
A BCPL Front End for GCC

Thomas Crick
BSc (Hons) Computer Science

University of Bath

May 2004

Abstract

The BCPL programming language was developed by Martin Richards at the Univer-
sity of Cambridge in 1967. It was a simplified version of the earlier language CPL
and over the following fifteen years became a popular language for system program-
ming. It was typeless, block structured and gave the programmer enormous power
and flexibility. The development of its descendant C as the language of choice for
system programming led to its decline, but large amounts of legacy code exists to-
day. This dissertation attempts to apply modern compilation techniques to craft a
BCPL compiler and also investigates a number of recent developments in the GNU
Compiler Collection (GCC). A solution is proposed by developing a BCPL front
end for GCC using the optimisation framework for trees based on the Static Single
Assignment (SSA) form. It is concluded that the implementation would provide
legacy BCPL users with access to a popular, robust and multi-platform compiler
toolchain.

ii

A BCPL Front End for GCC

submitted by Thomas Crick

COPYRIGHT

Attention is drawn to the fact that the copyright of this dissertation
rests with its author. The Intellectual Property Rights of the products
produced as part of the project belong to the University of Bath (see
http://www.bath.ac.uk/ordinances/#intelprop).

This copy of the dissertation has been supplied on condition that any-
one who consults it is understood to recognise that its copyright rests
with its author and that no quotation from the dissertation and no in-
formation derived from it may be published without the prior written
consent of the author.

DECLARATION

This dissertation is submitted to the University of Bath in accordance
with the requirements of the degree of Bachelor of Science in the De-
partment of Computer Science. No portion of this work in this dis-
sertation has been submitted in support of an application for any other
degree or qualification of this or any other university of institution of
learning. Except where specifically acknowledged, it is the work of the
author.

This thesis may be made available for consultation within the Univer-
sity Library and may be photocopied or lent to other libraries for the
purpose of consultation.

Signed: ..

iii

Acknowledgements

I would like to say a massive thanks to Professor John Fitch, whose
experience and guidance during the project was invaluable. I would
also like to thank my girlfriend Kate and my parents for their support
over the past four years.

Contents

1 Introduction 1
1.1 Aim . 1
1.2 Objectives . 1
1.3 Structure . 1

2 Literature Survey 2
2.1 History . 2

2.1.1 CPL . 2
2.1.2 BCPL . 3
2.1.3 Development of B and C 4
2.1.4 Code Examples . 6

2.2 Compiler Phases . 6
2.3 Static Single Assignment Form . 7
2.4 GNU Compiler Collection Overview 8

2.4.1 GCC Front Ends . 9
2.4.2 GCC Intermediate Representations 10

2.5 Possible Implementations . 12
2.5.1 Flex and Bison . 12
2.5.2 BCPL to C Conversion . 12
2.5.3 Norcroft C Compiler . 13
2.5.4 lcc, A Re-targetable Compiler for ANSI C 14
2.5.5 The Stanford University Intermediate Format Project 14
2.5.6 The Low Level Virtual Machine Project 15
2.5.7 GNU Compiler Collection 16
2.5.8 Existing Work . 17

2.6 Design Issues . 19
2.6.1 BCPL Syntax Features . 19
2.6.2 Back End Phases . 20
2.6.3 Coding Standards . 20
2.6.4 Legal . 21

3 Requirements 22
3.1 Requirements Analysis . 22
3.2 Requirements Specification . 22

iv

CONTENTS v

3.2.1 System Perspective . 22
3.2.2 System Features . 23
3.2.3 User Characteristics . 26
3.2.4 Operating Environment . 26
3.2.5 Documentation . 26

4 Design 28
4.1 System Architecture . 28
4.2 Methodology . 28
4.3 Lexical Analyser . 29
4.4 Symbol Table . 30
4.5 Parser . 33
4.6 Intermediate Representations . 35
4.7 GCC Integration . 36

5 Implementation 37
5.1 Overview . 37
5.2 Tools . 37
5.3 Lexical Analyser . 38
5.4 Symbol Table . 40
5.5 Parser . 42
5.6 Intermediate Representations . 47

5.6.1 Overview . 47
5.6.2 Trees . 48
5.6.3 Identifiers . 49
5.6.4 Declarations . 49
5.6.5 Functions . 50
5.6.6 Statements . 51
5.6.7 Expressions . 51
5.6.8 Global Vector . 52
5.6.9 System Library . 53
5.6.10 Miscellaneous . 54

5.7 GCC Integration . 55

6 System Testing 57

7 Conclusion 60
7.1 Overview . 60
7.2 Milestones . 62
7.3 Further Work . 63
7.4 Concluding Remarks . 64

Bibliography 65

Appendices 70

CONTENTS vi

A Compiler Phases 71

B BCPL, B and C Code Examples 72

C Backus-Naur Form for BCPL 73

D BCPL Operator Precedence 77

E Integration of GENERIC and GIMPLE into GCC 78

F Test Results 81

G Program Versions 84

H Source Code 85

List of Figures

2.1 SSA form example . 8
2.2 RTL example S-expression . 10
2.3 GCC implementation of SSA . 11

4.1 Compiler system overview . 29
4.2 Separately chained hash table schematic 32
4.3 Nested code blocks example . 33

5.1 Example Flex rules for BCPL . 38
5.2 Example Flex regular expressions for BCPL 39
5.3 Symbol table data structures . 42
5.4 Symbol table hash function . 42
5.5 Example Bison production rules for BCPL 43
5.6 Example of left-recursion in Bison production rule for BCPL 44
5.7 Syntactic ambiguity in BCPL repetitive commands 46

A.1 Basic compiler phases . 71

B.1 BCPL code example . 72
B.2 B code example . 72
B.3 C code example . 72

D.1 BCPL operator precedence and associativity 77

E.1 Existing GCC framework . 79
E.2 Integration of GENERIC and GIMPLE into GCC 80

vii

Chapter 1

Introduction

1.1 Aim

The aim of this dissertation is to develop a compiler for the system programming
language BCPL.

1.2 Objectives
� To provide a compiler for the BCPL language as defined by the creator Martin

Richards (Richards 1967).

� To provide for some of the commonly-used extensions of the language.

� To investigate common compiler toolchains and see how they could be utilised
to provide a framework for a BCPL compiler.

� To develop a modern compilation strategy for BCPL legacy users by devel-
oping a BCPL front end for GCC.

1.3 Structure

Chapter 2 discusses in depth the history and heritage of BCPL and details some of
the more important language features. It also investigates previous work in devel-
oping a BCPL compiler and discusses a wide range of approaches to the problem.
In Chapter 3 the process of requirements elicitation and capture is examined with
respect to the problem at hand, followed by an overview of the software and design
decisions in Chapter 4. Chapter 5 discusses in detail the chosen implementation of
the project and reflects on how specific difficulties were overcome. The process of
testing the system, followed by concluding remarks and future work is in Chapters 6
and 7 respectively.

1

Chapter 2

Literature Survey

2.1 History

2.1.1 CPL

The publication in 1963 of the revised ALGOL report (Naur, Backus & McCarthy
1963) marked an enormous step forward in the design of programming languages.
Probably the most important idea, which arose almost by accident, was that of block
structure and the stack mechanism for implementing it. A block is a set of data defi-
nitions followed by a sequence of commands and may be nested one within another.
Each data definition implies a scope, over which the defined term is visible, i.e.
where it may be legally referred to in either commands or other definitions. Outside
this scope, the item has no existence. Thus memory space need be allocated for
data only while there are commands to process it; and data names can be reused in
different contexts (Fischer & LeBlanc 1991).

During the decade that followed the ALGOL report, several new languages were
devised, each claiming some superiority over ALGOL 60, but all borrowing ideas
from it, including that of block structure. CPL (Combined Programming Language)
was a collaborative venture between the University of London Institute of Com-
puter Science and the Cambridge University Mathematical Laboratory. CPL was
never fully implemented, partly due to the immature compiler technologies of the
time, but it did appear in restricted forms on the Atlas and Titan computers at Cam-
bridge (Barron, Buxton, Hartley, Nixon & Strachey 1963).

CPL was heavily influenced by ALGOL 60, but unlike ALGOL 60 which was ex-
tremely small, elegant and simple, CPL was big, only moderately elegant and com-
plex. It was strongly typed, but also had a ’general’ type enabling a weak form on
polymorphism (Emery 1986). It also had a purely functional subset, providing a
where form of local definitions. List structures were polymorphic, with list selec-
tion being done through structure matching. It was intended to be good for both
scientific programming (in the way of Fortran and ALGOL) and also commercial

2

CHAPTER 2. LITERATURE SURVEY 3

programming (in the way of Cobol), but essentially tried to do too much. It could be
seen as a similar effort to PL/1 in this way, or to later efforts such as Ada. However,
the principle motivation for CPL was the contention that while ALGOL 60 was
an ideal medium for defining algorithms, it was too far removed from the realities
of computing hardware. It is probably this ideal more than anything else that led
to the success of CPL as the progenitor of system programming languages, which
are nothing if not efficient in the generation of object code. However, there was
still a need for an efficient system programming language that was based along the
original ideas of CPL but removed the layers of complexity and could handle the
technology of the time. This was the prime motivator for the development of BCPL.

2.1.2 BCPL

BCPL (Basic Combined Programming Language) was designed as a seriously sim-
plified, cut-down version of CPL. It was low-level, typeless and block-structured
and was devised by Martin Richards at Cambridge University in 1966. The first
compiler implementation was written while he was visiting MIT in the spring of
1967, while the language was first described in a paper presented to the 1969 AFIPS1

Spring Joint Computer Conference (Richards 1969).

The language itself was lean, powerful, and portable. It proved possible to write
small and simple compilers for it and was therefore a popular choice for bootstrap-
ping a system. Reputedly some compilers could be run in 16Kb. Several operating
systems were written partially or wholly in BCPL (for example, Tripos and Ami-
gaDOS). A major cause of its portability lay in the form of the compiler, which
was split into two parts. The front end parsed the source and generated OCODE,
an assembly language for a stack-based virtual machine, as the intermediate lan-
guage. The back end took the OCODE and translated it into the code for the target
machine (Richards 1971). Soon afterwards this became fairly common practice,
cf. Pascal PCODE or the Java Virtual Machine, but the Richards BCPL compiler
was the first to define a virtual machine for this purpose. The most recent machine
independent implementation of BCPL uses INTCODE, a low-level language inter-
preted by a fast and simple abstract machine (Richards 1975). This implementation
can be downloaded free of charge (for private and academic purposes) from Martin
Richard’s personal website at the University of Cambridge (Richards 2000).

As said previously, BCPL was typeless in the modern sense, but its one data type
was the word, a fixed number of bits usually chosen to align with the architec-
ture’s machine word. It could be said that BCPL is an ’operator-typed’ language,
rather than a ’declaration-typed’ language. That is, each object in the language can
be viewed as having any type, and can change type at any time. It is the opera-
tors used to manipulate the object that determine the type it has at that moment.

1American Federation of Information Processing Societies

CHAPTER 2. LITERATURE SURVEY 4

For example, ’+’ adds two values together treating them as integers; ’!’ indirected
through a value effectively treats it as a pointer. In order for this to work, the im-
plementation provided no type checking. This had obvious speed benefits from a
compiler point of view, but created potential semantic problems. Other interesting
properties of the language were all parameters were call-by-value and only one-
dimensional arrays were provided. The philosophy of BCPL can summarised by
quoting from (Richards 1967):

”The philosophy of BCPL is not one of the tyrant who thinks he knows
best and lays down the law on what is and what is not allowed; rather,
BCPL acts more as a servant offering his services to the best of his
ability without complaint, even when confronted with apparent non-
sense. The programmer is always assumed to know what he is doing
and is not hemmed in by petty restrictions.”

This was a common philosophy with certain language paradigms and perhaps con-
tributed to the open source ideal - the fact that the programmer has nearly total
control over what the program can do, even if this means they can perform ’danger-
ous’ operations. This certainly helped BCPL gain large support, especially at a time
when restrictive languages were becoming more commonplace.

BCPL’s heyday was perhaps from the mid 1970s to the mid 1980s, where imple-
mentations existed for around 25 architectures. Today it sees little use outside of
legacy systems and academia. However, it is a useful language for experimenting
with algorithms and for research in optimising compilers. Its descendant, C, is now
the language of choice for system programming. The design of BCPL strongly in-
fluenced B, which developed into C. It is also said to be the language in which the
original ”hello world” program was written.

2.1.3 Development of B and C

As stated previously, the development of BCPL has a major impact on the design
of system programming languages during the late 1960s and early 1970s. B was
designed by Dennis Ritchie and Ken Thompson for primarily non-numeric appli-
cations and systems programming (Johnson & Kernighan 1973). It was essentially
BCPL stripped of anything Thompson felt he could do without, in order to fit it on
very small computers, and with some changes to suit Thompson’s tastes (mostly
along the lines of reducing the number of non-whitespace characters in a typical
program). All B programs consisted of one or more functions, which were similar
to the functions and subroutines of a Fortran program, or the procedures of PL/1. B,
like BCPL, was a typeless language, all manipulations being on the implementation-
dependent word (Emery 1986).

CHAPTER 2. LITERATURE SURVEY 5

As in BCPL, the only compound object permitted was a one-dimensional vector
or words. B does however, incorporate floating point operations, which is imple-
mented in an untyped manner by providing a set of distinct operators that perform
specialised operations on which are in effect short word vectors. However, apart
from the typeless characteristics and the implications that follow from that, B has
more in common with C than with BCPL. The conventions of its syntax are sim-
ilar to those of C; even extending to the use of identical symbols for identical
purposes; and its runtime library foreshadows many of the features of the C li-
brary (Emery 1986). In common with many other languages, B was designed for
separate compilation. It achieved this aim not with the aid of a global vector like
BCPL, but in the conventional way of linking at compile-time like C. A program
in B consists of a set of modules, which was not necessarily an individual file, but
a distinct object presented to the compiler. Thus several modules may reside in a
single file.

Early implementations of B were for the DEC PDP-7 and PDP-11 minicomputers
running early UNIX, but as it was ported to newer machines, changes were made
to the language while the compiler was converted to produce machine code. Most
notable was the addition of data typing for variables. During 1971 and 1972 this be-
came ’New B’ and eventually evolved into C. B was, according to Ken Thompson,
greatly influenced by BCPL, but the name B had nothing to do with BCPL. B was
in fact a revision of an earlier language, bon, named after Ken Thompson’s wife,
Bonnie (Ritchie 1993).

The C programming language came into being in the years 1969–1973 in parallel
with the early development of the UNIX operating system (Ritchie & Thompson
1974). In contrast to BCPL and B, C is a typed language. This involved a totally
different compilation method, with the introduction of a preprocessor. This is a sim-
ple macro processor that runs before the main compiler and was chiefly for handling
named constants. Since it is a preprocessor, it cannot interfere with the compiler,
but it converts the program text into a form suitable for the compiler (for example,
removing the readability introduced to aid programming). Another spate of changes
occurred between 1977–1979, when the portability of the UNIX system was being
demonstrated (Johnson & Ritchie 1978). In the middle of this second period, the
first widely available description of the language appeared: The C Programming
Language, often called the ’white book’ or ’K&R’ (Kernighan & Ritchie 1978).
However, in 1989, the language was officially standardised by the ANSI2 X3J11
committee. In 1990, the ANSI C standard (with a few minor modifications) was
adopted by the International Standards Organisation (ISO) as ISO/IEC 9899, with
further modifications made in 1999 (ISO 1999).

2The American National Standards Institute (ANSI) is a private, non-profit organisation that
produces industrial standards in the United States.

CHAPTER 2. LITERATURE SURVEY 6

Until the early 1980s, although compilers existed for a variety of machine architec-
tures and operating systems, the language was almost exclusively associated with
UNIX. More recently, its use has spread much more widely and today it is among
the languages most commonly used throughout the computer industry (Ritchie 1993).
C has a richer set of operators than any other widely used programming language
with the possible exception of APL. You will find that in most cases C will do with
an expression exactly what you intended to do. However, it is possible to write ex-
tremely unreadable C code, as shown by winning examples from the International
Obfuscated C Code Contest (IOCCC 2003).

2.1.4 Code Examples

For small code examples of BCPL, B and C, see Appendix B.

2.2 Compiler Phases

Since this is a discussion of developing a compiler for BCPL, it is important to ad-
dress the issues with developing a compiler and what this entails. To do this, we
need to understand the different stages in the compilation process and what actions
occurs at each stage.

A compiler is a program that converts another program from a source language to
machine language (object code). Some compilers output assembly language which
is then converted to machine language by a separate assembler. A compiler is dis-
tinguishable from an assembler by the fact that each input statement does not, in
general, correspond to a single machine instruction or fixed sequence of instruc-
tions. There are generally two parts to compilation: analysis and synthesis. The
analysis part breaks up the source program into constituent pieces and creates an
intermediate representation of the source program. The synthesis part constructs
the desired target program from the intermediate representation. Of the two parts,
synthesis requires the most specialised techniques.

As stated in (Aho, Sethi & Ullmann 1986), a compiler operates in phases, each of
which transforms the source program from one representation to another. A typical
decomposition of this process can be found in Appendix A.

The phases are often collected into a front and back end, though often a third
section is described (the ’middle’ end). The front end consists of those phases, or
parts of phases, that depends primarily on the source language and are largely in-
dependent of the target machine. These normally include the lexical and syntactic
analysis, where the source code is broken into tokens and syntactic structures are
identified. These are known as scanning (or ’lexing’) and parsing. The creation of
the symbol table occurs during these stages (Wilhelm & Maurer 1995). Semantic
analysis is done to recognise the meaning of the program code and start to prepare

CHAPTER 2. LITERATURE SURVEY 7

for output. Scoping and type-checking occurs here (if relevant to source language),
with most compilation errors occurring at this stage. One of the final tasks is the
generation of the intermediate language to pass to the middle and back ends. The
front end also includes the error handling for each of these phases.

The middle end is usually language independent, except for a few callback hooks
into the front end. The primary purpose of the middle end is to convert trees (ab-
stract syntax) to RTL (intermediate representation), using various code generation
strategies. The RTL maps into machine instructions, so essentially code generation
is done first, then optimisation. There is also some, but not much, optimisation
of the trees before you generate RTL. In certain compiler models, the middle end
phases are shared between the front and back ends.

The back end includes those portions of the compiler that depend on the target ma-
chine, and generally, these portions do not depend on the source language, just the
intermediate language. In the back end, we find aspects of the code optimisation
phase and code generation, along with the necessary error handling and symbol ta-
ble operations. Resourcing and storage decisions become important, such as decid-
ing which variables to fit into registers (if appropriate) and memory and the selection
and scheduling of appropriate machine instructions (Wilhelm & Maurer 1995).

It has become fairly routine to take the front end of a compiler and redo its asso-
ciated back end to produce a compiler for the same source language on a different
architecture. Alternatively, it is also common to change the front end for a compiler
and reuse the back end to compile a new language for the same machine (known as
’re-sourcing’). See For a more detailed look at the different phases of a compiler,
see (Aho et al. 1986).

2.3 Static Single Assignment Form

Static Single Assignment (SSA) form is an intermediate representation (IR) devel-
oped by researchers at IBM in the 1980s in which every variable is assigned exactly
once (Cytron, Ferrante, Rosenn, Wegman & Zadeck 1991). Existing variables in the
original intermediate representation are split into versions, new variables typically
indicated by the original name with a subscript, so that every definition gets its own
version.

The primary benefit of SSA comes from how it simultaneously simplifies and im-
proves the results of a variety of compiler optimisations by simplifying the proper-
ties of variables. For example, consider the first three lines of code in Figure 2.1.
As humans, we can see that the first assignment is unnecessary and that the value of
y being used in the third line comes from the second assignment of y. A program
would have to perform reaching definition analysis (a special type of data flow anal-

CHAPTER 2. LITERATURE SURVEY 8

�������

�������

	
�����

��
���������

���������

	����������

Figure 2.1: SSA form example

ysis) to determine this (Cytron et al. 1991). But if the program were in SSA form,
as in the last three lines of Figure 2.1, both of these are immediate.

