
Joanna J. Bryson
University of Bath, United Kingdom

Learning and Memory
in Cognitive Systems

Intelligent Control
and Cognitive Systems

brings you...

Sensing vs Perception

• First week: Sensing – what information
comes in.

• This week: Perception – what you think is
going on.

• Perception includes expectations.

• Necessary for disambiguating noisy and
impoverished sensory information.

Bayes’	 Theorem

posterior	 ∝ likelihood	 ×	 prior

Given you’ve seen X, you can figure out if Y is likely
true based on what you already know about the
probability of experiencing: X independently, Y

independently and X when you see Y.

“expectations”

One Application...

• Y – potential action

• X – sensing

• priors = memory

• priors + sense = perception

note to JB: copy X,Y to
board,

useful later

Expectations

• For all cognitive systems, some priors are
hard-coded: body shape, sensing array, even
neural connectivity.

• Derived from the experience of evolution
or from a designer.

• Other expectations are derived from an
individual’s own experience – learning.

Learning

• Learning requires:

• A representation.

• A means of acting on current evidence.

• A means of incorporating feedback
concerning the outcome of the guess.

• AI learning calls incorporating feedback
“error correction”.

Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.
when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.
PROBLEM: in general, new inputs are different from training samples.
The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.
rote learning is memorization without generalization.
The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/29

Yann LeCun (NYU)

Learning Outcomes

• Objective is to do the right thing at the
right time (to be intelligent.)

• Doing the right thing often requires
predicting likely possible sensory conditions
so you can disambiguate situations that
would otherwise be perceptually aliased.

Two Kinds of Supervised Learning

Regression: also known as “curve fitting”
or “function approximation”. Learn a
continuous input-output mapping from a
limited number of examples (possibly
noisy).
Classification: outputs are discrete vari-
ables (category labels). Learn a decision
boundary that separates one class from the
other. Generally, a “confidence” is also de-
sired (how sure are we that the input be-
longs to the chosen category).

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/29

What we’ll use as an
example today.

Includes kernel methods (not
covered here.)

Unsupervised Learning

Unsupervised learning comes down to this: if the input looks like the training samples,
output a small number, if it doesn’t, output a large number.

This is a horrendously ill-posed problem in high
dimension. To do it right, we must guess/discover
the hidden structure of the inputs. Methods differ
by their assumptions about the nature of the data.
A Special Case: Density Estimation. Find a
function f such f(X) approximates the
probability density of X , p(X), as well as
possible.
Clustering: discover “clumps” of points
Embedding: discover low-dimensional manifold
or surface near which the data lives.
Compression/Quantization: discover a function
that for each input computes a compact “code”
from which the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/29

c.f. Lecture 5 “what the
brain seems to be doing”

Polynomial	 Curve	 Fi:ng	

Representa)on:	 	 Just	 a	 polynomial	 equa?on.

“Regression”
via Chris Bishop

Example	 Applica?on	 to	 Ac?on	 Selec?on

What	 you	 sensed

W
he

re
	 to

	 d
riv

e	
yo
ur
	 m

ot
or
.

Sum-‐of-‐Squares	 Error	 Func?on

Use	 data	 to	 fix	
the	 world	
model	 currently	
held	 in	 the	
representa?on.

Error functions

• Based on some parameter w (for weight –
more on why it’s called that later).

• Objective is to minimise error function.

• Take its derivative with respect to w.

• Go down (take second deriv. if nec.)

• Linear functions gives a nice U function ∴
you can tell when your done, derivative = 0.

Theory vs Practice

• If we assume that noise in signal is
Normally distributed (with fixed variance),
then least squares is equivalent to
probabilistic methods (Per CM20220).

• Least squares is a lot easier to implement &
lighter-weight to run.

• To the extent the assumption doesn’t hold,
quality of results degrades – may be OK.

Why Representations
Matter

Green line is model used to generate data (in
combination with noise).

 Red line is the model learned from observing that data.

0th	 Order	 Polynomial

1st	 Order	 Polynomial

3rd	 Order	 Polynomial

9th	 Order	 Polynomial

Over-‐fi:ng

Root-‐Mean-‐Square	 (RMS)	 Error:

When	 your	 model	 is	 too	 powerful	 for	 the	
data,	 it	 just	 “rote	 memorises”	 without	
generalising.

That	 means	 you	
get	 beZer	 on	
training	 data	 but	
worse	 on	 data	
you	 haven’t	 seen.

Polynomial	 Coefficients	 	 	
Spot	 the	 indica?on	
of	 a	 problem.

Data	 Set	 Size:	

9th	 Order	 Polynomial

More	 data	 makes	 it	
beZer...

Data	 Set	 Size:	

9th	 Order	 Polynomial

and	 beZer...	 more	 data	 is	
more	 informa?on	 on	 the	
underlying	 model!

Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.
when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.
PROBLEM: in general, new inputs are different from training samples.
The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.
rote learning is memorization without generalization.
The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/29

Yann LeCun (NYU)

Overfitting

• If you can memorise everything then you
have no error signal to learn from, so you
can’t improve your model.

• If you can really memorise everything this
doesn’t matter. “Generalisation isn’t the
point of learning. Being right is the point of
learning.” – Will Lowe

• But mostly, it matters.

Polynomial	 Coefficients	 	 	
Spot	 the	 indica?on	
of	 a	 problem.

Regulariza?on

Penalize	 large	 coefficient	 values

Another	 solu?on	 (when	
you	 can’t	 get	 more	 data)

Regulariza?on:	

Regulariza?on:	

Regulariza?on:	 	 	 	 	 	 	 	 	 	 	 vs.	

