 for(int i=0; i<left_col_labels.length; i++) 
 {  
  System.out.print( left_col_labels[i] +"  "); 
 }  
  
 System.out.println("\n");  
  
 //Printing the optimal strategies for player B 
 System.out.println("Optimal strategy for Player B: "); 
 for(int i=0; i<hor_row_labels.length; i++) 
 {  
  System.out.print( hor_row_labels[i] + "  " ); 
 }  
  
 //Printing the final value of the game 
 System.out.println("\n\nOptimal Value of the game:"+ 
 precisionTwo.format(final_value_of_the_game)); 
  
       } //end of else( Either minmax=maxmin or simplex method ) 
      
  System.exit(0);   
 }   
}  
 
//THE END 