The increased potential for optimisation is the prime motivation for SSA, as many
optimisation algorithms need to find all use-sites for each definition and all defini-
tion sites for each use (for example, constant propagation must refer to the definition-
site of the unique reaching definition). Usually information connecting all use-sites
to corresponding definition-sites can be stored as def-use chains (for each defini-
tion d or r, list all pointers to all uses of r that d reaches) and/or use-def chains
(for each use u or r, list of pointers to all definitions of r that reach u). The im-
provement of def-use chains is one of the key feature of SSA, as each temporary
has only one definition in the program, meaning that for each use u of r, only one
definition of r reaches u. Less space is required to represent def-use chains, as
they only require space proportional to uses * defs for each variable. SSA
also eliminates unnecessary relationships and creates potential register allocation
optimisations. Building def-use chains costs quadratic space whereas SSA encodes
def-use information in linear space (Cytron et al. 1991).

By using a SSA-based compiler tool, it would be possible to gain large optimisation
performance benefits for the compiler. Compiler optimisation algorithms which are
either permitted or strongly enhanced by the use of SSA include constant propaga-
tion, dead code elimination, global value numbering, partial redundancy elimina-
tion, register allocation and sparse conditional constant propagation (for technical
details concerning these machine independent optimisations, see (Aho et al. 1986)
and (Grune, Bal, Jacobs & Langendoen 2000)). Numerous studies have shown the
benefit of SSA forms; their application and optimisations are still current research
areas. A method for converting into and using the SSA form is discussed in (Alpern,
Wegman & Zadeck 1988).

CHAPTER 2. LITERATURE SURVEY 9

2.4 GNU Compiler Collection Overview

GCC is the GNU3 Compiler Collection. Originally, it stood for ’GNU C Com-
piler’, but it now handles many different programming languages besides C. GCC
is a GPL4-licensed compiler distributed by the Free Software Foundation5 and a
key enabling technology for the Open Source Software (OSS) and free software
movements. Originally written by Richard Stallman in 1987, the main goal of GCC
was to make a good, fast compiler for machines in the class that the GNU system
aims to run on: 32-bit machines that address 8-bit bytes and have several general
registers. Elegance, theoretical power and simplicity were only secondary consid-
erations (Stallman 2004b).

An important advantage of GCC is its high level of reuse of the larger part of the
source code. An important goal was for the compiler to be as machine independent
as possible and GCC managed this by getting most of the information about target
machines from machine descriptions which give an algebraic formula for each of the
machine’s instructions. Therefore, GCC does not contain machine dependent code,
but it does contain code that depends on machine parameters such as endianness and
the availability of auto-increment addressing. The purpose of portability is to reduce
the total work needed on the compiler (Stallman 2004a). GCC is now maintained
by a varied group of open source programmers from around the world, and has
been ported to more kinds of architectures and operating systems than any other
compiler. GCC has been adopted as the main compiler used to build and develop for
a number of systems, including GNU/Linux and Mac OS. Current release series (as
of 2004-04-20) is GCC 3.4.0 (available from the GCC Home Page (GCC 2004c)).
For further details about the current development of GCC, see (GCC 1999). A
schematic of the existing GCC infrastructure is shown by Figure E.1 in Appendix E.

2.4.1 GCC Front Ends

As described in Section 2.2, the front end of a compiler handles the source language
dependent tasks and is largely independent of the target machine. The interface to
front ends for languages in GCC, and in particular the tree structure, was initially
designed for C, and many aspects of it are still somewhat biased towards C and
C-like languages. Currently the official GCC distribution contains front ends for
C (gcc), C++ (g++), Objective-C, Fortran (gfortran), Java (GCJ) and Ada (GNAT).
Several front ends exist for GCC that have been written for languages yet to be inte-
grated into the official distribution. Some of these front ends are works in progress,

3The GNU Project was launched by Richard Stallman on 27th September 1983 with the goal
of creating a free operating system. GNU is a recursive acronym for ”GNU’s Not UNIX”. See
http://www.gnu.org

4The GNU General Public License is a copyleft free software license.
5A tax-exempt charity founded by Stallman in 1985 to provide logistical, legal and financial

support for the GNU Project. See http://www.fsf.org

CHAPTER 2. LITERATURE SURVEY 10

examples include the GNU Pascal Compiler (GPC), Cobol for GCC, GNU Modula-
2 and GHDL (VHDL front end).

If we are successful in creating a new front end for GCC, we will in effect be
creating a compiler that can create machine code for approximately thirty processor
families, including Intel x86, Sun SPARC, DEC Alpha, ARM and Motorola 68000.

2.4.2 GCC Intermediate Representations

Register Transfer Language (RTL) is an intermediate representation (IR) used by
the GCC compiler and is used to represent the code being generated, in a form
closer to assembly language than to the high level languages which GCC compiles.
RTL is generated from the language-specific GCC abstract syntax tree representa-
tion, transformed by various passes in the GCC ’middle-end’, and then converted to
assembly language. GCC currently uses the RTL form to do most of its optimisa-
tion work. RTL is usually written in a form which looks like a Lisp S-expression6.
For example, the ’side-effect expression’ shown in Figure 2.2 says ’add register 138
to register 139, and store the result in register 140’.

������� ���
	 ������ ����	 ������� ��������� ���
	 ������ ���
	 ������� ������ ���
	 ���� ��!�!�

Figure 2.2: RTL example S-expression

The RTL generated for a program is different when GCC generates code for dif-
ferent processors, though the meaning of the RTL is more or less independent of
the target: it would be usually be possible to read and understand a piece of RTL
without knowing what processor it was generated for. Similarly, the meaning of the
RTL does not usually depend on the original high-level language of the program.
However, recent developments with GCC have introduced a new intermediate rep-
resentation framework to improve optimisations and language independence.

The goal of the GCC ’SSA for Trees’ project is to build an optimisation framework
for trees based on the SSA form (see Section 2.3). While GCC trees contain suffi-
cient information for implementing SSA, there exists two major problems. Firstly,
there is no single tree representation in GCC, as each front end defines and uses its
own trees. This means code duplication for each front end. Secondly, the trees are
arbitrarily complex, giving problems for optimisations that wish to examine them,
along with code duplication in the numerous versions.

6An S-expression is a convention for representing data or an expression in a computer program
in a text form. The most common feature is the extensive use of prefix notation with explicit use of
brackets.

CHAPTER 2. LITERATURE SURVEY 11

To address the first problem, GCC have created a common tree representation called
GENERIC that is able to represent all the constructs needed by the different front
ends whilst removing all the language dependencies (GCC 2003c). The design of
GENERIC was first discussed on the GCC mailing lists due to fundamental flaws
with the existing tree intermediate representations (Merill 2002a) as it was felt that
they were designed as a convenient shorthand for representing C trees, but is fairly
unwieldy for use by optimisers. Essentially, it seems as if the current tree intermedi-
ate representation is restricting the amount of possible optimisations, as even some
simple optimisations were not being fully implemented. In the tree-ssa branch,
sparse conditional constant propagation, dead code elimination and partial redun-
dancy elimination with strength reduction (among others) have been implemented
in the optimisation passes. A description of the current design can also be found on
the GCC mailing lists (Merill 2002b).

To address the complexity problem, GCC have implemented a new simplified inter-
mediate representation based on GENERIC. The intermediate representation, called
GIMPLE, is a very simple C-like three-address language that is straightforward to
analyse and maintains all of the high-level attributes of data types. GIMPLE is
derived from the SIMPLE representation proposed by the McCAT project out of
McGill University (Hendren, Donawa, Emami, Gao & Sridharan 1992).

As stated previously, the middle end is language independent, except for a few
hooks into the front end. The primary purpose of the middle end is to convert
trees (abstract syntax) to RTL (intermediate language), using various code genera-
tion strategies. The RTL maps into machine instructions, so we essentially do code
generation first, and then optimisation. There is also some, but not much, optimi-
sation of the trees before we generate RTL. This changes a bit on the tree-ssa
branch, as we now have a higher level intermediate language (GIMPLE), and a
number of optimisation passes on it, but the main set of optimisations are still done
on the RTL (Stallman 2004a).

Figure 2.3: GCC implementation of SSA (Novillo 2003a)

However, the tree-ssa side branch has only recently been fully merged with
mainline (2004-05-12) and is now the active development release branch for the
next GCC release, 3.5.0. The stabilisation process has being driven by the merge

CHAPTER 2. LITERATURE SURVEY 12

criteria stated in (GCC 2003c). Detailed API documentation (created by Doxy-
gen7) exists for the tree-ssa branch (for example, listing data structures, source
file lists, data fields, globals), along with an updated version of the GCC Internals
Manual (Stallman 2004a).

2.5 Possible Implementations

The following sections discuss a range of different approaches for the project im-
plementation.

2.5.1 Flex and Bison

Lex (Lexical Analyser Generator) and Yacc (Yet Another Compiler Compiler) are
tools designed for writers of compilers and interpreters and were both developed
at Bell Laboratories in the 1970s. Both Lex and Yacc have been standard UNIX
utilities since 7th edition UNIX (circa 1978), but most UNIX/Linux systems use the
GNU Project’s distributions of Flex (Fast Lexical Analyser Generator) and Bison
(Yacc-compatible parser generator). Flex is a tool for generating programs that
perform pattern-matching on text. There are many applications for Flex, though it
is mainly used for developing compilers in conjunction with GNU Bison. Bison is a
general-purpose parser generator that converts a grammar description for an LALR
context-free grammar (Chomsky Type II grammar, see (Chomsky 1956)) into a C
program to parse that grammar. For this project, we will be using the GNU tools,
but the terms Lex/Flex and Yacc/Bison are used interchangeably.

The starting point to this problem is to use Flex and Bison to create a scanner
and a parser to process the BCPL code, which could then be compiled using an
appropriate C compiler. The hardest part is ensuring that the lexical, syntactic and
semantic phases are robust enough to copy with the intricacies of the BCPL syntax
(see Section 2.6.1). This phase of the development could be time-consuming, due
to the complexity of certain language features in BCPL (see Section 2.6). However,
this would be common ground for all approaches, as each require some form of
lexical and syntactic phase. Certain problems can occur with using these tools,
more so if you wish to customise actions with the generated parser, as it is generally
accepted that Bison generates poor C code for humans to maintain.

2.5.2 BCPL to C Conversion

The process of converting a source language into another could be thought of as
a somewhat loose definition of compilation. In the BCPL to C case, it could be
thought of as a form of ’up-compilation’, due to the relationship between BCPL

7Doxygen is a documentation system for C++, C, Java and IDL, that enables you to automatically
create online documentation and reference manuals from the source code. For more information, see
http://www.doxygen.org/.

CHAPTER 2. LITERATURE SURVEY 13

and its descendant C. Nevertheless, difficulties occur when trying to convert whole
programs into a different language when certain language features are not replicated
or allowed, or when certain semantics are hard to preserve. For example, convert-
ing from a functional language such as Haskell to an imperative language like C is
certainly not trivial, with handling variable assignment and preserving referential
transparency being two obvious problems. However, as discussed in Section 2.1.3,
C evolved from B, which itself evolved from BCPL. Therefore, certain language
features in C have persisted or have derived from features in BCPL, making it a
reasonable choice as an intermediate language. It would not be, however, a straight
conversion, due to major differences in some critical areas. An obvious example
would be handling the conversion into data types, which would have to be done
very carefully as it would require analysis of the surrounding environment and op-
erators, as it would be too crude to attempt to convert everything to a single type,
such as an integer. This is a perennial problem with the acquisition of type infor-
mation from a typeless language; a common example would be the conversion of
JavaScript code.

Amongst other things, we would also need to ensure that consecutive words in
memory have consecutive numerical values (especially with respect to pointer arith-
metic) and also the problems of communicating with the global vector (discussed
further in Section 5.6.8). This approach still remains feasible, especially since pre-
vious work exists in this area (see Section 2.5.8) - it may be possible to build upon
this work and extend the functionality. One of the downsides is with the inelegance
of the solution, as it would seem crude to force BCPL to C and then compile with
a C compiler. Also, C’s runtime semantics do not make it easy to honour BCPL’s
guarantees about dynamic variable values, so there would be numerous problems to
resolve. If this were the option chosen, it would probably be easier to use a script-
ing language such as Perl to write a converter between BCPL and C, but this would
circumvent some of the requirements of this project.

2.5.3 Norcroft C Compiler

This second approach builds on the first approach by using Flex and Bison, but
instead uses the Norcroft8 C compiler (NCC) middle and back end phases. The
Norcroft C compiler is a optimising and re-targetable ANSI C compiler, which in-
cludes many lint9-like features and warnings for common syntactic and semantic
errors. This method would entail replacing the existing front end and build Nor-
croft trees for BCPL. We would then be able to reuse some of the existing tree
optimisations and generate code with the back end. The Norcroft compiler is a ro-
bust and proven C compiler, but the main problem is that it lacks full documentation

8Available from Codemist Ltd. See http://homepage.ntlworld.com/codemist/
ncc/ for more information.

9lint is a programming tool for C that performs the lexical and syntactic portions of the compila-
tion with substantial additional checks to trap common coding errors.

CHAPTER 2. LITERATURE SURVEY 14

with respect to functionality, interfaces and structures. It was not developed with
resourcing in mind; this is highlighted by some C language-specific functionality in
the middle and back ends. This in itself is not a major problem, but falls short in
comparison to other strategies discussed in the following sections. Previous work
does exist this this area, as this strategy was attempted last year with some success
(see Section 2.5.8).

2.5.4 lcc, A Re-targetable Compiler for ANSI C

lcc is a re-targetable compiler for ANSI C developed by the Department of Com-
puter Science at Princeton University. It generates code for the ALPHA, SPARC,
MIPS R3000 and Intel x86 architectures. It has a small and compact interface that
includes only essential features which make certain simplifying assumptions that
limits the interface’s applicability to other languages (Fraser & Hanson 1991a).
However, many of these assumptions concern the relative size and properties of dif-
ferent data types; this may not be a major problem for the untyped BCPL language.
Nevertheless, it is still hard to anticipate the range of restrictions that could exist
within the infrastructure. Using lcc would be similar to using the Norcroft com-
piler, as we would need to replace the existing front end and reuse the existing mid-
dle and back ends. The existing lcc front end performs lexical and syntactic analysis
as normal, with some minor optimisations. This is connected to the back end by an
intermediate language consisting of 36 operators and shared data structures. How-
ever, the front and back ends are tightly coupled, with the functions in the interface
split between each, to enable callback (Fraser & Hanson 1991b). The major disad-
vantage of lcc is that it does no further optimisation than what is done in the front
end. This eliminates a large amount of optimisations that are more effective when
performed at the intermediate code level. Also, because of the poor modularity be-
tween its front and back ends, replacing the early phases would not be trivial and
would also probably require removing the optimisations. Nevertheless, the popular-
ity and pedigree of this production compiler cannot be ignored, but it would require
a larger amount of work even when compared with using NCC. Further information
about lcc can be found on the project website (Fraser & Hanson 2003).

2.5.5 The Stanford University Intermediate Format Project

The SUIF (Stanford University Intermediate Format) compiler, developed by the
Stanford Compiler Group, is a free infrastructure designed to support collabora-
tive research in optimising and parallelising compilers. It is a part of the national
compiler infrastructure project funded by DARPA10 and the NSF11 (Aigner, Diwan,
Heine, Lam, Moore, Murphy & Sapuntakis 2003). One of the project’s main aims

10The Defence Advanced Research Projects Agency (DARPA) is the central research and devel-
opment organisation for the US Department of Defence.

11The National Science Foundation (NSF) is an independent US government agency responsible
for promoting science and engineering through programs that invest in research and education.

CHAPTER 2. LITERATURE SURVEY 15

has been to create an extensible and easy to use compiler infrastructure but some
efficiency and robustness may have been sacrificed to achieve this (SUI 2001). The
compiler is based upon a program representation, also called SUIF, with the em-
phasis on maximising code reuse by providing useful abstractions and frameworks
for developing new compiler passes. It also provides an environment that allows
compiler passes to easily inter-operate (Aigner et al. 2003). The SUIF2 system
is a new design and implementation and is completely different from the previous
SUIF1 system, which was originally designed to support high-level program anal-
ysis of C and Fortran programs. In comparison to the lcc infrastructure, SUIF has
a well designed, modular subsystem that allows different components to be com-
bined easily. It also has an extensible program representation that allows users to
create new instructions to capture new programs semantics or new program analy-
sis concepts (Aigner et al. 2003). The existing predefined object hierarchy can thus
be further extended or refined to create news abstractions. This would seem to be
suitable for our needs, though it is not clear how easy it would be to re-source and
redefine the front end and also assembling a suitable back end from existing passes.
However, the modular nature of this infrastructure and the very fact that it was de-
signed to be extensible means SUIF is a viable option; more so with the fact that
the user is insulated from the details of the implementation (by using a high-level
specification language called ’hoof’ that is macro translated into C++ interfaces and
implementations). As remarked for the lcc project, the popularity and pedigree of
this compiler framework cannot be ignored, but it is hard to gauge the amount of de-
velopment required to re-source a SUIF implementation. Further information about
SUIF can be found on the project website (SUI 2001)

2.5.6 The Low Level Virtual Machine Project

The LLVM (Low Level Virtual Machine) compiler infrastructure project is a prod-
uct of the Lifelong Code Optimisation Project in the Department of Computer Sci-
ence at the University of Illinois, Urbana-Champaign. Like SUIF, it is sponsored
by both the NSF and DARPA. Fundamentally, LLVM is a compilation strategy de-
signed to enable effective program optimisation at compile-time, link-time, run-
time and offline, while remaining transparent to developers. LLVM’s virtual in-
struction set is a low-level code representation that uses simple RISC-like instruc-
tions. However, it provides rich, language-independent, type information and data
flow (SSA) information about operands (Lattner & Adve 2004b). LLVM is also a
collection of source code that implements the language and compilation strategy.
The primary components of the LLVM infrastructure are:

� A GCC-based C and C++ front end.

� A link-time optimisation framework.

� Static back ends for the SPARC v9 and Intel x86 architectures.

CHAPTER 2. LITERATURE SURVEY 16

� A back end which emits portable C code.

� A Just-In-Time (JIT) compiler for SPARC v9 and Intel x86 (Lattner & Adve
2004a).

LLVM is a robust system and is particularly well suited for front end development
- it currently includes front ends for C, C++ and Stacker (a Forth-like language),
with front ends for Java, Microsoft CLI and Objective-Caml in early development.
LLVM would definitely be suitable for this project, especially with the extensive
online developers documentation (for example (Lattner, Dhurjati & Stanley 2004)
and (Lattner & Adve 2004b)). One downside is the fact that it is implemented in
C++, with heavy use of the STL (Standard Template Library). A lack of techni-
cal expertise with C++ would certainly make re-sourcing LLVM harder, more so
with the heavy use of templates. Nevertheless, the aggressive life-long optimisation
model of LLVM, along with the range of targets and native code generators would
certainly make it a viable infrastructure for this project. It has become a popular and
commonly-used compiler infrastructure and is still under active development. Fur-
ther information about LLVM can be found on the project website (Lattner 2004).

2.5.7 GNU Compiler Collection

The popularity and pedigree of GCC is arguably the best out of the options discussed
in this section. As mentioned earlier in Section 2.4, the existing supported front ends
are complemented by a range of front ends in development. GCC has been avail-
able since 1987, when the v0.9 beta was first released. The years of development
that have followed have established GCC as the de facto standard open source C
compiler. Detailed documentation exists for working with GCC (Stallman 2004b)
and developing for GCC (Stallman 2004a). There also exists a good range of in-
formation about developing front ends for GCC (GCC 2003b), including a ’Toy’
language example and also guides from existing front ends (see Section 2.5.8).

