
Joanna J. Bryson
University of Bath, United Kingdom

Learning and Memory 
in Cognitive Systems

Intelligent Control 
and Cognitive Systems 

brings you...



Sensing vs Perception

• First week:  Sensing – what information 
comes in.

• This week:  Perception – what you think is 
going on.  

• Perception includes expectations.

• Necessary for disambiguating noisy and 
impoverished sensory information.



Bayes’	  Theorem

posterior	  ∝ likelihood	  ×	  prior

Given you’ve seen X, you can figure out if  Y is likely 
true based on what you already know about the 
probability of experiencing: X independently, Y 

independently and X when you see Y.

“expectations”



One Application...

• Y – potential action

• X – sensing

• priors = memory

• priors + sense = perception

note to JB:  copy X,Y to 
board,

useful later



Expectations

• For all cognitive systems, some priors are 
hard-coded:  body shape, sensing array, even 
neural connectivity.

• Derived from the experience of evolution 
or from a designer.

• Other expectations are derived from an 
individual’s own experience – learning.



Learning

• Learning requires:

• A representation.

• A means of acting on current evidence.

• A means of incorporating feedback 
concerning the outcome of the guess.

• AI learning calls incorporating feedback 
“error correction”.



Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.
when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.
PROBLEM: in general, new inputs are different from training samples.
The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.
rote learning is memorization without generalization.
The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/29

Yann LeCun (NYU)



Learning Outcomes

• Objective is to do the right thing at the 
right time (to be intelligent.)

• Doing the right thing often requires 
predicting likely possible sensory conditions 
so you can disambiguate situations that 
would otherwise be perceptually aliased.



Two Kinds of Supervised Learning

Regression: also known as “curve fitting”
or “function approximation”. Learn a
continuous input-output mapping from a
limited number of examples (possibly
noisy).
Classification: outputs are discrete vari-
ables (category labels). Learn a decision
boundary that separates one class from the
other. Generally, a “confidence” is also de-
sired (how sure are we that the input be-
longs to the chosen category).

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/29

What we’ll use as an 
example today.

Includes kernel methods (not 
covered here.)



Unsupervised Learning

Unsupervised learning comes down to this: if the input looks like the training samples,
output a small number, if it doesn’t, output a large number.

This is a horrendously ill-posed problem in high
dimension. To do it right, we must guess/discover
the hidden structure of the inputs. Methods differ
by their assumptions about the nature of the data.
A Special Case: Density Estimation. Find a
function f such f(X) approximates the
probability density of X , p(X), as well as
possible.
Clustering: discover “clumps” of points
Embedding: discover low-dimensional manifold
or surface near which the data lives.
Compression/Quantization: discover a function
that for each input computes a compact “code”
from which the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/29

c.f.  Lecture 5 “what the 
brain seems to be doing”



Polynomial	  Curve	  Fi:ng	  

Representa)on:	  	  Just	  a	  polynomial	  equa?on.

“Regression”
via Chris Bishop



Example	  Applica?on	  to	  Ac?on	  Selec?on
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Sum-‐of-‐Squares	  Error	  Func?on

Use	  data	  to	  fix	  
the	  world	  
model	  currently	  
held	  in	  the	  
representa?on.



Error functions

• Based on some parameter w (for weight – 
more on why it’s called that later).

• Objective is to minimise error function.

• Take its derivative with respect to w.

• Go down (take second deriv. if nec.)

• Linear functions gives a nice U function ∴ 
you can tell when your done, derivative = 0.



Theory vs Practice

• If we assume that noise in signal is 
Normally distributed (with fixed variance), 
then least squares is equivalent to 
probabilistic methods (Per CM20220). 

• Least squares is a lot easier to implement & 
lighter-weight to run.

• To the extent the assumption doesn’t hold, 
quality of results degrades – may be OK.



Why Representations 
Matter

Green line is model used to generate data (in 
combination with noise).

 Red line is the model learned from observing that data.