How Biology Does It

The first attempts at machine learning in the 50’s,
and the development of artificial neural networks
in the 80’s and 90’s were inspired by biology.
Nervous Systems are networks of neurons
interconnected through synapses
Learning and memory are changes in the
“efficacy” of the synapses
HUGE SIMPLIFICATION: a neuron computes a
weighted sum of its inputs (where the weights are
the synaptic efficacies) and fires when that sum
exceeds a threshold.
Hebbian learning (from Hebb, 1947): synaptic
weights change as a function of the pre- and
post-synaptic activities.
orders of magnitude: each neuron has 103 to 105

synapses. Brain sizes (number of neurons): house
fly: 105; mouse: 5.106, human: 1010.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/29

As per last time...

wikipedia

Perceptron

The Linear Classifier

Historically, the Linear Classifier was designed as a highly simplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

y = f(
i=N
∑

i=0

wixi)

With f is the threshold function: f(z) = 1 iff
z > 0, f(z) = −1 otherwise. x0 is assumed
to be constant equal to 1, and w0 is interpreted
as a bias.
In vector form: W = (w0, w1....wn), X =
(1, x1...xn):

y = f(W ′X)

The hyperplaneW ′X = 0 partitions the space
in two categories. W is orthogonal to the hy-
perplane.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/29

(originally: The Perceptron)

A Simple Idea for Learning: Error Correction

We have a training set Sconsisting of P input-output
pairs: S = (X1, y1), (X2, y2),(XP , yP).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for sample p:

wi(t + 1) = wi(t) + (yp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/29

Perceptron Learning Algorithm

Historical Note

• Our understanding of linear classifiers and
probability-based learning came from our
attempts to understand what neural
networks (NN) could & couldn’t do.

• NN are intuitive, easy, algorithmic &
attractive, biologically inspired.

• But these days, most (not all) real action is
happening in straight maths.

Common Learning
Algorithm Tricks

• How much you add or subtract from the
weight determines how fast you learn:
learning rate.

• If you learn too fast you can overshoot the
ideal value, do this a lot and you dither
forever.

• Want learning to converge on right values.

The Perceptron Learning Procedure

Theorem: If the classes are linearly separable (i.e. separable by a hyperplane), then
the Perceptron procedure will converge to a solution in a finite number of steps.
Proof: Let’s denote byW ∗ a normalized vector in the direction of a solution. Suppose
all X are within a ball of radius R. Without loss of generality, we replace all Xp

whose yp is -1 by −Xp, and set all yp to 1. Let us now define the margin
M = minpW ∗Xp. Each time there is an error, W.W ∗ increases by at least
X.W ∗ ≥ M . This meansWfinal.W ∗ ≥ NM where N is the total number of weight
updates (total number of errors). But, the change in square magnitude ofW is
bounded by the square magnitude of the current sample Xp, which is itself bounded
by R2. Therefore, |Wfinal|2 ≤ NR2. combining the two inequalities
Wfinal.W ∗ ≥ NM and |Wfinal| ≤

√
NR, we have

Wfinal.W
∗/|Wfinal| ≥

√

(N)M/R

. Since the left hand side is upper bounded by 1, we deduce

N ≤ R2/M2

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/29

Provably works iff
 linearly separable.

Proof by Minsky
(long story)

Neat vs Scruffy

• How can you be sure your problem is
linearly separable?

• You can’t. Just try it. Scruffy.

• Only use provably cool stuff. Neat.

Neats + Scruffies

• A collection of hacks is more likely to win if
it is motivated by theory – if each hack is a
reasonable approximation of what a sound
system would do.

• A systems approach will look for indicators
of fail states for scruffy solutions (e.g.
coefficients blowing up earlier.)

A Simple Trick: Nearest Neighbor Matching

Instead of insisting that the input be exactly
identical to one of the training samples, let’s
compute the “distances” between the input and all
the memorized samples (aka the prototypes).
1-Nearest Neighbor Rule: pick the class of the
nearest prototype.
K-Nearest Neighbor Rule: pick the class that has
the majority among the K nearest prototypes.
PROBLEM: What is the right distance measure?
PROBLEM: This is horrendously expensive if the
number of prototypes is large.
PROBLEM: do we have any guarantee that we get
the best possible performance as the number of
training samples increases?

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/29

Problem, problem,
problem but it

works really well. Can often also interpolate between
stored solutions (Atkins, Schaal)

Single Layer Perceptron
Network Note:

mutual inhibition
“winner take all”

WTA

Neats vs Scruffies:
Multilayer Perceptrons
• NN “learned like people” will solve AI.

• Minsky & Papert (1969) proved single-
layered perceptron networks can’t solve
some pretty basic problems.

• No one knew how to train multi-layer
perceptrons, funding dried up, field almost
died.

AI Winter

Multi Layered
Perceptron

• Would solve
the problem!

• But if there’s
an error, which
weight caused
it?

Neats vs Scruffies:
Backpropagation

• In the 1980s, several people realised if the
threshold was a sigmoid not a step
function, you could assign “credit” across
layers using calculus – backpropagation.

• But then they realised they could do lots of
things with calculus & statistics – serious
machine learning academics do Bayes now.

(Backpropagation is essentially the chain rule.)

Backpropagation

Geoff
Hinton

• One of the (independent)
backprop inventors.

• cf. deep learning, Boltzman
Machines

Neats vs Scruffies:
Theory vs Practice
• Serious fast applied stuff e.g. Google do the

serious neat stuff (though sometimes
scruffily hacked together).

• But many, many, many applications of
backpropagation on 3-layer networks in
ordinary industry by students like you.

• 2013 “NN still used by psychologists, some
artificial life researchers.”

Other Topical NN
Research

Spike timing networks

Compartmental
models

Also 2013

2014
Deep
Mind

See also
lecture
notes…