Developing a front end for GCC, rather than compiling directly to assembler or
generating C code which is then compiled by GCC, has several advantages. For ex-
ample, GCC front ends benefit from the support structure for many different target
machines already present in GCC, along with the range of optimisations. Some of
these, such as alias analysis, may work better when GCC is compiling directly from
source code then when it is compiling from generated C code. This is an important
point, as better debugging information is generated when compiling directly from
source code than when going via intermediate generated C code. As discussed pre-
viously, GCC has developed significantly from being just a C compiler. The frame-
work exists to enable compilation of languages fundamentally different from those
for which GCC was designed, such as the declarative logic/functional language
Mercury (GCC 2003b). It is hard to create a truly independent and all-encompassing
compilation strategy with respect to intermediate representations and data struc-
tures, but the aims of GCC have been to develop a fairly language-independent tree

CHAPTER 2. LITERATURE SURVEY 17

representation and a large number of optimisation algorithms that work on it.

As discussed more thoroughly in Section 2.4.2, the incorporation of the two new
high-level intermediate languages (GENERIC and GIMPLE) and the optimisation
framework for GIMPLE based on the SSA form for the GCC 3.5.0 release has
created an opportunity to develop a cutting-edge front end using the future GCC
internal structure. The various improvements to the internal structure of the com-
piler, along with the several SSA-based optimisers have created new optimisation
opportunities that were previously difficult to implement. A problem exists with the
amount of documentation available for GENERIC and GIMPLE, as updates to the
GCC Internals manual (Stallman 2004a) are still incomplete. It has been remarked
that if you can say it with the codes in the source definition gcc/tree.def, it is
in GENERIC form (Merrill 2003). It is not an ideal situation to develop in a lan-
guage that is not fully documented, but the existing front ends should provide good
starting points to work from and reference. Therefore, due to the relationship to C,
it would feasible to start with the C front end and attempt to reuse parts for use with
BCPL. The sensible approach would be to have the parser directly build GENERIC
trees, as this approach has the advantage that we would not need to define our own
language-specific syntax trees and then face the extra work required to walk the
trees and perform conversions.

Another issue to be considered is the enormity of the task in hand. This would be
the same for many of the other options discussed here, but developing a GCC front
end is known to be difficult but effective. The scale of the problem and the time allo-
cated for the project would mean that it would probably be likely that for any option
chosen, a complete working compiler is unrealistic. For most options, and espe-
cially GCC, it is likely that the latter stages of the project would be more research
based and a become a discussion about the likely implementation. Nevertheless,
it seems that GCC would be ideal for this project, especially from a learning and
research viewpoint. It would also be a robust and professional solution to a com-
monly looked at problem. Further details about GCC and its releases can be found
on the project website (GCC 2004c).

2.5.8 Existing Work

For what is remarked to be an unused legacy language, numerous attempts at devel-
oping a modern compilation strategy for BCPL exist. This section is a discussion
of existing implementations and developments involving BCPL.

Martin Richard’s original BCPL implementation has been updated and ported to
most modern architectures, as mentioned in Section 2.1.2. It uses INTCODE, an
low-level language interpreted by a fast and simple abstract machine (Richards
1975). This would be an obvious resource for understanding how the original imple-
mentation of BCPL was done and also how the designer of the language envisaged

CHAPTER 2. LITERATURE SURVEY 18

a modern implementation. It also seems that the BCPL to C conversion route has
been done previously, with numerous levels of success. However, Martin Richards
was unaware of implementations that re-sourced an existing compiler tool, espe-
cially not with GCC. He has also developed some BCPL to C conversion routines
and has also entertained the idea of a GCC front end, but little has been done in
recent years. Further information about Martin Richard and his BCPL implementa-
tion can be found on his website at the University of Cambridge (Richards 2000).

Mark Manning of Selwyn College, University of Cambridge, has also done previ-
ous work with BCPL. His implementation uses the BCPL to C conversion route,
which is then compiled by GCC. This is, therefore, not a true front end for GCC as
claimed on his website (Manning 1999), but a converter for BCPL to ANSI C, using
some GCC extensions. There is a small technical note on this implementation, as it
was not designed as a true C converter, due to the intermediate stages producing C
code that would not be written by a human. The code produced is merely a stage be-
fore compilation via GCC. The program implements the BCPL language as defined
in (Middleton, Richards, Firth & Willers 1982), along with some commonly-used
extensions such as the infix byte operator. There is some promising work in this
implementation that could be reused, especially with the handling of the library
functions. As discussed previously, the translation of BCPL to C is by no means
trivial and this is highlighted by the fact that LONGJUMP and LEVEL have yet to
be implemented, along with a range of other library functions. Nevertheless, it may
be possible to reuse some of the work from the front end and the implementation of
the global vector and base library functions in C. Further information about Mark
Manning and his work can be found on his website (Manning 1999).

Developing a compiler for BCPL has previously been set as a final-year undergrad-
uate dissertation project at the University of Bath. In 2003, it was undertaken by
Darren Page, who attempted to re-source the Norcroft back end. This was met with
some success, with the Norcroft compiler proving itself to be robust enough to han-
dle most of the BCPL language. Some of BCPL’s more troublesome features such
as VALOF and RESULTIS had similar representations in the Norcroft intermediate
data structures. However, he noted problems with using the Norcroft compiler due
to its lack of documentation, especially with using the Norcroft AST as the interme-
diate representation (Page 2003). It may be possible to reuse some of the existing
front end, as he also used Flex and Bison for the early phases. It might also be pos-
sible to replicate the implementation of some of the more difficult language features
with respect to building an intermediate representation.

Fergus Henderson, formerly of the Department of Computer Science and Software
Engineering at the University of Melbourne, has developed an example front end for
GCC based around a simple ’Toy’ language12. The toy language is a small language

12The Toy language is available for download from http://www.cs.mu.oz.au/˜fjh/

CHAPTER 2. LITERATURE SURVEY 19

intended to demonstrate some of the basic concepts in programming a language
front end for GCC. The Bison grammar contains a small amount of productions,
with the scanner handling a small subset of keywords and tokens. The current im-
plementation was designed to work with GCC 2.95 and 3.0, so this means that most
of the intermediate representation generation code will not be relevant to building
GENERIC trees. However, the Toy language is a good starting point of how to
develop a front end for GCC and could be useful for creating the appropriate con-
figuration and build files. It will also be simpler than looking at one of the official
release front ends, due to the primitive nature of the language. A similar example
front end, including a GCC front end ’how-to’ has also been written by Sreejith
Menon, of the Department of Computer Science and Automation at the Indian In-
stitute of Science13.

As would be expected, the official GCC Front Ends resource (GCC 2003b) is a
very good repository for information about developing a front end for GCC. It de-
scribes the main front ends distributed with the official releases of GCC, but also
details existing front ends that have yet to be integrated into the main distribution.
A further resource is an overview of front ends that are currently works in progress,
enabling comparisons with how they are implemented and how certain language
features are handled. Some of the more advanced front end resources include: the
GNU Pascal Compiler (GNU 2003c); GNU Modula-2 (GNU 2004b); COBOL for
GCC (Josling 2001); PL/1 for GCC (Sorensen 2004); and the Design and Imple-
mentation of the GNU INSEL Compiler (Pizka 1997).

Difficulties may occur in attempting to analyse and reuse some of the existing work,
but some of it presents good starting areas on how to handle BCPL language features
or how to start developing a front end for GCC. Both Martin Richards and Mark
Manning have been good sources of information for their work and have expressed
an interest in the development of this project.

2.6 Design Issues

2.6.1 BCPL Syntax Features

The relationship between BCPL and C has been discussed previously, but certain
language features of BCPL may potentially cause problems in this project. Writing
a compiler for BCPL will involve consideration of many similar issues to writ-
ing a compiler for any other procedural language that uses static scoping. For
example, if expressions were confined to those conventionally found in other lan-
guages, then functions in BCPL would be very restricted indeed, rather like state-
ment functions in Fortran (Emery 1986). However, BCPL provides an operator

gcc/example-front-end.shar.
13Available from http://people.csa.iisc.ernet.in/sreejith/.

CHAPTER 2. LITERATURE SURVEY 20

VALOF which enables a function to be defined in terms of a sequence on com-
mands. A VALOF operator must always be matched with a RESULTIS command
within the block (Emery 1986). Implementing the VALOF operator will not be
trivial, but a solution may exist using one of GCC’s extensions. There is, however,
uncertainty how this will be affected by using the GENERIC intermediate represen-
tation. There may also be a problem with ensuring ANSI C-compliance, if required.

Another example, is that in contrast to most other block-structured languages, BCPL
permits a direct jump from an inner block to an outer block containing it, i.e. from
a higher to a lower level on the stack (Richards & Whitby-Strevens 1980). Such a
jump is typically performed in the case of exceptions. By providing a direct jump
out of a block, rather than obliging control to retrace the full sequence of calls that
got it there, BCPL in some sense ’saves’ code. A jump out of a block involves two
actions: going to a label in another block, and restoring the stack to a level appro-
priate for the code following that label. The jump is performed by using the library
routine LONGJUMP (Emery 1986), with the destination label having been declared
globally. LONGJUMP and LEVEL will be difficult features to implement, because
it is unknown how the the scoping and stack functionality required will work using
GENERIC.

Further issues that need to be considered are the passing of call-by-value parame-
ters, block/lexical scoping, stack frames and the global vector. If these issues cause
major problems than potentially the project scope may have to reduced to a subset
of the BCPL language. Also, since no official standard for the language was ever
completed, the range of commonly-used extensions in the different implementations
of BCPL may conflict or be difficult to implement.

2.6.2 Back End Phases

The back end processes are arguably the most complicated to implement in a com-
piler, due to the problems and intricacies of code generation and optimisations for
different platforms. It can be fairly trivial to get a working front end for a language
once you have formalised a grammar, but the creation of machine code for a certain
platform can be very time consuming. This is another of the benefits from reusing
an existing toolchain, as it eliminates the need to worry about code generation and
optimisations and also enables you to target the chosen language to the architectures
supported by that toolchain. For example, by using GCC, it would be possible to
compile BCPL to run on over 30 architectures, including Intel x68, Sun SPARC and
ARM. It is obvious from numerous posts on the GCC mailing lists that porting to a
new platform is by no means a trivial task, so to remove this aspect from the project
to concentrate on the front end is an easy choice. Also, the back end phases are
not really the main targets of this project, as we are more interested in investigating
re-sourcing an existing compiler framework. The timescales for this project would
also prohibit developing a complete back end for even a single architecture. This

CHAPTER 2. LITERATURE SURVEY 21

would exclude having to investigate and implement the range of machine indepen-
dent and dependent optimisations (for example, common subexpression elimination
and peepholing (Aho et al. 1986)), as this will be managed by the GCC middle and
back ends.

2.6.3 Coding Standards

The use of coding standards will be important in this project if the GCC approach
is used. For work to be accepted into GCC, both GNU and GCC set a range of
coding standards (GNU 2003a, GCC 2003a), which have to be adhered to so as to
ensure consistency with existing development code. Therefore, it will be necessary
to research the required coding styles and language features that are used or disal-
lowed within the GCC toolchain. Some simple examples covered would be naming
conventions, code formatting and Makefile conventions.

2.6.4 Legal

There also exists certain legal ramifications when developing for GCC and GNU.
When this project reaches a point where it may be mature enough for a public re-
lease, it would be necessary to release the front end as open source, for example
as the BCPL front end for GCC, under the GNU Public License (GNU 2003b). In
this case, certain prerequisites have to be met, including assignments or disclaimers
of copyright. This is not current an issue, but needs to be considered, especially as
there could be a conflict with the University of Bath’s intellectual property regula-
tions (see dissertation copyright declaration). For further details, see the Contribut-
ing to GCC website (GCC 2004a).

Chapter 3

Requirements

A well constructed set of requirements are essential to the success of a software
development effort (Pressman 2000). With this in mind, the requirements specifica-
tion below is based on the structure provided by the IEEE Recommended Practice
for Software Requirements Specifications (IEEE 1998).

3.1 Requirements Analysis

The numerous methods for analysis can be categorised broadly into top-down and
bottom-up approaches. Top-down approaches, such as a ’goal-directed’ method
(Sommerville 2001) advocate the use of high-level goals as a starting point, whereas
bottom-up methods, such as the production of ’use cases’ (Sommerville 2001) em-
phasise details of system usage scenarios. The approach taken for this project was
to use a top-down, goal-directed approach.

3.2 Requirements Specification

This section identifies and discusses key requirements for the project and will focus
upon areas of particular difficulty.

3.2.1 System Perspective

The aim of this project is to investigate re-sourcing GCC for the BCPL language.
We will attempt to adhere to the BCPL language as defined in the Backus-Naur
Form in Appendix C, which has been adapted from (Richards & Whitby-Strevens
1980). We will attempt to implement some of the commonly-used extensions in the
language.

The intention is to develop a BCPL front end for GCC using the current active
mainline development branch (previously the tree-ssa branch), which will be

22

CHAPTER 3. REQUIREMENTS 23

released as GCC 3.5.0. The implementation of the SSA-based optimisation frame-
work will provide a host of benefits, especially with the development of the two
new high-level, language independent intermediate representations, GENERIC and
GIMPLE. The BCPL compiler will be implemented as extension utilising aspects
of the GCC system such as the intermediate representations, optimisation passes
and code generation phases.

3.2.2 System Features

The system requirements for this project would be similar to most other compilers,
though especially similar to those for GCC. For example, the application should
accept an input file of BCPL code. It should then perform lexical and syntactic
analysis on this file; if any errors are detected at this stage, the user should be no-
tified with appropriate error information and, depending on severity, build should
cease. After these stages, the system should build the trees using the GENERIC
intermediate representation and then pass this to the GCC middle and back end.
At this point, the compilation would become entirely handled by the GCC process.
The GENERIC representation would then be converted into GIMPLE form (’gim-
plification’) and the GCC optimisation and SSA passes would be run. If no errors
are detected and the build completes successfully, then an executable should be pro-
duced, depending on the host and target platform. This would be the basic usage
of the compiler, though it should be possible at a later stage to perform the same
options for compilation as is normal with GCC. Examples of this would be halt-
ing after preprocessing, dumping the parse tree and producing assembler output. It
should also be possible to produce linkable object files.

As previously discussed in Section 2.6.4, there may be certain legal issues affecting
the system when developing for GCC. The ramifications of reassigning the copy-
right to the project as and when it is ready for public release is not entirely known,
so would require further investigation. Nevertheless, this does not currently affect
the development but would need to be considered at a later date.

Emergent system properties for this project may be hard to predict, but it is feasi-
ble to aim for a high level of reliability. Other factors like response time, storage
capacity and constraints on I/O will be dependent on the host system hardware spec-
ification. It may be necessary to set a minimum hardware requirement for memory,
hard drive space or even possibly processor speed. Currently, this is not done for
GCC, apart from the minimum required for installation and as long as the hard-
ware is still supported. Security will not be an issue with this project, though on
certain systems access requirements may apply. It will, however, be necessary to
ensure that the compiler is tested thoroughly with problematic, high-resource and
boundary cases so as to ensure a large coverage of potential problems. In this way,
common application problems such as buffer overflows and memory leaks may be
found. There may also exist non-functional requirements in the system such as

CHAPTER 3. REQUIREMENTS 24

constraints on the development process and the ramifications of relevant standards.
However, a common problem with many non-functional requirements is that they
are hard to verify (Sommerville 2001).

Lexical Analyser

The lexical phase of the compiler should take the source language as input and break
it into specific lexical tokens. These tokens should represent the units of informa-
tion in the language, such as identifiers, keywords and operators. The lexical phase
should control the input of the source code file and should ensure that the named
file exists and is accessible. If the file is not found or is unable to be accessed, an
error should be produced. The lexical analyser should be produced by using the
compiler tool Flex and should use the necessary language features (such as regular
expressions, pattern matching and exclusive states) to produce an efficient lexical
phase. It should also be developed so that easy integration with a Bison-generated
parser is possible, ensuring any shared data structures or information are accessible.
There should also exist some form of error detection, analysis and recovery in the
lexical phase. This should notify the user with details about the type and location
of the error and, depending on severity, halt compilation.

Symbol Table

The symbol table will be the most persistent data structure during the compilation
process. It is important for it to be quick to access, resource efficient and available
to all phases that require access. For this project, it is particularly important for
the symbol table to be visible to the GCC middle and back ends during the low-
ering from GENERIC to GIMPLE form and optimisation passes. For a prototype
compiler, it would not be necessary to implement a truly efficient symbol table,
but for this project we have chosen to implement a separately-chained hash table
for our symbol table (see Section 4.4 for technical details). At this time, the effi-
ciency given by the hash table implementation would be suitable for the scale of the
project. This should give a scalable implementation that could be improved for a
later version. The symbol table should provide the basic functions to insert, lookup
and delete entries in the symbol table. It should ensure that any resource allocations
it makes are released upon ending of the compilation process or on error. For di-
agnostic purposes, it should provide a function to dump the contents of the symbol
table to a file. Any other functionality should be provided when and if required.

Parser

The parser should be implemented as bottom-up parser generated by Bison, and
should be able to easily integrate with the lexical analyser produced by Flex. It
should have control of the lexical phase and should parse the code in the selected

CHAPTER 3. REQUIREMENTS 25

input file. The implementation of the grammar productions in the Bison parser
should follow the BCPL language as detailed in the BNF definition given in Ap-
pendix C. However, these may require minor changes to resolve ambiguity and
overcome conflicts or errors. The parser should be able to access the symbol table
and be able add, remove or lookup entries. One of the main tasks of the parser
is to start building the intermediate representation from the parsed code. When a
grammar rule or production is detected and accepted, the parser should start to build
tree nodes in GENERIC format. No other internal, bespoke or custom tree repre-
sentation should be used, apart from the GENERIC intermediate language. A key
feature of the parser is the integration into the GCC toolchain and how the inter-
mediate representations are passed onto the GCC middle and back ends. It should
ensure that the GENERIC trees are passed successfully and that resources are re-
leased whenever possible. Like the lexical analyser, some error detection, analysis
and recovery should be present in the parser and this again should notify the user
with details about the type and location of the error and, depending on severity, halt
compilation. As discussed in the requirements for the symbol table, efficiency is
often a factor in the parser and so attempts should be made to produce a fast and
efficient parser with Bison.

Intermediate Representations

For most compilers, the intermediate representation is invariably designed specifi-
cally for the language and reflects certain features of that language. However, since
we have chosen to use the new GCC representations in this project, it is hard to
state requirements. This is partly due to the fact that we have no control over the
development and direction of the language and also because it has yet to be con-
clusively defined and fully documented. This problem would certainly represent a
non-functional requirement or an emergent system property, as it is not under the
control of this project. This is mitigated by the recent developments in GCC that
make it highly unlikely that major changes to either of these representations or their
usage will occur.

GCC Integration

The problems discussed above are similar for the integration with GCC as for the in-
termediate representations. Because we are utilising an existing compiler toolchain
to handle all of the optimisation passes and code generation phases, it is difficult to
define requirements for these phases. Nevertheless, since we are using GCC, it is
possible to set some metrics about certain expected levels of performance. Without
any optimisation options set, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. The compiler should, how-
ever, be able to provide a range of optimisation flags that would attempt to improve
the performance and/or code size at the expense of compilation time and possibly
the ability to debug the program. As stated, we will have available the whole range

CHAPTER 3. REQUIREMENTS 26

of optimisation options for GCC1. Requirements would also exist for the target ar-
chitectures, as we will be constrained by which currently exist for GCC. However,
much of this area is beyond the scope of the project, but it is important to recog-
nise the range of the portability of GCC and the difficulty in porting GCC to a new
architecture.

3.2.3 User Characteristics

The user of this application would typically be a BCPL (or possibly C) software
developer, well versed in using compilers and in particular, GCC. No administrative
or superuser privileges would normally be required, but this may differ from system
to system. However, by the very nature of this application, the user would hopefully
be an experienced computer user with an experience in programming.