0th	  Order	  Polynomial



1st	  Order	  Polynomial



3rd	  Order	  Polynomial



9th	  Order	  Polynomial



Over-‐fi:ng

Root-‐Mean-‐Square	  (RMS)	  Error:

When	  your	  model	  is	  too	  powerful	  for	  the	  
data,	  it	  just	  “rote	  memorises”	  without	  
generalising.

That	  means	  you	  
get	  beZer	  on	  
training	  data	  but	  
worse	  on	  data	  
you	  haven’t	  seen.



Polynomial	  Coefficients	  	  	  
Spot	  the	  indica?on	  
of	  a	  problem.



Data	  Set	  Size:	  

9th	  Order	  Polynomial

More	  data	  makes	  it	  
beZer...



Data	  Set	  Size:	  

9th	  Order	  Polynomial

and	  beZer...	  more	  data	  is	  
more	  informa?on	  on	  the	  
underlying	  model!



Learning is NOT Memorization

rote learning is easy: just memorize all the training examples and their
corresponding outputs.
when a new input comes in, compare it to all the memorized samples, and
produce the output associated with the matching sample.
PROBLEM: in general, new inputs are different from training samples.
The ability to produce correct outputs or behavior on previously unseen inputs is
called GENERALIZATION.
rote learning is memorization without generalization.
The big question of Learning Theory (and practice): how to get good
generalization with a limited number of examples.

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/29

Yann LeCun (NYU)



Overfitting

• If you can memorise everything then you 
have no error signal to learn from, so you 
can’t improve your model.

• If you can really memorise everything this 
doesn’t matter.  “Generalisation isn’t the 
point of learning.  Being right is the point of 
learning.” – Will Lowe

• But mostly, it matters.



Polynomial	  Coefficients	  	  	  
Spot	  the	  indica?on	  
of	  a	  problem.



Regulariza?on

Penalize	  large	  coefficient	  values

Another	  solu?on	  (when	  
you	  can’t	  get	  more	  data)



Regulariza?on:	  



Regulariza?on:	  



Regulariza?on:	  	  	  	  	  	  	  	  	  	  	  vs.	  



How Biology Does It

The first attempts at machine learning in the 50’s,
and the development of artificial neural networks
in the 80’s and 90’s were inspired by biology.
Nervous Systems are networks of neurons
interconnected through synapses
Learning and memory are changes in the
“efficacy” of the synapses
HUGE SIMPLIFICATION: a neuron computes a
weighted sum of its inputs (where the weights are
the synaptic efficacies) and fires when that sum
exceeds a threshold.
Hebbian learning (from Hebb, 1947): synaptic
weights change as a function of the pre- and
post-synaptic activities.
orders of magnitude: each neuron has 103 to 105

synapses. Brain sizes (number of neurons): house
fly: 105; mouse: 5.106, human: 1010.

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/29

As per last time...



wikipedia

Perceptron



The Linear Classifier

Historically, the Linear Classifier was designed as a highly simplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

y = f(
i=N
∑

i=0

wixi)

With f is the threshold function: f(z) = 1 iff
z > 0, f(z) = −1 otherwise. x0 is assumed
to be constant equal to 1, and w0 is interpreted
as a bias.
In vector form: W = (w0, w1....wn), X =
(1, x1...xn):

y = f(W ′X)

The hyperplaneW ′X = 0 partitions the space
in two categories. W is orthogonal to the hy-
perplane.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/29

(originally: The Perceptron)



A Simple Idea for Learning: Error Correction

We have a training set Sconsisting of P input-output
pairs: S = (X1, y1), (X2, y2), ....(XP , yP ).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for sample p:

wi(t + 1) = wi(t) + (yp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/29

Perceptron Learning Algorithm



Historical Note

• Our understanding of linear classifiers and 
probability-based learning came from our 
attempts to understand what neural 
networks (NN) could & couldn’t do.

• NN are intuitive, easy, algorithmic & 
attractive, biologically inspired.

• But these days, most (not all) real action is 
happening in straight maths.



Common Learning 
Algorithm Tricks

• How much you add or subtract from the 
weight determines how fast you learn:  
learning rate.