3.2.4 Operating Environment

This project was implemented and tested on the Linux operating system (see Ap-
pendix G for version information), so initially the operating system requirements
would be similar. However, as the project develops and integration in GCC pro-
gresses, the range of operating environments would be the same as is for GCC
(see (GCC 2004c) for further details). At first, the compiler would be delivered as
a pre-compiled binary, but if and when GCC integration progresses, it would be
possible to distribute with the GCC source or as a pre-built GCC binary. In this case
of distributing as source, an existing compiler that is able to bootstrap GCC would
then be required. For further details of the programs used in the development of this
project, see Appendix H.

3.2.5 Documentation

As previously mentioned, the users of this system would need to be proficient with
the BCPL language or have experience with other block-structured or imperative
languages, with knowledge or experience with using compilers assumed. With
this in mind, providing system documentation or a user manual was deemed not
to be primary goal of the project. Nevertheless, the standard command line help
(for example with GCC, this is invoked on the command line by gcc -h), de-
tailing the compilation options will be provided, along with a version information
option (again with GCC, gcc --version). Also, all of the source code is com-
mented, with important features and functionality explained (in accordance with
the GNU and GCC coding standards, see Section 2.6.3). Two important sources
of information with respect to the GCC side of the project would be the ’Using
the GNU Compiler Collection’ (Stallman 2004b) and ’GNU Compiler Collection

1For more information about the options that control optimisation in GCC, please see http:
//gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

CHAPTER 3. REQUIREMENTS 27

Internals’ (Stallman 2004a) manuals. These are comprehensive references to both
running and developing GCC and would be an appropriate resource for problems
associated with GCC.

Chapter 4

Design

4.1 System Architecture

As discussed in Section 2.2, the important phases of a compiler can be broken down
into basic components, which can then be discussed as high-level design topics.
This will give an overview and understanding of the overall composition of the
design. The basic components covered in the design will be the lexical analyser,
symbol table, parser, generation of the intermediate representations and the integra-
tion into GCC. The parser is central to the main design of this system, as it drives
the front end and control the lexical analysis. It also builds the intermediate repre-
sentations and handles the integration with the rest of the GCC toolchain.

4.2 Methodology

Expanding on the requirements analysis, the methodology for the design of the sys-
tem was based upon the generic architectural model as described in (Sommerville
2001). Generic models are a type of domain-specific architectural models which
are abstractions from a number of real systems. They encapsulates the principle
characteristics of these systems. A compiler model is a good fit as a generic ar-
chitectural model and some of the important modules are described below. The
phases of lexical, syntactic and semantic analysis would be organised sequentially
as shown in Figure 4.1. The components which make up a compiler can also be
organised according to different architectural models. A compiler could also be im-
plemented using a composite model, where a data-flow architecture could be used
and the symbol table acting as a repository for shared data. However, large systems
rarely conform to a single architectural model, as they are heterogeneous and tend to
incorporate different models at different levels of abstraction (Sommerville 2001).

28

CHAPTER 4. DESIGN 29

Figure 4.1: Compiler system overview

4.3 Lexical Analyser

The design of the lexical phase needs to ensure that the input language is ’tokenised’
correctly and efficiently. By using the generic model as described above, it would
be feasible to create a lexical analyser module that takes the input language and
converts it into recognisable symbols ((Richards & Whitby-Strevens 1980) points
out that there are about 75 such symbols). This would ensure that the principle
characteristic of the lexical phase is encapsulated.

The lexical analyser would need to be driven by a starter class that processes the
input files and options and starts the compilation process. Minimal explicit setup
would be required, as many of the internal data structures and rules are automat-
ically created by Flex, but it would be sensible to enable some of the diagnostic
and debugging options available (see (Paxson 1995) for further details). As soon as
each token is encountered, a rule would be triggered and then appropriate actions
would follow. The types of token for the BCPL language would include identifiers,
numeric constants, keywords and operators; each time one of these tokens were en-
countered, it would need to be detected and handled appropriately. For example,

CHAPTER 4. DESIGN 30

in most cases, it would be possible just to acknowledge and return that you have
detected that particular token, but certain cases would require special handling and
may require insertion into the symbol table. Certain cases may also require func-
tionality that copies or adjusts the current token so that it can be passed onto the
parser or be analysed further. Like the original BCPL compilers, the lexical anal-
yser will not need to perform any backtracking; that is, it performs the analysis
while reading the basic tokens in one at a time without having to consider a symbol
previously dealt with (Tremblay & Sorenson 1985).

A problem that is common with the lexical phase is ensuring that you have correctly
identified the current token. This is important, otherwise it can be possible to get
spurious semantic errors in the parser. A good way to alleviate this problem is to
ensure that all keywords, commands and operators are explicitly defined as tokens
in the rules section of the scanner and are detected and return as such. It is also
important to make sure that the alphabetical case of the input is taken into consid-
eration, as some implementations of BCPL allowed both upper and lower cases to
be used (Richards & Whitby-Strevens 1980). When using regular expressions in
the other rules to detect identifiers and constants for example, care must be taken to
design and test these expressions to check that the character classes are matching
only the expected input. It is all too easy to make mistakes whilst using regular
expressions for controlling input.

Another important design feature for the lexical analyser is error detection and re-
covery. It should be possible, whenever a error is detected in the scanner, to main-
tain control of the compiler without it crashing and also to receive information about
the type, location and severity of the error. Certain errors or warnings may be al-
lowed, but some errors may require compilation to halt. The error information that
should be presented back to the user should contain the error token, the line and
column number of its location and the action problem. This would require tracking
of whitespace and newlines, but should be trivial to implement. As much error in-
formation as possible is important from a diagnostic and debugging point of view
and would also contribute to the testing of the program itself.

We have already covered the use of Flex in both Section 2.5.1 and Section 3.2.2,
but there will be a more detailed technical discussion in the implementation of the
lexical analyser later on in this report.

4.4 Symbol Table

The symbol table is the major persistent attribute of a compiler and, after the in-
termediate representations, forms the major data structure as well (Louden 1997).
The efficiency of the symbol table in a large production compiler is normally an
important issue, but the scope of this project precludes a large amount of time spent

CHAPTER 4. DESIGN 31

optimising symbol table transactions and storage size. However, the chosen design
of a separately-chained hash table for the symbol table is a good choice as it pro-
vides a good compromise between efficiency and ease of implementation.

The efficiency of the symbol table depends on the implementation of its data stor-
age. Typical implementations include linear lists, various tree structures (such as
binary search trees, AVL trees and B trees) and hash tables. Linear lists are a good
basic data structure that are simple and quick to implement and can provide easy and
direct implementation of the three basic operations. There exists a constant-time in-
sert operation, by always inserting at the front or rear of the list, with lookup and
delete operations being linear time in the size of the list (Loudon 1999). This op-
tion would be acceptable for a prototype or experimental compiler implementation,
where compilation speed is not a major concern. Search tree structures are some-
what less useful for the symbol table, partly because they do not provide best case
efficiency, but also because of the complexity of the delete operation (Louden 1997).
The hash table will often provide the best choice for implementing the symbol ta-
ble, since all three operations can be performed in almost constant time and is used
most frequently in practice (Aho et al. 1986).

A hash table consists of an array of entries, called buckets, indexed by an integer
range. A hash function is required to turn the search key (usually the identifier
name, consisting of a string of characters) into an integer hash value in the index
range of the table, giving the location of the bucket where that item is then stored.
Care must be taken to ensure that the hash function distributes the key indices as
uniformly as possible over the index range, since hash collisions (where two keys
are mapped to the same index by the hash function) can cause significant perfor-
mance degradation in the lookup and delete operations. It is also important for the
hash function to operate in constant time, or at least time that is linear to the size of
the key (this would amount to constant time if there is an upper bound to the size of
the key) (Loudon 1999).

The way we have chosen to address the problem of collision resolution in the
hash table is using a technique, as mentioned previously, called separate chaining,
which is shown in Figure 4.2. In this method, each bucket is actually a linear list
and collisions are resolved by inserting the new item into the front of the bucket
list (Louden 1997). Another common method used is open addressing, where only
enough space is allocated for a single item in each bucket, with collisions being
resolved by inserting new items in successive buckets. This method was not chosen
because of the performance degradation when collisions become frequent and also
that deletions do not improve the subsequent table performance. The size of the ini-
tial bucket array is an important design choice that needs to be defined at compiler
construction time. Typical sizes range from a few hundred to over a thousand, but
the use of dynamic allocation can ensure that small arrays will still allow the com-
pilation of very large programs, at the cost of extra compile time. An interesting

CHAPTER 4. DESIGN 32

feature is that if the actual size of the bucket array is chosen to be a prime number,
a typical hashing function behaves more efficiently (Loudon 1999).

Figure 4.2: Separately chained hash table schematic

As mentioned in the requirements section, the symbol table will provide the prin-
ciple functions of insertion, lookup and deletion. As their names suggest, insert is
used to store symbols, lookup to retrieve them, and delete to remove them from
external visibility. The delete function would not physically remove the entry from
the table, but set a flag to make it inactive similar to a database record. This would
provide a form of transaction logging and ensure that items are not fully removed
until the whole table is destroyed. These principle interfaces will be available to all
phases that require access and be visible to the GCC middle and back ends during
the lowering from GENERIC to GIMPLE form and the optimisation passes. The
symbol table is intimately involved with both the scanner and the parser, either of
which may need to enter information directly into the symbol table or query it to
resolve ambiguities. A print table function will also be available that dumps the in-
formation in each bucket of the symbol table to a file for diagnostic purposes. Other
functions that would be available would include a check to see if the table is empty,
a symbol count function and a function to free the whole symbol table when the
compilation has ended.

Since BCPL is typeless in the modern sense, the usual information about data types
is not necessary for each entry in the symbol table. An important feature for BCPL
is the block-structured nature of the language and how this affects scoping of vari-
ables. A block in BCPL is any construct that contains one or more declarations and
commands. BCPL permits the nesting of blocks inside other blocks and the scope of
an identifier is the declaration itself (to allow recursive definitions), the subsequent
declarations and the commands of the block. The scope does not include earlier

CHAPTER 4. DESIGN 33

declarations or extend outside the block (Richards & Whitby-Strevens 1980). Since
block-structured languages permit multiple scopes for variables, this complicating
the design of the symbol table as multiple scopes imply that a symbol may have
different meanings in different parts of the code as highlighted in Figure 4.3. This
example in C demonstrates how it is possible to declare new variables at the start of
every block and how this can complicate the program. This also highlights lexical
scoping present in BCPL, C and most other languages descended from ALGOL.
A variable is said to be lexically scoped if its scope is defined by the text of the
program (Fischer & LeBlanc 1991). In this way, a programmer can guarantee that
their private variables will not be accidentally accessed or altered by functions that
they call.

1 static int w; /* scope level 0 */
2 int x;
3 void example(a,b)
4 {
5 int a,b; /* scope level 1 */
6 {
7 int c;
8 {
9 int b,z; /* scope level 2a */

10 ...
11 }
12 {
13 int a,x; /* scope level 2b */
14 ...
15 {
16 int c,x; /* scope level 3 */
17 b = a + b + c + x;
18 }
19 }
20 }
21 }

Figure 4.3: Nested code blocks example

4.5 Parser

The design of the parser is very important in ensuring that the semantics and the
grammar of the language are preserved. The parser is perhaps the most important
module in the front end and drives the lexical phase by controlling the scanner and

CHAPTER 4. DESIGN 34

then receiving the token that has been identified. It is still a separate module, but
needs to integrate cleanly with the scanner. Again using the generic architectural
model described earlier, it should be possible to develop a parser that acts of the
data given to it by the lexical phase and then attempt to match it with the grammar
productions. The principle characteristic of the system is to match the input against
a set of grammar rules and start to build the intermediate representations with the
information generated.

By using the Bison parser generator, we are able to take advantage of many au-
tomatically generated features. In order for Bison to parse a language, it must be
described by a context-free grammar. This means that you must specify one or more
syntactic groupings and then give rules for constructing them from their constituent
parts (Donnelly & Stallman 2002). For example, in BCPL, one such grouping is
called an ‘expression’, with one of the rules for making an expression being defined
as, ’an expression can be made of a minus sign and another expression”.

The most common formal system for presenting the grammar rules for humans to
read is Backus-Naur Form or ’BNF’, which was originally developed in order to
specify the language ALGOL 60. Any grammar expressed in BNF is a context-free
grammar (see (Chomsky 1956) and (Chomsky 1959) for further details), though
it may contain ambiguities. Therefore, the input to Bison is essentially a type of
machine-readable BNF. This means that we are able to use the BNF description
for BCPL as given in (Richards & Whitby-Strevens 1980) and build the necessary
grammar productions. This is a good starting point to getting a working parser for
BCPL, even though it may be necessary to make changes whilst implementing due
to ambiguities and conflicts that may exist in the given grammar. This is a good
point to note that whilst we are working from the BNF as defined in (Richards &
Whitby-Strevens 1980), no formal standard exists for the BCPL language. Attempts
were made in the early 1980s to create a common standard, but the large number
of implementations combined with the waning usage of the language and the pop-
ularity of C contributed to it being unsuccessful. This means that the BNF we have
formalised is possibly the most comprehensive, but is does not include some of
the commonly-used extensions or language features which are not expressible in
the BNF notation. A further discussion about the changes made to the BNF is de-
scribed in Chapter 5, along with details of which extensions have been implemented.

The initial choice of the Bison parser implementation was tempered with initial
research into developing a recursive-descent parser like the original BCPL compil-
ers. Recursive-descent parsing is a top-down method of syntax analysis in which
you execute a set of recursive procedures to process the input (Aho et al. 1986).
This contrasts with using a parser generator like Bison, which produces bottom-up
parsers. A recursive descent parser consists of a set of mutually-recursive proce-
dures or non-recursive equivalent where each such procedure implements one of
the production rules of the grammar. Thus the structure of the resulting program

CHAPTER 4. DESIGN 35

closely mirrors that of the grammar it recognises. Bison and most other parser gen-
erators produce a particular family of bottom-up parsers called LALR(1)1 parsers.
Look-Ahead LR or LALR parsers are a specialised form of LR parsers that can
deal with more context-free grammars than SLR parsers but less than LR(1) parsers
can (Grune et al. 2000). It is a very popular type of parser because it gives a good
trade-off between the number of grammars it can deal with and the size of the pars-
ing tables it requires. This is the one of the key features of using Bison, as the
production of parsing tables and the internal handling of the stack to shift and re-
duce the productions automates a considerable amount of work. It is also a good
starting point for understanding the language and its intricacies, as the tool provides
a simple interface for starting to build the parser. One of the problems with using a
recursive-descent compiler was the greater amount of work involved for implemen-
tation, as it would have required a greater understanding of the language to begin
with. It would probably in the long term have been a more elegant and efficient
solution, but Bison was the choice for ease of implementation and the timescales
involved. Also, with previous experience of using Bison, it was possible to reuse
existing code for a C-like language rather than attempting to create a parser from
the beginning.

The design of the error recovery strategy is another important factor for the parser.
This should be used in conjunction with simple error recovery in the lexical phase.
It is not usually acceptable to have the program terminate on the occurrence of the
first parse error. For example, the compiler should recover sufficiently to parse the
rest of the input file and continue checking it for errors. A common technique when
a parse error is discovered is calling an error handling routine that advances the
input stream to some point where parsing should once again commence. It is then
possible to provide error information for the whole input file, rather than stopping at
the first error. However, error recovery strategies are by their very nature informed
guesses; when you guess wrong, one syntax error often leads to another (Donnelly
& Stallman 2002).

4.6 Intermediate Representations

As previously mentioned, one of the key tasks of the parser is to build the GENERIC
trees. It is hard to set designs on this part of the program, as we are constrained by
the fact it is not our own custom intermediate representation. However, it is possible
to state that when we build GENERIC trees, we will adhere to the recommendations
as set out in the GCC 3.5.0 version of the GCC Internals Manual (Stallman 2004a).
This is also the case for the lowering pass to GIMPLE form, which is done by a

1The notation used for describing parser types, for example LR(k) parsers, means that they read
their input from left to right, produce a rightmost derivation and k refers to the number of uncon-
sumed ’look ahead’ input symbols that are used in making parsing decisions. Usually k has a value
of 1 and is often omitted.

CHAPTER 4. DESIGN 36

function call provided by the infrastructure.

4.7 GCC Integration

The GCC integration falls under the same situation as discussed above for the inter-
mediate representations. As we are reusing the GCC back end for the optimisation
passes and the code generation, we are unable to set or control any features of the
design. Also, most of this stage of the compilation will be automatic once we have
processed and passed on the intermediate representations. However, we will again
adhere to the recommendations as set out in the GCC 3.5.0 version of the GCC
Internals Manual (Stallman 2004b).

Chapter 5

Implementation

5.1 Overview

This chapter presents an overview of the software architecture implemented and
a high-level discussion of the implementation process and the key components of
the system. In this project, we have attempted to use an evolutionary and rapid
prototyping strategy (Sommerville 2001) for implementation, as this seemed to suit
the type of project and the speed of development required.

5.2 Tools

The aim of this project has been to develop a compiler for BCPL by integrating the
GCC toolchain to reuse the middle and back end. This design strategy heavily influ-
ences our choice of implementation tools, especially if we wish for interoperability,
standardisation and support. The choice of tools has also been constrained by the
need to support the design choices made in Chapter 4.

The choice of using C as the main implementation language was easy to make,
as it has become the de facto standard for compiler implementations. This is com-
pounded by our use of GCC and the intermediate representations, as most of GCC is
written in C. C++ is starting to be used for certain compiler implementations, as lan-
guage features such as templates are useful when creating front ends (a good exam-
ple would be the LLVM Project, as discussed in Section 2.5.6). A further deciding
factor would be if we wished to eventually integrate the BCPL front end fully into
GCC, the coding standards for both GNU (GNU 2003a) and GCC (GCC 2003a)
would dictate our choice of language and tools. It is unlikely, however, that choos-
ing C as the implementation language would simplify certain features because of it
being a descendant of BCPL. The expressive power of C, coupled with its common
usage as a compiler tool are the primary implementation reasons.

37

CHAPTER 5. IMPLEMENTATION 38

5.3 Lexical Analyser

As discussed in Chapter 4, the purpose of the scanner is to recognise tokens from the
input file and match them to the corresponding symbols of the language. The choice
of implementing the scanner in Flex was again easy to make. Flex and its variants
remain the standard tools for creating scanners for modern compilers. A Flex input
file consists of three sections, definitions, rules and user code (Paxson 1995). An
example set of rules from the scanner are shown in Figure 5.1. These demonstrate
how basic tokens like keywords and operators are detected and their token type is
passed to the parser. The scanner uses the enumerated token types as defined in the
Bison parser.

...
"GLOBAL" { return GLOBAL; }
"LET" { return LET; }
"WHILE" { return WHILE; }
"TABLE" { return TABLE; }
":=" { return ASSIGN; }
"!" { return PLING; }
"->" { return IMPLIES; }
...

Figure 5.1: Example Flex rules for keywords and operators in BCPL

However, for handling more complicated token such as identifiers and numeric con-
stants, the use of regular expressions1 were required to control the range of tokens
captured. A good example from the definitions section of the scanner would be
the regular expression for identifiers as shown in Figure 5.2. This shows how you
can define character classes to create groups of characters to define larger entities.
Therefore, an identifier consists of a string starting with a letter, followed by either
an alphanumeric character, a period or an underscore.

The scanner performs tracking of section brackets (see Appendix C) by recording
the entry and exit of a new block and hence new scope for the program. This means
that when an opening bracket, ’$(’, or closing bracket, ’$)’, is found, a new scope
is either opened or closed. A section bracket may be optionally tagged with an
identifier to aid tracking of blocks; when this occurs the value associated with the
opening bracket is pushed onto the stack. When a closing bracket is recognised by
the scanner, the top of the stack is popped and compared with the tag and if there

1A regular expression (often abbreviated as regexp or regex) is a string that describes a whole
set of strings, according to certain syntax rules. These expressions are used by many text editors
and utilities to search bodies of text for certain patterns and, for example, replacing strings. The
background of regular expressions lies in automata theory and formal language theory.

CHAPTER 5. IMPLEMENTATION 39

...
letter [A-Za-z]
integer [0-9]
identifier {letter}({letter}|{integer}|\.|_)*
...

Figure 5.2: Example Flex regular expressions for BCPL

are the same the scope is closed. If they are different, the closing tag will be put
back onto the input stream so that the next call to the scanner will attempt to match
it against the new value at the top of the stack. The tracking of section brackets, and
hence scope, is also important when adding and looking up entries in the symbol ta-
ble. Therefore, an identifier or other allowed entity is only inserted into the symbol
table if it is the first declaration or instance in that scope. If an entry already exists
for that scope, a reference is made to the original entry.

It is possible to include a file in the source text of a program by using the get di-
rective, which is comparable to the #include feature in C. The get directive is
handled in the scanner by using a feature in Flex that provides a mechanism for
conditionally activating rules called exclusive start states. A condition is declared
in the definitions section of the scanner and then when the state is entered (when
the BEGIN action is executed) only rules qualified with the exclusive start condi-
tion will be active. This enables the creation of ’mini-scanners’ within the main
scanner and are used extensively for our project. The other instances are for char-
acter constants, string constants and ’eating’ single-line and multi-line comments.
By having certain rules for certain states, it is possible to scan portions of the input
that are syntactically different from the rest (Paxson 1995). The benefit of using the
exclusive state for the get directive is that you have more control over the switching
of inputs and also you are able to control the depth of the nesting level.

Some of the commonly-used extensions to BCPL have been implemented in the
scanner, including:

� The option of using lower case letters, dots and underscores in identifiers
and section bracket tags. This was done by adjusting the regular expressions
governing identifiers and adding these to the character classes.

� The option of writing numeric constants in binary, octal or hexadecimal for-
mat. Again, this was done with changes to the character classes by creating
new expressions for the new formats. A small change in the parser grammar
was required to ensure the new numeric formats were recognised.

� The option of using ’?’ to represent an undefined constant, which may be
different each time it is evaluated. Any constant expression containing an

CHAPTER 5. IMPLEMENTATION 40

evaluated ’?’ is itself a ’?’. This was implemented by allowing the scanner
and parser grammar to recognise ’?’ as a valid constant, but without explicitly
accepting a value.

� The full set of comment forms extend either from // or || or \\ to end of
line, or from /* or |* or * to the corresponding close symbol (the two char-
acters reversed). This is done by adding these formats to the exclusive states
used for comments. Comments are not allowed to nest, and all comment
symbols other than the required close symbol are ignored in a comment.

Implementation of other language extensions have required small changes in the
scanner or parser. Examples include the addition of an infix byte operator, floating-
point operators (the same as the integer equivalents, prepended with ’#’), field
selectors (which allow quantities smaller than a whole word to be accessed with
reasonable convenience and efficiency (Richards 1973)) and combined operator-
assignments (the most recent implementations allowed the assignment symbol to
be prefixed with any dyadic operator, for example +:=).

Simple rules have been created to ignore whitespace and remove comments from the
input file, but both the line count and the column count are tracked so as to provide
debugging location information for errors. As discussed in the design, the scanner
does not perform any backtracking for error recovery purposes. This technique can
be time-consuming and not particularly effective. The technique of accepting illegal
input and then reporting it with an error or warning is a powerful one that can be
used to improve the error reporting of the compiler (Levine, Mason & Brown 1995).
Therefore, on finding an error, the line in which it occurs is skipped and the scanner
resynchronises and continues scanning.

5.4 Symbol Table

As discussed in Chapter 4, the purpose of the symbol table is to store information
about certain entities in the program throughout the entire compilation process. A
discussion has already been made about the importance of efficiency in symbol table
design, so the choice of using a separately chained hash table is a good compromise
between performance and ease of implementation. We have decided to reuse an
existing symbol table, which has been taken from (Louden 1997) and adapted for
our purposes. The main functions implemented are:

� An insert function to add a symbol, its scope and source code line number to
the table.

� A lookup function to check if a symbol exists in the table; if so, the token is
returned.

CHAPTER 5. IMPLEMENTATION 41

� A similar boolean lookup function to check if a token exists, returning true or
false.

� A delete function to mark an entry as inactive, but not remove it from the
symbol table.

� A size function to return the number of entries in the symbol table.

� A boolean function is check if the table is empty.

� A destroy function to free all allocations made in the symbol table

� A print table function to dump all symbol table entries to a file, listing their
value, scope and line number.

The issue of scoping within the block structure was handled by inserting the scop-
ing ’depth’ for each variable as tracked by the scanner. This means that variables
are only added when they are the first instance in that particular scope. (Fischer
& LeBlanc 1991) discusses the fact that in block-structured languages you do not
usually have the scanner enter or lookup identifiers in the symbol table because it
can be used in many contexts. It may not be possible, in general, for the scanner
to know when an identifier should be entered into the symbol table for the current
scope or when it should return a pointer to an instance from an earlier scope. How-
ever, it has been possible to resolve the scope of the variable by the tracking of the
section brackets and also by following the lexical scoping rules. The idea suggested
of allowing individual semantic routines to resolve the identifier’s intended usage is
not necessary.

The two important data structures which store the entries in the hash table are
LineListRec and BucketListRec, as shown in Figure 5.3. LineListRec
is a list of line numbers of the source code in which the identifier is referenced and
is stored as one of the fields in a BucketListRec. This is the record in the bucket
lists for each identifier, and details the symbol name, scope and line list.

A good hash function for the symbol table is of vital importance if efficiency and
collision avoidance is required. The hash function converts a character string into
an integer is the range zero to one less than the size of the table. Hashing can
provide almost direct access to records, which means that, on average, a lookup
can require just one or two probes into the symbol table to obtain the record. The
hash function that we have used in our implementation is shown in Figure 5.4 and
works through the character string to give an integer key by shifting modulo the
table size. This is not the most complicated or efficient hashing function, but it
is suitable for our purposes. As mentioned in the symbol table design, the table
size has been set to a prime number (with the closest prime to 1024 being 1021)
to possibly improve performance. Pre-loading of the symbol table with all of the

CHAPTER 5. IMPLEMENTATION 42

1 typedef struct LineListRec
2 {
3 int lineno;
4 struct LineListRec* next;
5 } *LineList;
6
7
8 typedef struct BucketListRec
9 {

10 TOKEN* token;
11 LineList lines;
12 struct BucketListRec* next;
13 } *BucketList;

Figure 5.3: Symbol table data structures

keywords and commands was discussed during the design phase, but it did not seem
to be particularly worthwhile, especially as the performance benefits are debatable.

1 static int hash (char* key)
2 {
3 int temp = 0;
4 int i = 0;
5 while (key[i] != ’\0’)
6 {
7 temp << SHIFT) + key[i]) % TABLE_SIZE;
8 ++i;
9 }

10 return temp;
11 }

Figure 5.4: Symbol table hash function

5.5 Parser

The purpose of the parser is to analyse the tokens identified by the scanner in order
to determine the semantic structure of the language and build the intermediate rep-
resentation. In most compilers, the major portion of semantic analysis is to do with
types inference and checking. For BCPL, this is obviously not an issue, but the role
of the parser is important in ensuring the syntactic and semantic preservation of the
language via the grammar. As we have chosen to build GENERIC trees immedi-
ately rather than via our own custom tree, the process of parsing and the generation

CHAPTER 5. IMPLEMENTATION 43

of the intermediate representation are combined into the single phase. Therefore,
when grammar production rules are fired, GENERIC nodes are built and when a
top-level production is accepted, a GENERIC tree is returned.

The choice of using Bison to implement the parser was again trivial. Flex and Bison
are designed to integrate and work together and still remain the standard tools for
creating scanners and parsers. A Bison input file consists of four main sections, C
declarations, Bison declarations, grammar rules and additional C code (Donnelly
& Stallman 2002). The important logic within the parser is contained within the
grammar rules section. These production rules describe the grammar of the lan-
guage in terms of terminals and nonterminals and how these are related and how
they decompose. An example set of production rules from the BCPL parser are
shown in Figure 5.5, which descend from two purposely created top level construc-
tions called program and program element which are the entry points to the parser.
This example demonstrates how declarations in BCPL decompose to four different
types and would eventually decompose to a nonterminal symbol.

...

...
declaration : simult_declaration

| manifest_declaration
| static_declaration
| global_declaration
;

simult_declaration : LET definition AND definition
| LET definition
;

...

...

Figure 5.5: Bison production rules for declarations in BCPL

Recursion is another important property when developing the production rule. A
rule is recursive when a result nonterminal appears also on its right hand side (Donnelly
& Stallman 2002). Nearly all Bison grammars need to use recursion, because it is
the only way to define a sequence of any number of particular entity. This is demon-
strated in Figure 5.6, where manifest lists in BCPL can be composed of one or more
manifest items. Unfortunately, many of the rules given in the original BNF had no
termination from their recursion (with examples being many of the expressions and
lists). This required the addition of single ’drop-out’ nonterminals on the right hand
side of the rule, as highlighted again by the manifest lists in Figure 5.6.

CHAPTER 5. IMPLEMENTATION 44

...

...
manifest_list : manifest_list SEMICOLON manifest_item

| manifest_list manifest_item
| manifest_item
;

manifest_item : IDENTIFIER EQUALS const_expr
;

...

...

Figure 5.6: Bison production rules demonstrating left-recursion for manifest lists in
BCPL

As previously declared, we are using the BNF definition for BCPL as given in Ap-
pendix C, which has been adapted from (Richards & Whitby-Strevens 1980). On
implementation, parts of the original version of the grammar were ambiguous (and
hence could not be parsed by a LALR(1) parser) and did not represent all of the
original language features. At first this was demonstrated by being unable to parse
simple code examples, but was later indicated by the large number of reduce/reduce
and shift/reduce conflicts. By creating precedence and associativity rules within
the Bison declarations section, it was possible to overcome these some of conflicts
and use Bison’s internal conflict resolution rules. However, as of 2004-04-05, the
parser reported 48 shift/reduce and 118 reduce/reduce conflicts. This is not an ideal
situation, but at present it does not cause errors when tested with a wide range of
code examples. Bison warns when there are conflicts in the grammar, but most real
grammars have harmless shift/reduce conflicts which are resolved in a predictable
way and can be difficult to eliminate (Donnelly & Stallman 2002). Coupled with
the fact that Bison is designed to resolve shift/reduce conflicts by choosing to shift
(unless otherwise directed by an operator precedence declaration), means that while
the parser may require some attention it by no means indicates that the parser is bro-
ken. A good example of this would be before the GCC C++ parser was rewritten to
use recursive descent for the 3.4.0 release, its Bison-generated parser reported over
30 shift/reduce conflicts and over 50 reduce/reduce conflicts.

A more significant problem with the original BCPL grammar is that not all of the
original language features are represented in the BNF definition, along with all of
the commonly-used extensions. Some of the extensions implemented have already
been described in Section 5.3, but certain features required changes to the parser.
Some of the more important examples include:

� The most commonly-used keyword synonyms are for THEN and DOwhich are
interchangeable in all circumstances, as are OR and ELSE. Also, THEN or DO

CHAPTER 5. IMPLEMENTATION 45

may be omitted if immediately followed by another keyword or block (Willers
& Mellor 1976). This was done by replicating the rules involving THEN and
DO and checking that the proceeding token was ’safe’ and not one which
would change the semantics of the statement from if the keyword was present.
Appendix D gives a listing of some of the common operator synonyms.

� A particularly difficult language feature in BCPL allows the programmer
in most cases to dispense with separating a command or line with a semi-
colon. This is an important point to note, because unlike C, the semicolon in
BCPL is a separator rather than a terminator. The original BCPL compilers
worked with the premise that if a semicolon is syntactically sensible at the
end of a line, and one is not already there, it was inserted (Feather 2002).
However, in order that the rule allowing the omission of most semicolons
should work properly, a dyadic operator may not be the first symbol on a
line (Richards 1973). This was implemented by an addition to the grammar
allowing rules without semicolons for declaration parts and command lists.
Unfortunately, this choice of implementation could possibly have been the
cause for a number of reduce/reduce conflicts present in the parser. The rea-
son for this is due to the fact that for two rules (depending on whether or not
there is a semicolon between the declarations and the commands), the actions
in each of these will be treated as different states even though they are the
same. This leads to a reduce/reduce conflict, as the correct resolution cannot
be known at the time the action must be performed because it depends on
whether or not there is a semicolon between the declarations and commands.
A similar situation occurs with the procedure definitions, as the action must
be performed before it is known whether the definition is for a function or a
routine (Page 2003). This would have have potentially been a trivial problem
if it were a recursive descent parser, because it could have been possible to
have simply set a flag when it expected a semicolon, to indicate to the scanner
that it is possible to accept a newline instead of a semicolon.

� Certain constructions in BCPL can be used only in special contexts and not
all of these restrictions are defined in the BNF. The important examples of
this problem are that CASE and DEFAULT can only be used in switches and
RESULTIS only in expressions (Richards & Whitby-Strevens 1980). An-
other interesting example of this would be the necessity of explicitly declaring
all identifiers in a program.

A syntactic ambiguity arises relating to the repeated command constructs shown in
Figure 5.7. Command C is executed repeatedly until condition E becomes true or
false as implied by the command. If the condition precedes the command (WHILE
or UNTIL), the test will be made before each execution of C. If it follows the com-
mand (REPEATWHILE or REPEATUNTIL), the test will be made after each exe-
cution of C. In the case of line 3 in Figure 5.7, there is no condition and termination

CHAPTER 5. IMPLEMENTATION 46

must be by a transfer or RESULTIS command in C, which will usually be in a com-
pound command or block. The resolution comes around by declaring that within
REPEAT, REPEATWHILE and REPEATUNTIL, C is taken as short as possible.
Thus, for example IF E THEN C REPEAT is the same as
IF E THEN $(C REPEAT $) and E := VALOF C REPEAT is the same as
E := VALOF $(C REPEAT $).

1 WHILE E DO C
2 UNTIL E DO C
3 C REPEAT
4 C REPEATWHILE E
5 C REPEATUNTIL E

Figure 5.7: Syntactic ambiguity in BCPL repetitive commands

When an error is detected, the Bison parser is left in an ambiguous position. There-
fore, it is unlikely that meaningful processing can continue without some adjustment
to the existing parser stack. There is no reason why error recovery is necessary, but
it may be possible to improve productivity for the programmer by recovering from
the initial error and continue examining the file for additional errors. This tech-
nique shortens the edit-compile-test cycle, since several errors can be repaired in
each iteration of the cycle (Levine et al. 1995). By using the error token provided
by Bison for managing recovery, we can attempt to find a synchronisation point in
the grammar from which it is likely that processing can continue. Unfortunately,
the emphasis is on likely, as our attempts at recovery may not remove enough of
the erroneous state to continue and the error states may cascade. At this stage, the
parser will reach a point where processing can continue or it will abort. The use
of the error token means that after reporting a syntax error, the Bison parser dis-
cards any partially parsed rules until it finds one if which it can shift the error
token. It then performs resynchronisation by reading and discarding tokens until it
finds one which can follow the error token in the grammar (Levine et al. 1995).
A key point, therefore, is the placement of error tokens in the grammar. The two
conflicting goals are between placing it at the highest level possible, so that there
will always be a rule to which the parser can recover, against the fact you want
to discard as little input as possible before recovering by minimising the number
of partially matched rules the parser has to discard during recovery (Donnelly &
Stallman 2002). It was decided to place the error token at the highest level possi-
ble and resynchronise after the next newline, so as to aid maximum recovery during
the development stages of the compiler. This method of ad-hoc recovery provides
the opportunity to anticipate the possible occurrences of errors and in particular
their position. A more detailed discussion of ad hoc and syntax directed error re-
covery techniques can be found in (Tremblay & Sorenson 1985).

CHAPTER 5. IMPLEMENTATION 47

The most difficult task of the parser is to start to build the intermediate representa-
tions to pass onto the latter stages of the compiler. This part of the development is
where the most technical knowledge is required, as Flex and Bison have been sup-
ported by the long usage of these tools and the large amount of resources available.
However, the elegance of re-sourcing GCC is matched by its immediate difficulty
with both the building of the intermediate representations and the integration into
the main toolchain. The possible implementation of the intermediate representa-
tions is discussed in detail in the following section.

5.6 Intermediate Representations

5.6.1 Overview

The development of the project was forked into two at this stage, as it was deemed
important to ensure a contingency plan was in place if problems occurred in the
implementation and integration of the GCC part of the project. Therefore, the code
was frozen at a stage where the scanner and parser could parse a wide range of
BCPL test code. The side branch consisted of the GENERIC tree building and the
rudimentary BCPL system library with other general improvements to the compiler
infrastructure.

Our main resource of existing code is from the C and Fortran front ends2 taken from
the GCC 3.5.0 daily snapshot (previously tree-ssa branch, available from (GCC
2004b)). The C front end uses a strange fusion of GENERIC and GENERIC trees in
the same routines (see Section 2.4.2), plus a handful of language specific tree codes
defined in ’c-common.def’. We have also investigated the gimplify_expr
function, which either returns GIMPLE directly or a GENERIC version of the given
node to be handled by the gimplifier. This seemingly poor modularity has
arisen as an artifact of the way the infrastructure evolved, as the C front end was
the driver for the development of the tree-ssa branch. The Fortran front is prob-
ably a purer implementation of the infrastructure, but because of the relationship
between BCPL and C, it makes sense to study and reuse the code for similar lan-
guage constructs. Therefore, when presented with a C or C++ source program, GCC
parses the program, performs semantic analysis (including the generation of error
messages), and then produces the intermediate representation. This representation
contains a complete representation for the entire translation unit provided as input
to the front end. It is then typically processed by the code generator in order to
produce machine code (Stallman 2004a). A more detailed discussion about the in-

2Details about the format of the GCC source directory can be found at http://gcc.
gnu.org/onlinedocs/gcc-3.4.0/gccint/Top-Level.html, but most of the main
source of GCC itself is contained with the ����� subdirectory. The format of the GCC sub-
directory can be found at http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gccint/
Subdirectories.html.

CHAPTER 5. IMPLEMENTATION 48

tegration of the front end to the rest of the GCC toolchain in described in Section 5.7.

The main purpose of GENERIC has been to provide a language-independent way
of representing entire function in trees (Stallman 2004a). As mentioned earlier, a
problem with using GENERIC is the apparent lack of documentation and the fact
that many parts of it are still under active development. An unfortunate quote that
seems to sum up the situation is if you are able to express it with the codes in the
source file gcc/tree.def, it is GENERIC. It is hard to think of a more difficult
situation then when writing code in a language that is only defined in its own code
implementation. The existing front end ’how-to’ documents have yet to be updated
to reflect the major changes in the intermediate representations and as such are ir-
relevant for this stage of the implementation. GIMPLE is a simplified subset of
GENERIC for use in optimisations. The particular subset chosen was heavily influ-
enced by the SIMPLE intermediate language used by the McCAT compiler project
at McGill University (Hendren et al. 1992). In GIMPLE, expressions are broken
down into three-address form, using temporary variables to hold intermediate val-
ues for use in the later optimisation phases. Also, control structures are lowered to
gotos (Stallman 2004a).

5.6.2 Trees

The central data structure used by the internal representation is the tree. These
nodes, while all of the C type tree, are of many varieties, as tree can be a pointer
to a variety of different types. The TREE_CODE macro is used to tell what kind of
node a particular tree represents. The front end needs to pass all function definitions
and top level declarations off to the middle end so that they can be compiled and
emitted to the object file. This means that this is done as each top level declaration
or definition is seen, as GENERIC represents entire functions as trees. The BCPL
front end at present only uses rudimentary GENERIC trees for certain constructs
in the grammar and attempts to attack some of the more difficult language features
by working from the C and Fortran front ends. It may be necessary to create some
language-dependent tree codes for our implementation, as language features such as
RESULTIS and SWITCHON have caused problems on implementation. The ques-
tion of certain library functions, such as LONGJUMP and LEVEL may also require
some special handling. This is an acceptable approach, so long as these custom
codes provide hooks for converting themselves to GIMPLE and are not expected
to work with any optimisers that run before conversion to GIMPLE. Currently, all
optimisation passes are performed on the GIMPLE form, but it would be possible
for some local optimisations to work on the GENERIC form of a function; indeed,
the adapted tree inliner works fine on GENERIC, but the existing GCC compiler
performs inlining after lowering to GIMPLE (Stallman 2004a).