• If you learn too fast you can overshoot the 
ideal value, do this a lot and you dither 
forever.  

• Want learning to converge on right values.



The Perceptron Learning Procedure

Theorem: If the classes are linearly separable (i.e. separable by a hyperplane), then
the Perceptron procedure will converge to a solution in a finite number of steps.
Proof: Let’s denote byW ∗ a normalized vector in the direction of a solution. Suppose
all X are within a ball of radius R. Without loss of generality, we replace all Xp

whose yp is -1 by −Xp, and set all yp to 1. Let us now define the margin
M = minpW ∗Xp. Each time there is an error, W.W ∗ increases by at least
X.W ∗ ≥ M . This meansWfinal.W ∗ ≥ NM where N is the total number of weight
updates (total number of errors). But, the change in square magnitude ofW is
bounded by the square magnitude of the current sample Xp, which is itself bounded
by R2. Therefore, |Wfinal|2 ≤ NR2. combining the two inequalities
Wfinal.W ∗ ≥ NM and |Wfinal| ≤

√
NR, we have

Wfinal.W
∗/|Wfinal| ≥

√

(N)M/R

. Since the left hand side is upper bounded by 1, we deduce

N ≤ R2/M2

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/29

Provably works iff
 linearly separable.

Proof by Minsky
(long story)



Neat vs Scruffy

• How can you be sure your problem is 
linearly separable?

• You can’t.  Just try it.  Scruffy.

• Only use provably cool stuff.  Neat.



Neats + Scruffies

• A collection of hacks is more likely to win if  
it is motivated by theory – if each hack is a 
reasonable approximation of what a sound 
system would do.

• A systems approach will look for indicators 
of fail states for scruffy solutions (e.g. 
coefficients blowing up earlier.)



A Simple Trick: Nearest Neighbor Matching

Instead of insisting that the input be exactly
identical to one of the training samples, let’s
compute the “distances” between the input and all
the memorized samples (aka the prototypes).
1-Nearest Neighbor Rule: pick the class of the
nearest prototype.
K-Nearest Neighbor Rule: pick the class that has
the majority among the K nearest prototypes.
PROBLEM: What is the right distance measure?
PROBLEM: This is horrendously expensive if the
number of prototypes is large.
PROBLEM: do we have any guarantee that we get
the best possible performance as the number of
training samples increases?

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/29

Problem, problem, 
problem but it 

works really well. Can often also interpolate between 
stored solutions (Atkins, Schaal)



Single Layer Perceptron 
Network Note:

mutual inhibition
“winner take all”

WTA



Neats vs Scruffies: 
Multilayer Perceptrons
• NN “learned like people” will solve AI.

• Minsky & Papert (1969) proved single-
layered perceptron networks can’t solve 
some pretty basic problems.

• No one knew how to train multi-layer 
perceptrons, funding dried up, field almost 
died.

AI Winter



Multi Layered 
Perceptron

• Would solve 
the problem!

• But if there’s 
an error, which 
weight caused 
it?



Neats vs Scruffies: 
Backpropagation

• In the 1980s, several people realised if the 
threshold was a sigmoid not a step 
function, you could assign “credit” across 
layers using calculus – backpropagation.

• But then they realised they could do lots of 
things with calculus & statistics – serious 
machine learning academics do Bayes now.

(Backpropagation is essentially the chain rule.)



Backpropagation

Geoff
Hinton

• One of the (independent) 
backprop inventors.

• cf. deep learning, Boltzman 
Machines



Neats vs Scruffies: 
Theory vs Practice
• Serious fast applied stuff e.g. Google do the 

serious neat stuff (though sometimes 
scruffily hacked together).

• But many, many, many applications of 
backpropagation on 3-layer networks in 
ordinary industry by students like you.

• 2013 “NN still used by psychologists, some 
artificial life researchers.”



Other Topical NN 
Research

Spike timing networks

Compartmental
models

Also 2013



2014
Deep
Mind

See also
lecture
notes…