As stated previously, we have only been able to implement a small subset of the
functionality of BCPL in GENERIC tree form. This has been partly due to a

CHAPTER 5. IMPLEMENTATION 49

very steep learning curve on working with GENERIC, but also problems of ac-
tually validating the trees produced. Therefore, the following set of implementation
choices have been made concerning particular features of the BCPL language. This
is not an exhaustive list of either the intended implementation, or the functional-
ity of GENERIC. A detailed description of the important nodes and constructs in
GENERIC can be found in (Stallman 2004a).

5.6.3 Identifiers

Identifiers have been implemented in GENERIC by using the IDENTIFIER_NODE.
This, however, represents a slightly more general concept than the standard C or
C++ concept of an identifier, which is turn is slightly different for BCPL, as an
IDENTIFIER_NODEmay contain a ’$’ or other extraordinary characters (Stallman
2004a). An important point is that there are never two distinctIDENTIFIER_NODEs
representing the same identifier, so it is possible to use pointer equality rather than
using a routine like strcomp to compare IDENTIFIER_NODEs. Two impor-
tant macros that are available whilst working with IDENTIFIER_NODEs are the
IDENTIFIER_POINTER which is the NUL-terminated string represented by the
identifier as a char*; and the IDENTIFIER_LENGTH, which is the length of
the string, not including the trailing NUL, returned by IDENTIFIER_POINTER.
Therefore, the value of IDENTIFIER_LENGTH(x) is always the same as strlen(IDENTIFIER_POINTER(x)) (GCC
2003d).

5.6.4 Declarations

There are two basic kinds of declarations in BCPL, section declarations and simul-
taneous declarations. Identifiers declared in section declarations have a scope that
starts at the end of that identifier’s declaration; identifiers declared in simultaneous
declarations have a scope that starts at the first of the set of simultaneous declara-
tions. In each case, the scope ends at the end of the block the declaration occurs in,
or the end of the file if not in a block (Feather 2002). All declarations except func-
tion declarations are implemented similarly in GENERIC. The macro DECL_NAME
returns an IDENTIFIER_NODE giving the name of the entity stored. Most dec-
larations in BCPL can be easily handled by the various kinds of declaration nodes
available, such as LABEL_DECL to define labels such as label prefixes, CASE la-
bels and DEFAULT labels. It may be possible to use the RESULT_DECL node to
implement RESULTIS, which is used with VALOF blocks, by converting it to a
function declaration and then this could be used as the return value for the VALOF
block. However, this is currently unimplemented, but remains a potential approach
for implementation.

There exists scoping issues with declarations in BCPL, especially with rules that
exist for certain language features. For example labels have the form of an identifier

CHAPTER 5. IMPLEMENTATION 50

followed by a colon and any number of labels may precede a command. A label is
only in scope within the smallest of:

� the commands (but not declarations) of the textually surrounding block.

� the body of the textually surrounding routine (if any).

� the body of the textually surrounding VALOF (if any).

� the body of the textually surrounding FOR (if any)

These rules may be difficult to implement with the GENERIC framework and at
present are not fully implemented. It may be possible to use the predicates that con-
trol the level of scoping, such as DECL_CLASS_SCOPE_P, which holds if the en-
tity was declared at a class scope; or the predicate DECL_FUNCTION_SCOPE_P,
which holds if the entity was declared inside a function body. Nevertheless, this
requires more development time and consideration.

A valuable feature of BCPL is the existence of manifest constants which give the
ability to use names to represent constants. The value associated with a manifest
constant stays fixed, so you cannot assign to it (Richards & Whitby-Strevens 1980).
This is similar to the C preprocessor directive #define, except they are restricted
to values which can be stored in a single cell and the scope of a manifest constant
is the same as that of a identifier declared in the same place. The problem with
the implementation of manifest constants is the fact that they can be used in con-
stant expressions, which are required at compile-time rather than run-time. Further
research is required to see if functionality exists to provide a binder of sorts that en-
capsulates the manifest constant and then this can be replaced by its value wherever
it is used.

5.6.5 Functions

Both functions and routines exist in BCPL, with arguments passed strictly by value.
The corresponding difference between the two is that a functional application is an
expression and yields a result, whereas as a routine call is a command and does not.
In common practice, the word procedure is used to mean either in contexts where
the distinction is unimportant (Richards 1967). However, in GENERIC, they are
represented as functions by using the FUNCTION_DECL node. Arguments are ac-
cessed using the DECL_ARGUMENTS node, which returns the PARM_DECL for the
first argument to the function (GCC 2003d). As in C, nested functions in BCPL can
be handled by using the DECL_CONTEXT macro, which indicates that the context
of a function is another higher-level function and that the GNU nested function ex-
tension is in use. One problem with this is that nested functions can refer to local
variables in its containing function; in certain contexts, this may potentially violate
some of the BCPL lexical scoping rules. In BCPL it is legal to nest procedures, but

CHAPTER 5. IMPLEMENTATION 51

all variable references must be fully global or fully local: inside an inner procedure,
variables local to the outer procedure are out of scope. Thus in comparison to C,
you get some additional name hiding, but the compiler does not have to maintain
static links (Feather 2002). Some further investigation is required to ensure that
the scoping semantics are robust for the choice of implementation, but the range
of constructs and predicates available in GENERIC should enable an appropriate
solution. For example, DECL_LOCAL_FUNCTION_P can be used if the function
was declared at block scope, even if it has global scope (Stallman 2004a).

5.6.6 Statements

Corresponding tree nodes exist for all of the source-level statement constructs used
within the C and C++ front end. This means that most, if not all, of the BCPL
statements should fit into one of these nodes. In GENERIC, a statement is de-
fined as any expression whose value, if any, is ignored (Stallman 2004a). A state-
ment will always have a TREE_SIDE_EFFECTS set (or it will be discarded), but
a non-statement expression may also have side effects. Many of the statements will
have sub-statements when they are represented in a GENERIC tree. For example, a
BCPL WHILE loop will have a body, which is itself a statement. If the sub-statement
is NULL_TREE, it is considered equivalent to a statement containing a single ’;’
i.e. an expression statement in which the expression has been omitted. Other im-
plementation examples are DECL_STMT for local declarations, with a GCC ex-
tension allowing declaration of labels with scope. Also DO_STMT, FOR_STMT,
GOTO_STMT, IF_STMT, RETURN_STMT, SWITCH_STMT and WHILE_STMT to
represent some of the common unlabelled commands in BCPL. Scoping is handled
by using the SCOPE_STMT node; therefore, when a new scope opens (for example
when entering a new block), the predicate SCOPE_BEGIN_P, will be set and at the
end of a scope, the predicate SCOPE_END_P will hold (GCC 2003d).

5.6.7 Expressions

The GENERIC representations for expressions are for the most part quite straight-
forward and nodes exist for most of the common expressions in BCPL. However,
it is important to consider the fact that the expression ”tree” is actually a directed
acyclic graph (DAG). This means that there may be numerous references to a node
throughout a source program, many of which will be represented by the same ex-
pression node. Therefore, you cannot rely on certain kinds of node being shared
or being unshared (Stallman 2004a). The macro TREE_TYPE is used to return the
type of the expression stored in the node. The range of GENERIC nodes are far
too numerous to list here, but again most, if not all BCPL expressions are covered.
For example, conditional expressions are handled by COND_EXPR and function
calls by CALL_EXPR. String constants are handled by the STRING_CST node, but
it is important to consider the implementation of strings in BCPL. They are word
packed and not NUL-terminated, with the first byte storing the length of the string.

CHAPTER 5. IMPLEMENTATION 52

A function for converting between BCPL and C strings has been implemented in
this project. In some implementations that did not have an infix byte operator, the
only way to reference individual characters was to shift and mask(Feather 2002).

BCPL’s logical and relational operators have direct equivalents in C and can be
easily represented in GENERIC nodes. However, the clear distinction in C between
the bitwise and boolean forms is not present in BCPL, as the distinction depends
on context (Richards 1973). In C, true can be represented by an non-zero value,
whereas it is useful in BCPL for the value representing true to be the bitwise
negation of the value representing false. An example of this would be when a
BCPL program assigns a value from a logic expression to a variable that is then used
as the test in an IF statement, the test will have the desired result. It is worth noting
that this behaviour is not actually defined by the language definition and the result
can be implementation dependent (Richards & Whitby-Strevens 1980). Therefore,
in BCPL, logical operations are evaluated according to one of two rules. If the
result of the operator is in truth context, then the truth rules are used. Otherwise the
operator takes bit-patterns as arguments and operates on each bit separately. Truth
context is defined as:

� left hand side of ’ � ’ (implication)

� outermost operator in the controlling expression of a conditional command

� a direct operand of an operator evaluated using truth rules.

This situation also requires further investigation, as it is imperative that the im-
plementation of the logical operators is consistent and semantically correct. A triv-
ial implemented example is of bitwise equivalence (EQV) in BCPL, which can be
easily represented as the negation of an XOR node, BIT_XOR_EXPR.

5.6.8 Global Vector

The global vector, where system and user variables are stored in fixed numerical lo-
cations, is the sole means of communication between separately compiled segments
of program (Richards & Whitby-Strevens 1980). The first 150 locations are usually
allocated to the operating system for many of the functions in the system library,
but the declaration GLOBAL $(N1:K1 $) associates the identifier N1 with the
location K1 in the global vector.

There are two major challenges in dealing with the implementation of the global
vector. Firstly, it is allowed to be arbitrarily large, so its size is not known until all
of the modules in a program have been compiled. Secondly, that a global decla-
ration results in an identifier referring to the cell within the global vector and not
a variable containing a pointer to a cell, though this can be dealt with in a similar
way to manifest constants. The proposed implementation is to create a C library

CHAPTER 5. IMPLEMENTATION 53

wrapper that declares an extern variable to point to the global vector in the BCPL
’world’. This then gives us an opportunity to preallocate the essential operating sys-
tem library functions into the global vector. Also, by having a variable that points
to the base of the global vector throughout compilation, we know that once it has
finished and the size of the global vector is known (as all modules would have been
compiled and linked), it would be possible to generate the code to create the global
vector and start the program.

5.6.9 System Library

Most BCPL implementations comprise a set of basic procedures, together with a
standard library written in BCPL. These basic procedures provide a means of ac-
cessing the operating system functions and machine-level facilities such as input
and output (Richards & Whitby-Strevens 1980). The system library has been built
up by consensus over the years, so it is not always possible to guarantee a partic-
ular procedure always being in a particular place in the global vector. All system
routines and functions are accessed via the global vector which is populated by
the global declarations in the system header LIBHDR. The allocation of routines
and functions to particular cells is implementation defined, but only cells less than
FIRSTFREEGLOBAL (a manifest constant) are used (Feather 2002). The chosen
method of implementation is obviously related to how the global vector is imple-
mented, as that is the container for all of the procedures. Since it is possible to
access the externally declared global vector, we can simply pre-populate it with our
own implementations of the critical functions. This means that the C library wrap-
per essentially re-implements the base functions such as RDCH (input) and WRCH
(output) as calls to the C I/O library. All we need to do is pass a pointer to these
calls into the global vector and then it will be possible to access this functionality
from within the BCPL program. Examples of this would be setting CIS (Current
Input Stream, usually global position 24) and COS (Current Output Stream, usually
global position 25) to stdin and stdout respectively. The two most important
functions that have been implemented as C system calls are for input and output.
RDCH, which returns the next character from the selected input stream, and WRCH,
which writes the character to the selected output stream. These are handled by
declaring functions that call the C library functions getc and putc. Pointers to
these functions are then passed to the relevant position in the global vector and
then can be called as normal. This means that input and output functions such as
READN and WRITEN should work, as these just make calls to RDCH and WRCH
respectively. Other important implementations have been for the entry and exits
points to a BCPL program, START and FINISH.

While it remains to be seen how well this will work when implemented in GENERIC,
the choice of implementation is sufficiently robust enough to cope with getting a
subset of BCPL library function working to try and test programs. Other possible
implementations have been to physically rewrite the whole BCPL library in C, but

CHAPTER 5. IMPLEMENTATION 54

this was deemed to be too time-consuming even if it would probably be fairly effi-
cient. The idea of attempting to look at the BCPL application binary interface and
see if it would be possible to link in the existing library at compile-time are not
unrealistic, but would require a large amount of investigation into how the BCPL
binaries are constructed and how they can be linked.

5.6.10 Miscellaneous

This section describes miscellaneous language features and how they have been im-
plemented in the intermediate representation.

It is hard to discuss writing a compiler for BCPL without tackling the problem
of converting from word addressing to byte addressing when required. The use
of word-length data objects (called cells in BCPL) can cause problems on byte-
addressed machines, as BCPL defines consecutive words in memory to have nu-
merically consecutive addresses. Hence, given a pointer to one such word, p, you
can access the pointer to the next words by writing p+1. This is the same as for a
VECTOR object in BCPL, as this is represented by a variable holding a pointer to its
first word. So if v is a VECTOR then the value v points to the first word, v+1 to the
next, and v+i to the i’th. The dereferencing operator (’pling’) in BCPL is written
!, so !(v+i) gets you the i’th component of the VECTOR v. This can also be
written as v!i, using the dyadic form of !. Recall, however, that BCPL is type-
less. The compiler would not know that v is a vector and i an index; they are both
just bit patterns. Hence, the expression v+i looks just like normal integer addition.
This, therefore, has a strange consequence: if v+i is the same code, regardless
of whether v is an integer or a vector, then the BCPL pointers to adjacent words
must indeed differ by 1. This means that on a machine with an underlying byte-
addressing scheme, BCPL pointers cannot be true addresses, but must be scaled
by 2 (on Intel x86,PDP-11 for example) or by 4 (on the MC68000 for example)
before being dereferenced. This means that indirection and addressing referencing
is a problem, but as long at all references are shifted before calculations are made,
then it should be possible to use the ADDR_EXPR and the INDIRECT_REF nodes.
Again, these features require more work before full functionality is restored.

An interesting language feature in BCPL is the TABLE operator, which gives an
initialised, permanently allocated vector. It is also one of the few operators in BCPL
that associates right to left (see Appendix D). The expressionTABLE k1,k2,...kn
returns the address of n contiguous cells initialised to ki in order. Since all the
values are constant expressions, they must all be evaluated at compile-time. A
possible way of implementing this in C could involve using the GNU extension
({ ... }), which allows several statements between the two brackets and yields
an expressions which is the value of the last one (ensuring you take into account the
shift required to convert to word address on 32-bit machines). There does not seem
to be a simple way of implementing it in ANSI C (Manning 1999). It may be pos-

CHAPTER 5. IMPLEMENTATION 55

sible to implement it in GENERIC as a function declaration which returns the ap-
propriate value, but this raises problems as we are in an expression, so declarations
are not allowed, so the function must be declared before the current function. Also,
the values, though constant, could still depend on manifest constants which are in
scope only in the current function. The BCPL VALOF expression also encounters
similar problems. The expression VALOF c, where c is a command, causes c to
be executed. If, during the execution of c, a RESULTIS command is reached, that
controls the value of the expression, otherwise the value is unspecified. Therefore,
it may be possible to implement the VALOF construction as a type of function dec-
laration, but more research is required for both this and the implementation of the
TABLE operator.

The infrastructure for handling errors in the intermediate representation is done by
the special tree error_mark_node, which has the tree code ERROR_MARK. If
an error has occurred during front end processing, the flag errorcount is set.
If the front end encounters code that it can not handle, it will issue a message
to the user and set the flag sorrycount. When these flags are set, any macro
or function which normally returns a tree of a particular kind may instead return
the error_mark_node. At present, no processing of erroneous code is imple-
mented, but this would be possible by dealing with the error_mark_node (Stallman
2004a).

5.7 GCC Integration

The implementation of this part of the project has not advanced beyond a theoretical
stage, due to problems in the implementation of the previous sections. However, it
is possible to describe some of the important features that need to be addressed and
discuss some potential problems.

The existing GCC infrastructure (up to GCC 3.4.0) is shown by Figure E.1 in Ap-
pendix E. This shows the how each language front end goes from the language-
specific tree to RTL, before being passed to the back end for optimisations and code
generation. However, as previously described in Section 2.3 and Section 2.4.2, the
new framework that will be released as GCC 3.5.0 has some significant infrastruc-
ture changes. This new structure is shown by Figure E.2 in Appendix E. The three
main intermediate languages that GCC uses to represent the program during compi-
lation are GENERIC, GIMPLE and RTL. GENERIC serves as the interface between
the parser and the optimiser, while GIMPLE and RTL are used during program op-
timisation. Most of the work of the compiler is done on RTL, with the instructions
to be output described in an algebraic form that describes what the instruction does.
GIMPLE is used for target and language independent optimisations, so we do not
need to worry about the lowering pass from GENERIC to GIMPLE, as this is a
built-in function (gimplify_function_tree). Our only difficulty may occur

CHAPTER 5. IMPLEMENTATION 56

if we decide to implement special language-specific tree functionality, as we would
need to provide our own method of lowering to GIMPLE. Therefore, a large dis-
cussion of GIMPLE is not necessary, but further details about its nodes and format
can be found in (Stallman 2004a), while a rough GIMPLE grammar can be found
in (Merrill 2003). This therefore means that once the GENERIC representation is
built and lowered to GIMPLE form, it can be passed onto the GCC infrastructure
and automatically handled. The only actions that would require attention would be
the handling of errors, but if the GENERIC form had been built correctly and low-
ered without any problems, they would more likely be errors outside of our scope
and control.

Most of the tree optimisers rely on the data flow information provided by the Sin-
gle Static Assignment (SSA) form. GCC implements the SSA form as described
in (Cytron et al. 1991), which requires a conversion from the GIMPLE format. The
compiler modifies the program representation so that every time a variable is as-
signed in the code, a new version of the variable is created.The process is controlled
by the source code in tree-ssa.c. Although this process would be automati-
cally controlled within the GCC back end, it is important to understand how the
optimisation passes are implemented and the range of optimisations that occur. The
SSA form depends on the control flow graph (CFG) data structure that abstracts the
control flow behaviour of a function that is being compiled and is built on top of the
intermediate code (the RTL or tree instruction stream). The CFG is a directed graph
where the vertices represent basic blocks and the edges represent possible transfer
of control flow from one basic block to another (Stallman 2004a). It is important to
ensure that each compiler phase keeps the control flow graph and all profile infor-
mation up-to-date, as the CFG also contributes to maintaining liveness information
for registers. Further details about the SSA form and the optimisations implemented
can be found in (Stallman 2004a).

Another key feature that has yet to be implemented is the problem of providing an
interface for the intermediate representations to the symbol table data. Strangely,
this is not actually documented in the GCC Internals Manual (Stallman 2004a), but
a possible implementation may be to build and attach BLOCK nodes, containing
declaration chains, to BIND_EXPR nodes. This is the technique that is used in the
GNU Fortran (gfortran) front end (GNU 2004a) and may be possible to adapt
for our usage.

The problem with the lack of documentation and resources about GCC integration
and building GENERIC has been a major problem with this stage of the implemen-
tation. The only current and authoritative resources have been the GCC Internals
Manual (Stallman 2004a) and the Tree SSA online documentation (GCC 2003d),
which have been used extensively. However, the GCC Internals Manual is currently
undergoing major rewrites to actually document many of the features discussed and
implemented here. For many of the critical features that required more informa-

CHAPTER 5. IMPLEMENTATION 57

tion, the documentation was sparse or actually missing totally (frustratingly, there
are numerous instances of ’documentation incomplete’). This contributed to a very
slow development progress for building the intermediate representations and very
little progress with the integration into GCC. However, a helpful section in the GCC
Internals Manual has been the ’Anatomy of a Front End’, which describes in some
detail the configuration files expected by GCC for building and using a new lan-
guage front end, which has been used extensively. As described earlier, the proper
way to interface GCC to a new language front end is with the tree data structure,
described in the source files tree.h and tree.def. Sadly, there remains many
sections that are incomplete and it freely admits it is only preliminary documenta-
tion.

Chapter 6

System Testing

While the latter parts of this dissertation has focused on developing a new front
end for GCC, a key requirement has always been ensuring that the semantics of the
BCPL language are preserved. This has been a cause of many of the implemen-
tation problems encountered, from scoping issues to word addressing. Because of
the problems encountered whilst building the intermediate representations and with
the integration of GCC, the lack of existing framework to support exhaustive testing
means that the main focus has been on testing the scanner, parser and symbol table.
Therefore, it was felt that the testing performed on the working system should focus
on determining if the system meets the requirements as specified in Chapter 3. The
results for certain tests can be found in Appendix F, though a short overview of the
testing process is discussed below.

Verification and validation are the names given to the checking and analysis pro-
cesses that ensure that software conforms to its specifications (Sommerville 2001).
Verification and validation are not the same, although they are often confused. A
succinct definition that highlights the differences between the two is that validation
can be thought of as ’are we building the right product?’ and verification as ’are
we building the product right?’. The two common techniques that we have used
for our basic testing strategy are software inspections and software testing. Soft-
ware inspections are static techniques that involve analysing and checking system
representations such as the requirements document, design diagrams and the source
code. Software testing involves executing an implementation of the software with
test data and examining the outputs of the software and its operational behaviour to
check that it is performing as required (Sommerville 2001). Both of these are sim-
ple, commonly-used techniques and were deemed appropriate for the type and stage
of development. It did not seem particularly worthwhile to spend a large amount of
time creating and performing a complex testing strategy when the testing performed
throughout development was sufficient. At the time of writing, the compiler is still
in a prototype stage and has been developed to explore functionality and for evalu-
ation. Since it has no security or safety critical application, exhaustive testing is not
necessarily appropriate and is not one of the key aims of this project. Nevertheless,

58

CHAPTER 6. SYSTEM TESTING 59

in the future, it would be sensible to implement some form of formal testing strat-
egy, possibly involving black box testing (see (Sommerville 2001) for more details).

Therefore, the testing and debugging cycles that have been performed during the
development have been sufficient to catch a significant amount of errors. This has
been helped by the range of option flags set for Flex, Bison and GCC. These have
contributed to better debugging in both the scanner and the parser, plus stricter
checking of the C code. For example, GCC is invoked with flags to enforce and
issue all the warnings demanded by strict ISO C, along with others that report con-
structions which are not inherently erroneous but which are risky or suggest there
may have been an error (Stallman 2004b). It is also invoked with the option to
produce debugging information for use by GDB (GNU Debugger) and DDD (GNU
Data Display Debugger), which has been used for testing, along with Splint1 which
is a tool similar to lint for statically checking C programs for security vulnerabili-
ties and coding mistakes. Flex is invoked in debug mode, so that whenever a pattern
is recognised the scanner will output information about the matched rule and the
line it occurred on. Messages are also generated when the scanner backs up, ac-
cepts the default rule or reaches an end-of-file (Paxson 1995). Bison is also invoked
with debugging options set, plus the verbose output option, which writes an extra
output file containing verbose descriptions of the grammar and parser (Donnelly &
Stallman 2002). This was extremely useful when attempting to find the cause of
conflicts and grammar errors, in particular when attempting to resolve the optional
semicolon problem (see Section 5.5).

Even though testing whilst building the intermediate representation building and
for the GCC integration is still in the debugging stages, certain features have been
discovered that would be helpful in the future. The GCC 3.5.0 snapshot was itself
built and configured with the --enable-checking option set, which means that
all tree types are checked at run-time, resulting in a performance penalty (Stallman
2004a). This would obviously not be suitable for a release version, but would be
extremely helpful in development when testing the tree building functions. The
file tree-pretty-print.c implements several debugging functions that when
given a GENERIC tree node, they print a C representation of the tree. The output is
not meant to be compilable, but it would be of great help when debugging transfor-
mations done by the tree building passes. Other compiler flags that could possibly
be helpful for testing are -ffump-tree-gimple, which dumps C-like represen-
tations of the GIMPLE form and the -d flag which is used for getting RTL dumps
at different stages of optimisation during compilation.

In summary, the testing strategy used was based around a significant amount of
testing and debugging during the development, plus the use of specially constructed
BCPL test code examples. These test examples have attempted to utilise many of

1Available from http://www.splint.org/

CHAPTER 6. SYSTEM TESTING 60

the BCPL language features, with the emphasis placed on creating structures likely
to cause problems. Some examples of the output from these test cases can be found
in Appendix F.

Chapter 7

Conclusion

7.1 Overview

The software developed as a result of this project has provided a starting framework
towards creating a BCPL front end for GCC. The scope of this project from the start
was massive and this was increased by some of the design decisions made. How-
ever, these choices were made because of suitability and elegance of the solution,
rather than on time or implementation constraints. The depth of the Literature Sur-
vey from Chapter 2 gave us a firm appreciation of the domain and the current status
of the GCC infrastructure. It also highlighted the important issues when developing
a compiler and reusing an existing toolchain. The range of possible implementa-
tion options enabled us to compare and contrast existing compiler architectures and
whether they were suitable or appropriate for this project. A summary of some of
the key problems encountered during this project are listed below:

� The main problem discovered as we advanced in the project was the incom-
plete nature of the documentation and resources for GCC 3.5.0. The ini-
tial research into the domain highlighted the fact that developing a front end
for GCC would not be trivial, but surprisingly for such a well managed and
documented software development, the available resources were, at times,
disappointing. This was compounded by the fact that the incomplete parts
of the documentation for the 3.5.0 release were seemingly the most critical
parts, insofar for building the intermediate representations and the integration
of GCC. Fairly comprehensive documentation existed for much of the GIM-
PLE and RTL syntax and functionality, but large sections of the important
GENERIC tree building functions and how you then pass these trees to the
middle and back end were missing. This meant that for most of the inter-
mediate representation development, only two current sources of information
were used for reference: the GCC Internals Manual (Stallman 2004a) and the
Tree SSA online documentation (GCC 2003d). It is understandable that the
fast developments over the past few months with GCC and the recent main-
line merge would mean that documentation would take a back seat, but it

61

CHAPTER 7. CONCLUSION 62

seems unusual that such an important change to the GCC infrastructure is not
fully documented. The GCC Mission Statement (GCC 1999) declares its first
design and development goal to be ’new languages’, but surprisingly little
up-to-date documentation exists on developing new language front ends.

� It could be said that the choice of using GCC as our implementation frame-
work was perhaps flawed, but it was felt that compared to the other potential
infrastructures discussed, GCC provided the best solution. The domain re-
search performed in Chapter 2 demonstrated that while the other options such
as LLVM, lcc and SUIF were extremely well designed compiler projects,
none were comparable to GCC for popularity and support. It would have been
interesting to see how the other projects would have developed, but it seems
that irrespective of the toolchain used, certain BCPL language features would
have been troublesome. Nevertheless, the learning curve of the GCC inter-
nals was steep and attempting to understand partially implemented code, or
poorly documented code has definitely contributed to less development than
anticipated. However, this is tempered by the fact that the research performed
lays the groundwork for a future implementation.

� A range of problems were associated with certain BCPL language features,
such as the implementation of VALOF, LONGJUMP, LEVEL, the global vec-
tor and the system library. It seemed that these had no trivial solution and
perhaps were made harder by the modern intermediate representation cho-
sen. Nevertheless, solutions were discussed and it seems that there may exists
some GENERIC nodes that could implement some of the features mentioned.

� Definite problems were encountered when attempting to formulate software
engineering principles and methods for this compiler project. It seems excep-
tionally hard to define a reasonable set of requirements and perform elicita-
tion and analysis. It also occasionally seemed a futile exercise attempting to
provide a model to adhere to, when in most iterations, the development and
design was based around past experience and knowledge of the domain and
GCC. Nevertheless, a range of software engineering principles have been ap-
plied in the requirements, design and implementation, but it seemed as if the
formulation of a rigorous test plan was both unnecessary and impractical.

� Due to the fact that it was necessary to stay current with the versions and
snapshots released by GCC, the time taken to configure, build and install GCC
became a problem. Each build took upwards of two hours, because it was
necessary to ensure a full build was done and all of the necessary tools were
built. This impacted on development work, as GCC was built approximately
fifteen times during the project.

� Even though it was discussed during the requirements and design phase, it
was hard to ensure that a secondary plan was in place, if any problems oc-
curred. As soon as we were committed to GCC, the development had to

CHAPTER 7. CONCLUSION 63

make changes and alterations to accommodate the infrastructure, so this was
the reason the code was forked into two branches. continue.

7.2 Milestones

A summary of some of the key milestones from this project are listed below:

� Development of an efficient Flex scanner for BCPL with utility functions and
lexical error handling.

� Development of a Bison-generated parser with syntactic error handling.

� Creation of a separately-chained hash table as the symbol table.

� Formalisation of a BNF for BCPL, developed from multiple sources and in-
corporating commonly-used extensions to the language.

� Rudimentary implementation of the BCPL system library with the global vec-
tor, enabling input/output functionality.

� Preliminary GENERIC nodes built for a subset of the BCPL language, adapted
from the GCC C and Fortran front ends.

� Research into the GENERIC/GIMPLE infrastructure and the new optimisa-
tion framework for GCC, giving an understanding of the future development
of GCC and the integration of new languages.

� Interaction with the GCC developer community via the GCC mailing lists,
and communications with the mainline branch maintainers. There seems to
have been some positive interest from the GCC community in relation to this
project.

� The creation of a SourceForge community project to continue with this project
in the future. It should also be possible to get other developers involved with
the project and hopefully at some point in the future make an official release.

� Adherence to the appropriate GNU, GCC and ANSI C coding standards.

� Successfully meeting most of the requirements set for this project. Even
though this project has not been a total success, we have been able to de-
velop some interesting information about the GCC infrastructure and have
shown that this project is viable and achievable within a larger time frame.

CHAPTER 7. CONCLUSION 64

7.3 Further Work

The system produced from the work of this dissertation fulfils a number of the
objectives as specified in Chapter 1. Due to the time limitations and open-ended
nature of this project, there exists a lot of scope for improvements and future work.
One major reimplementation would be to change the Bison parser to a hand-written
recursive descent parser. After the lessons learnt from implementation in Bison,
the benefits from using recursive descent would be significant and would remove
a whole host of conflicts within the present parser. As stated previously, it would
also benefit the implementation of language features such as the optional semicolon
problem (see Section 5.5). Improvements would also be made to the symbol table
and also how it integrates and interacts with the rest of the GCC toolchain. It would
be important to fully implement the features discussed in Section 5.6, especially
improvements to the implementation of the global vector and the BCPL system li-
brary. It would be feasible to investigate BCPL’s application binary interface and
attempt to create a framework where it would be possible to link in the original
BCPL library and compile time and call library functions as normal. Also, once the
implementation has advanced to a more serious level, it would also be important to
develop an improved testing strategy, possibly based upon black box testing or unit
testing.

Depending on the changes to GCC in the upcoming year, the tree-ssa branch
will be released as GCC 3.5.0 (GCC 2004b). Full integration for the BCPL front
end would still require a large amount of development effort and also some new
approaches for implementing certain language features. However, as the active de-
velopment for GCC mainline advances, the improvement in the documentation may
enable this to occur. To enable the continuation of this project and to take advan-
tage of more online collaboration, a SourceForge.net1 project has been proposed and
accepted by the SourceForge maintainers and been named ’BCPL for GCC’. The
project website can be accessed at http://sourceforge.net/projects/
gccbcpl/. It is likely that there will be interest in the SourceForge development,
as a similar project to develop a PL/1 front end for GCC (Sorensen 2004) has just
released version 0.0.6 and is currently under active development. The benefits of
using the SourceForge infrastructure would include the availability of source man-
agement tools such as CVS, support management tools, mailing lists, discussion
forums, shell services and compile farms to name a few. The impact of these tools
on the project would have undoubtedly been positive, as in retrospect, the use of
tools such as CVS would have been enormous beneficial to this project, more so
when it was forked to handle the GCC development.

1SourceForge.net is the world’s largest open source software development web site, providing
free hosting to tens of thousands of projects. See http://sourceforge.net/ for further
details.

CHAPTER 7. CONCLUSION 65

7.4 Concluding Remarks

The rapid development and popularity of the system programming language C in
the 1980s led to the demise of BCPL. However, the popularity of BCPL as an ef-
ficient and flexible programming language means that interest and affection for the
language survives today. It is quite possible that if the popularity of byte-addressed
minicomputers had not happened in the 1970s, UNIX would have been initially
written in BCPL. It is by no means a dead language, as large amounts of legacy
code exists today and it remains a popular language in academia. Numerous de-
velopments still involve BCPL; attempts have been made to port BCPL Cintcode
programs over to the Microsoft .NET Common Language Runtime (Singer 2002).

This dissertation has discussed the history and heritage of BCPL and has looked
at the range of modern compiler infrastructures. The use of a modern compiler
implementation will provide a proven existing framework to create a robust com-
pilation solution for legacy BCPL users. A discussion of the methods used for the
design and implementation of such a system has followed. The final system, even
if unfinished, has achieved many of the objectives set out in Chapter 1 and this was
briefly demonstrated in the test code examples. The use of the GCC toolchain will
provide an elegant solution to the BCPL legacy problem, and would be excellently
supported by active development and modern optimisation strategies.

Bibliography

Aho, A. V., Sethi, R. & Ullmann, J. D. (1986), Compilers: Principles, Techniques
and Tools, World Student Series, 1st edn, Addison-Wesley.

Aigner, G., Diwan, A., Heine, D. L., Lam, M. S., Moore, D. L., Murphy, B. R. &
Sapuntakis, C. (2003), An Overview of the SUIF2 Compiler Infrastructure,
Technical report, Stanford University.

Alpern, B., Wegman, M. N. & Zadeck, F. K. (1988), Detecting Equality of Variables
in Programs, in ‘Proceedings of the 15th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages’, ACM Press, pp. 1–11.

Barron, D. W., Buxton, J. N., Hartley, D. F., Nixon, E. & Strachey, C. (1963), ‘The
Main Features of CPL’, The Computer Journal 6(2), 134–143.

Bennett, J. P. (1996), Introduction to Compiling Techniques: A First Course Using
ANSI C, LEX and YACC, The McGraw-Hill International Series in Software
Engineering, 2nd edn, McGraw-Hill.

Chomsky, N. (1956), ‘Three Models for the Description of Language’, IRE Trans-
actions on Information Theory 2, 113–124.

Chomsky, N. (1959), ‘On Certain Formal Properties of Grammars’, Information
and Control 2, 137–167.

Curry, J. F. (1969), The BCPL Reference Manual, Xerox PARC.

Cytron, R., Ferrante, J., Rosenn, B. K., Wegman, M. N. & Zadeck, F. K. (1991), ‘Ef-
ficiently Computing Static Single Assignment Form and the Control Depen-
dence Graph’, ACM Transactions on Programming Languages and Systems
(TOPLAS) 13(4), 451–490.

Donnelly, C. & Stallman, R. (2002), Bison: The YACC-compatible Parser Genera-
tor, GNU/Free Software Foundation Inc.

Emery, G. (1986), BCPL and C, 1st edn, Blackwell Scientific Publications.

Feather, C. (2002), ‘A Brief Description of BCPL’, http://www.lysator.
liu.se/c/clive-on-bcpl.html (10 November 2003).

66

BIBLIOGRAPHY 67

Fischer, C. N. & LeBlanc, R. J. (1991), Crafting a Compiler with C, Program-
ming/Compiler Design, 1st edn, Benjamin/Cummings Publishing.

FOLDOC (2004), ‘Free On-Line Dictionary of Computing’, http://foldoc.
doc.ic.ac.uk/foldoc/index.html (10 November 2003).

Fraser, C. & Hanson, D. (2003), ‘lcc, A Re-targetable Compiler for ANSI C’,
http://www.cs.princeton.edu/software/lcc/ (20 December
2003).

Fraser, C. W. & Hanson, D. R. (1991a), ‘A Code Generation Interface for ANSI C’,
Software - Practice and Experience 21(9), 963–998.

Fraser, C. W. & Hanson, D. R. (1991b), ‘A Re-targetable Compiler for ANSI C’,
ACM SIGPLAN Notices 26(10), 29–43.

GCC (1999), ‘GCC Development Mission Statement’, http://gcc.gnu.org/
gccmission.html (10 December 2003).

GCC (2003a), ‘GCC Coding Standards’, http://gcc.gnu.org/
codingconventions.html (02 December 2003).

GCC (2003b), ‘GCC Front Ends’, http://gcc.gnu.org/frontends.
html (20 October 2003).

GCC (2003c), ‘SSA for Trees’, http://gcc.gnu.org/projects/
tree-ssa (20 October 2003).

GCC (2003d), ‘Tree SSA Documentation’, http://people.redhat.com/
dnovillo/tree-ssa-doc/html/index.html (01 November 2003).

GCC (2004a), ‘Contributing to GCC’, http://gcc.gnu.org/
contribute.html (14 January 2004).

GCC (2004b), ‘GCC 3.5 Release Series - Changes, New Features and Fixes’,
http://gcc.gnu.org/gcc-3.5/changes.html (22 April 2004).

GCC (2004c), ‘GCC Home Page - GNU Project - Free Software Foundation (FSF)’,
http://gcc.gnu.org (20 October 2003).

GNU (2003a), ‘GNU Coding Standards’, http://www.gnu.org/prep/
standards_toc.html (02 December 2003).

GNU (2003b), ‘GNU General Public License’, http://www.gnu.org/
copyleft/gpl.html (10 December 2003).

GNU (2003c), ‘GNU Pascal’, http://www.gnu-pascal.de/gpc/
index-orig.html (02 April 2004).

BIBLIOGRAPHY 68

GNU (2003d), ‘Information For Maintainers of GNU Software’, http://www.
gnu.org/prep/maintain.html (10 December 2003).

GNU (2004a), ‘GNU Fortran 95’, http://gcc.gnu.org/fortran/ (02
April 2004).

GNU (2004b), ‘GNU Modula-2’, http://floppsie.comp.glam.ac.uk/
Glamorgan/gaius/web/GNUModula2.html (02 April 2004).

Grune, D., Bal, H. E., Jacobs, C. J. & Langendoen, K. G. (2000), Modern Compiler
Design, Worldwide Series in Computer Science, 1st edn, John Wiley & Sons
Ltd.

Hendren, L., Donawa, C., Emami, M., Gao, G. & Sridharan, B. (1992), Designing
the McCAT Compiler Based on a Family of Structured Intermediate Represen-
tations, in ‘Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing’, number 457 in ‘Lecture Notes in Com-
puter Science’, Springer-Verlag, pp. 406–420.

IEEE (1998), IEEE/ANSI 830-1998 Recommended Practice for Software Require-
ments Specifications, The Institute of Electrical and Electronics Engineers.

IOCCC (2003), ‘International Obfuscated C Code Contest’, http://www.
ioccc.org/main.html (10 December 2003).

ISO (1999), ISO/IEC 9899:1999: Programming Languages – C, International Or-
ganisation for Standardisation.

ISO (2003), ISO/IEC 9945:2003: Portable Operating System Interface (POSIX),
International Organisation for Standardisation.

Johnson, S. C. & Kernighan, B. W. (1973), The Programming Language B, Bell
Laboratories.

Johnson, S. C. & Ritchie, D. M. (1978), ‘UNIX Time-Sharing System: Portability
of C Programs and the UNIX System’, AT&T Bell Laboratories Technical
Journal 57(6), 2021–2048.

Josling, T. (2001), ‘Using, Maintaining and Enhancing COBOL for the GNU Com-
piler Collection (GCC)’, http://cobolforgcc.sourceforge.net/
cobol_toc.html (02 April 2004).

Kernighan, B. W. & Ritchie, D. M. (1978), The C Programming Language, 1st edn,
Prentice Hall.

Lattner, C. (2004), ‘The LLVM Compiler Infrastructure’, http://llvm.cs.
uiuc.edu/ (01 February 2004).

BIBLIOGRAPHY 69

Lattner, C. & Adve, V. (2004a), LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation, in ‘Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO’04)’, Palo
Alto, California.

Lattner, C. & Adve, V. (2004b), ‘LLVM Language Reference Manual’, http:
//llvm.cs.uiuc.edu/docs/LangRef.html (01 February 2004).

Lattner, C., Dhurjati, D. & Stanley, J. (2004), ‘LLVM Programmer’s Man-
ual’, http://llvm.cs.uiuc.edu/docs/ProgrammersManual.
html (01 February 2004).

Levine, J. R., Mason, T. & Brown, D. (1995), lex & yacc, Unix Programming Tools,
2nd edn, O’Reilly.

Louden, K. C. (1997), Compiler Construction: Principles and Practice, 1st edn,
PWS Publishing.

Loudon, K. (1999), Mastering Algorithms with C, Programming Series, 1st edn,
O’Reilly.

Manning, M. (1999), ‘BCPL’, http://www.cus.cam.ac.uk/˜mrm1/ (10
November 2003).

Merill, J. (2002a), ‘Language-independent functions-as-trees representation’,
http://gcc.gnu.org/ml/2002-07/msg00890.html (20 Novem-
ber 2003).

Merill, J. (2002b), ‘Re: Language-independent functions-as-trees representa-
tion’, http://gcc.gnu.org/ml/gcc/2002-08/msg01397.html
(20 November 2003).

Merrill, J. (2003), GENERIC and GIMPLE: A New Tree Representation for Entire
Functions, in ‘Proceedings of the 2003 GCC Summit’, pp. 171–180.

Middleton, M. D., Richards, M., Firth, R. & Willers, I. (1982), A Proposed Defini-
tion of the Language BCPL.

Mycroft, A. & Norman, A. C. (1986), The Internal Structure of the Norcroft C
Compiler, Codemist Ltd.

Naur, P., Backus, J. W. & McCarthy, J. (1963), ‘Revised Report on the Algorithmic
Language ALGOL 60’, The Computer Journal 5(4), 349–357.

Novillo, D. (2003a), Tree SSA - A New Optimization Infrastructure for GCC, in
‘Proceedings of the 2003 GCC Summit’, pp. 181–194.

Novillo, D. (2003b), Tree SSA: A New High-Level Optimization Framework for
the GNU Compiler Collection, Technical report, Red Hat Canada Ltd.

BIBLIOGRAPHY 70

Page, D. (2003), BCPL Compiler. BSc (Hons) Computer Science dissertation, Uni-
versity of Bath.

Paxson, V. (1995), Flex: A Fast Scanner Generator, GNU/Free Software Founda-
tion Inc.

Pizka, M. (1997), Design and Implementation of the GNU INSEL Compiler, Tech-
nical Report TUM-I9713, Technische Universität München.

Pressman, R. (2000), Software Engineering: A Practitioner’s Approach, European
Adaptation, 5th edn, McGraw-Hill Education.

Richards, M. (1967), The BCPL Reference Manual, Massachusetts Institute of
Technology.

Richards, M. (1969), BCPL: A Tool for Compiler Writing and System Program-
ming, in ‘Proceedings of the AFIPS Spring Joint Computer Conference’,
Vol. 34, American Federation of Information Processing Societies, pp. 557–
566.

Richards, M. (1971), ‘The Portability of the BCPL Compiler’, Software - Practice
and Experience 1(2), 135–146.

Richards, M. (1973), The BCPL Programming Manual, University of Cambridge.

Richards, M. (1975), INTCODE - An Interpretive Machine Code for BCPL, Tech-
nical report, University of Cambridge.

Richards, M. (2000), ‘BCPL’, http://www.cl.cam.ac.uk/users/mr/
BCPL.html (20 October 2003).

Richards, M. (2003), The BCPL Cintcode System Users Guide, University of Cam-
bridge.

Richards, M. & Whitby-Strevens, C. (1980), BCPL - the language and its compiler,
1st edn, Cambridge University Press.

Ritchie, D. M. (1993), ‘The Development of the C Language’, ACM SIGPLAN
Notices 28(3), 201–208. Preprints of the ACM History of Programming Lan-
guages Conference HOPLII.

Ritchie, D. M. & Thompson, K. (1974), ‘The UNIX Time-Sharing System’, Com-
munications of the ACM 17(7), 365–375.

Rosen, B. K., Wegman, M. N. & Zadeck, F. K. (1988), Global Value Numbers
and Redundant Computations, in ‘Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages’, ACM Press,
pp. 12–27.

BIBLIOGRAPHY 71

Singer, J. (2002), Porting Legacy Interpretive Bytecode to the CLR, in ‘Proceedings
of the Inaugural Conference on the Principles and Practice of Programming’,
ACM International Conference Proceeding Series, National University of Ire-
land Publishing, pp. 163–168.

Sommerville, I. (2001), Software Engineering, International Computer Science Se-
ries, 6th edn, Addison-Wesley.

Sorensen, H. (2004), ‘PL/1 for GCC’, http://pl1gcc.sourceforge.net/
(02 March 2004).

Stallman, R. M. (2004a), GNU Compiler Collection Internals, GNU/Free Software
Foundation Inc.

Stallman, R. M. (2004b), Using the GNU Compiler Collection, GNU/Free Software
Foundation Inc.

SUI (2001), ‘The SUIF 2 Compiler System’, http://suif.stanford.edu/
suif/suif2/ (21 December 2003).

Tremblay, J.-P. & Sorenson, P. G. (1985), The Theory and Practice of Compiler
Writing, Computer Science Series, 1st edn, McGraw-Hill.

Wikipedia (2004), ‘Wikipedia, the free encyclopedia’, http://en.
wikipedia.org/ (10 November 2003).

Wilhelm, R. & Maurer, D. (1995), Compiler Design, International Computer Sci-
ence Series, 1st edn, Addison-Wesley.

Willers, I. & Mellor, S. (1976), The BCPL Mini-Manual, Data Handling Division,
CERN.

Appendix A

Compiler Phases

Figure A.1: Basic compiler phases

72

Appendix B

BCPL, B and C Code Examples

1 GET ‘‘LIBHDR’’
2
3 LET START () BE
4 $(
5 WRITES (‘‘Hello, world!*N’’)
6 $)

Figure B.1: BCPL code example

1 main()
2 {
3 putstr(‘‘Hello, world!’’); putchar(’*n’);
4 }

Figure B.2: B code example

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf(‘‘Hello, world!\n’’);
6 return 0;
7 }

Figure B.3: C code example

73

Appendix C

Backus-Naur Form for BCPL

This section presents the Backus-Naur Form (BNF) of the syntax of BCPL. As men-
tioned previously, this version of the BCPL BNF has been taken from (Richards
& Whitby-Strevens 1980), but does not reflect the changes with respect to the
commonly-used extensions, such as the optional semicolons or the infix byte op-
erator. At the outermost level, a BCPL program is a sequence of declarations.

Identifiers, strings, numbers

<letter> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|
S|T|U|V|W|X|Y|Z

<octal digit> ::= 0|1|2|3|4|5|6|7
<hex digit> ::= 0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<string const> ::= "<255 or fewer characters>"
<char const> ::= ’<one character>’
<octal number> ::= #<octal digit>[<octal digit>]
<hex number> ::= #X<hex digit>[<hex digit>]
<number> ::= <octal number> | <hex number> |

<digit>[<digit>]
<identifier> ::= <letter>[<letter> | <digit>| .]

Operators

<address op> ::= @ | !
<mult op> ::= * | / | REM
<add op> ::= + | -
<rel op> ::= = | = | <= | >= | < | >
<shift op> ::= << | >>
<and op> ::= &
<or op> ::= |
<eqv op> ::= EQV | NEQV
<not op> ::=

74

APPENDIX C. BACKUS-NAUR FORM FOR BCPL 75

Expressions

<element> ::= <char const> | <string const> |
<number> | <identifier> | TRUE |
FALSE

<primary E> ::= <primary E>(<expr list>) |
<primary E>() | (<expression>) |
<element>

<vector E> ::= <vector E> ! <primary E> |
<primary E>

<address E> ::= <address op><address E> | <vector E>
<mult E> ::= <mult E><mult op><address E> |

<address E>
<add E> ::= <add E><add op><mult E> |

<add op><mult E> | <mult E>
<rel E> ::= <add E>[<rel op><add E>]
<shift E> ::= <shift E><shift op><add E> | <rel E>
<not E> ::= <not op><shift E> | <shift E>
<and E> ::= <not E>[<and op><not E>]
<or E> ::= <and E>[<or op><and E>]
<eqv E> ::= <or E>[<eqv op><or E>]
<conditional E> ::= <eqv E> ->

<conditional E>,<conditional E> |
<eqv E>

<expression> ::= <conditional E> |
TABLE <const expr>[,<const expr>] |
VALOF <command>

Constant expressions

<c element> ::= <char const> | <number> | <identifier> |
TRUE | FALSE | (<constant expressions>)

<c mult E> ::= <c mult E><mult op><c element> |
<c element>

<c add E> ::= <c add E><add op><c mult E> |
<add op><c mult E> | <c mult E>

<c shift E> ::= <c shift E><shift op><c add E> |
<c add E>

<c and E> ::= <c and E><and op><c shift E> |
<c shift E>

<const expr> ::= <const expr><or op><c and E> |
<c and E>

Lists of expressions and identifiers

<expr list> ::= <expression>[,<expression>]
<name list> ::= <name>[,<name>]

APPENDIX C. BACKUS-NAUR FORM FOR BCPL 76

Declarations

<manifest item> ::= <identifier>=<const expr>
<manifest list> ::= <manifest item>[;<manifest item>]
<manifest decl> ::= MANIFEST$(<manifest list>$)
<static decl> ::= STATIC$(<manifest list>$)
<global item> ::= <identifier>:<const expr>
<global list> ::= <global item>[;<global item>]
<global decl> ::= GLOBAL$(<global list>$)
<simple defn> ::= <name list>=<expr list>
<vector defn> ::= <identifier>=VEC <const expr>
<function defn> ::= <identifier>(<name list>)=<expression> |

<identifier>()=<expression>
<routine defn> ::= <identifier>(<name list>) BE <command> |

<identifier> () BE <command>
<definition> ::= <simple defn> | <vector defn> |

<function defn> | <routine defn>
<simult decl> ::= LET <definition>[AND <definition>]
<declaration> ::= <simult decl> | <manifest decl> |

<static decl> | <global decl>

Left hand side expressions

<lhse> ::= <identifier> | <vector E> ! <primary E> |
!<primary E>

<lhs list> ::= <lhse>[,<lhse>]

Unlabelled commands

<assignment> ::= <left hand side list>:=<expr list>
<simple cmd> ::= BREAK | LOOP | ENDCASE | RETURN | FINISH
<goto cmd> ::= GOTO <expression>
<routine cmd> ::= <primary E>(<expr list>) |

<primary E> ()
<resultis cmd> ::= RESULTIS <expression>
<switchon cmd> ::= SWITCHON <expression> INTO

<command command>
<repeatable cmd>::= <repeatable cmd> REPEAT |

<repeatable cmd> REPEATUNTIL
<expression> |

<repeatable cmd> REPEATWHILE
<expression>

<until cmd> ::= UNTIL <expression> DO <command>
<while cmd> ::= WHILE <expression> DO <expression>
<for cmd> ::= FOR <identifier> = <expression> TO

<expression> BY <const expr> DO

APPENDIX C. BACKUS-NAUR FORM FOR BCPL 77

<command> |
FOR <identifier> = <expression> TO

<expression> DO <command>
<repetitive cmd>::= <repeated command> | <until cmd> |

<while cmd> | <for cmd>
<test cmd> ::= TEST <expression> THEN <command>

ELSE <command>
<if cmd> ::= IF <expression> THEN <command>
<unless cmd> ::= UNLESS <expression> THEN <command>
<unlabelled cmd>::= <repeatable cmd> | <repetitive cmd> |

<test cmd> | <if cmd>

Labelled commands

<label prefix> ::= <identifier> :
<case prefix> ::= CASE <const expr> :
<default prefix>::= DEFAULT :
<prefix> ::= <label prefix> | <case prefix> |

<default prefix>
<command> ::= <unlabelled cmd> | <prefix> <command> |

<prefix>

Blocks and compound statements

<command list> ::= <command>[;<command>]
<decl part> ::= <declaration>[;<declaration>]
<block> ::= $(<decl part> ; <command list> $)
<compound cmd> ::= $(<command list> $)
<program> ::= <decl part>

Appendix D

BCPL Operator Precedence

BCPL operators in order of precedence (highest to lowest - operators near the top
bind most tightly):

Operators Synonyms Associativity
function call left

! (dyadic) % :: OF left
@ ! (monadic) left

* / REM left
+ - (dyadic and monadic) left

= ˜= > < >= <= EQ NE = GT LT GE LE left
<< >> LSHIFT RSHIFT left
NOT ˜ left
& /\ LOGAND left
| \/ LOGOR left

EQV NEQV left
� right

TABLE right
VALOF left
SLCT left

Figure D.1: BCPL operator precedence, associativity and common synonyms

The floating point operators (beginning with ’#’) have the same precedence as their
integer equivalents, while the precedence for the field selector (SLCT) is not de-
scribed in (Richards & Whitby-Strevens 1980). All operators associate left-to-right
except for � and TABLE.

78

Appendix E

Integration of GENERIC and
GIMPLE into GCC

79

A
PPE

N
D

IX
E

.
IN

T
E

G
R

A
T

IO
N

O
F

G
E

N
E

R
IC

A
N

D
G

IM
PL

E
IN

T
O

G
C

C
80

Front End

Back End

C
C

parser

RTL

C++
C++

parser

Java
Java

parser

Fortran 95
Fortran 95

parser

Objective-C
Objective-C

parser

RTL
Optimizer

Code
Generator

Object
Code

Figure
E

.1:
E

xisting
G

C
C

fram
ew

ork
(N

ovillo
2003a)

APPENDIX E. INTEGRATION OF GENERIC AND GIMPLE INTO GCC 81

Front End

Tree Optimizer

C
trees

C
genericizer

GENERIC

C++
trees

C++
genericizer

Java
trees

Java
genericizer

Fortran 95
trees

Fortran 95
genericizer

Objective-C
trees

Objective-C
genericizer

gimplifier

GIMPLE

CFG

SSA

SSA pass N ... SSA pass 2 SSA pass 1

unSSA

RTL

Back
End

Figure E.2: Proposed integration of GENERIC and GIMPLE within the GCC
framework (Novillo 2003a)

Appendix F

Test Results

This chapter displays a short selection of some of the test scripts used and results
from running the prototype compiler. For further details, please see the attached
source code CD in Appendix H.

[cs1tc@tcrick bcpl]$./bcpl
Usage: bcpl [OPTION...] file
Try ‘bcpl --help’ or ‘bcpl --usage’ for more information.
...
...
[cs1tc@tcrick bcpl]$./bcpl --help
Usage: bcpl [OPTION...] file
A BCPL compiler

-o, --output=<file> Place the output into <file>
-v, -s, --verbose, --silent Produce verbose output
-?, --help Give this help list

--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also
mandatory or optional for any corresponding short options.
Report bugs to <tom@tomcrick.com>.
...
...
[cs1tc@tcrick bcpl]$./bcpl --usage
Usage: bcpl [-vs?V] [-o <file>] [--output=<file>] [--verbose]

[--silent] [--help] [--usage] [--version] file
...
...
[cs1tc@tcrick bcpl]$./bcpl --version
bcpl (BCPL) version 0.0.1 20040513

82

APPENDIX F. TEST RESULTS 83

Copyright (C) 2004 Tom Crick (tom@tomcrick.com)
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
...
...
[cs1tc@tcrick pre_trees]$./bcpl ../bcpltest/ackermann.b
../bcpltest/ackermann.b:144:20 parse error,

unexpected PERCENT
../bcpltest/ackermann.b:144:50 multi-line

string constants are not allowed

// ackermann.b
GET "LIBHDR"

LET A(M,N) = M=0 -> N+1, N=0 -> A(M-1,1), A(M-1, A(M,N-1))
AND START() BE
$(

LET M, N = 0, 0
$(

WRITES("Type two arguments (zero to exit)*N")
M := READN()
N := READN()
WRITEF(Ackermann(%N, %N) = %N*N", M, N, A(M,N))

$)REPEATUNTIL M = 0
$)
...
...
[cs1tc@tcrick pre_trees]$./bcpl ../bcpltest/hanoi.b
../bcpltest/hanoi.b:26:7 parse error,

unexpected IDENTIFIER, expecting PLING

// hanoi.b
GLOBAL $(
START:1;
WRITEF:76

$)

LET MOVEIT(F, T) BE $(
WRITEF("move %N --> %N*N", F, T)

$)

LET HANOI(N, T, F, U) BE $(
IF N=0 RETURN;

APPENDIX F. TEST RESULTS 84

HANOI(N-1, U, F, T);
MOVEIT(F, T);
HANOI(N-1, T, U, F)

$)

LET START () BE $(1
HANOI(1, 3, 1, 2)

FINISH $)1
...
...
[cs1tc@tcrick pre_trees]$./bcpl ../bcpltest/fastackermann.b

// fastackermann.b
GET "LIBHDR"

MANIFEST $(maxn = 100 $)

LET A(T,M,N) = VALOF
$(

LET x = M < 4 & N < maxn -> T!(M*maxn + N), 0
IF x = 0 THEN
$(

TEST M = 0 THEN x := N+1
ELSE x := N = 0 -> A(T, M-1, 1),

A(T, M-1, A(T, M, N-1))
IF M<4 & N<maxn THEN T!(M*maxn + N) := x

$)
RESULTIS x

$)

AND START() BE
$(

LET V = VEC 4*maxn
LET M, N = 0, 0
$(

FOR j = 0 TO 4*maxn DO V!j := 0 //clear array
WRITES("Type two arguments (zero to exit)*N")
M := READN()
N := READN()
WRITEF("Ackermann(%N, %N) = %N*N",

M, N, A(V,M,N))
$) REPEATUNTIL M=0

$)

Appendix G

Program Versions

The program versions of the tools used in this project are listed below.

Red Hat Linux 9 (kernel 2.4.20-31.9)
GNU Flex 2.5.4
GNU Bison 1.35
GNU Make 3.79.1
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
GNU DDD 3.3.1
GNU Emacs 21.2.1

GCC v3.5-tree-ssa
Reading specs from:
/usr/local/gccssa/lib/gcc/i686-pc-linux-gnu/
3.5-tree-ssa/specs
Configured with:
../gcc-tree-ssa-20040407-src/configure
--enable-shared
--enable-threads=posix
--enable-checking
--with-system-zlib
--enable-__cxa_atexit
--program-suffix=ssa
--prefix=/usr/local/gccssa
Thread model: posix
gcc version 3.5-tree-ssa 20040506 (merged 20040430)

For typesetting and referencing this dissertation document:
LATEX (Web2C 7.3.1) 3.14159 (kpathsea version 3.3.1)
BibTEX (Web2C 7.3.1) 0.99c (kpathsea version 3.3.1)
Kile 1.6.1 (LATEXfront end for KDE)

85

Appendix H

Source Code

As previously discussed, the code has been forked into two branches: one con-
taining the basic scanner, parser and symbol table; the other containing the GCC
development implementation, including the basic BCPL system library. The code
given in the gcc/gcc/ directory contains the GCC 3.5-tree-ssa 20040506 (merged
20040430) source. See http://gcc.gnu.org/onlinedocs/gcc-3.4.
0/gccint/Subdirectories.html for details of the structure of the source
directory. To run the code, it would be necessary to configure and build a snapshot
of GCC 3.5.0, available for download from (GCC 2004c).

Directories:

docs/
pre_trees/
gcc/gcc/bcpl/

86

