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Sensing vs Perception

• First week:  Sensing – what information 
comes in.

• This week:  Perception – what you think is 
going on.  

• Perception includes expectations.

• Necessary for disambiguating noisy and 
impoverished sensory information.



Bayes’	Theorem

posterior	∝ likelihood	×	prior

Given you’ve seen X, you can figure out if  Y is likely 
true based on what you already know about the 
probability of experiencing: X independently, Y 

independently and X when you see Y.

“expectations”



One Application...

• Y – potential action

• X – sensing

• priors = memory

• priors + sense = perception

note to JB:  copy X,Y to 
board,

useful later



Expectations

• For all cognitive systems, some priors are 
hard-coded:  body shape, sensing array, even 
neural connectivity.

• Derived from the experience of evolution 
or from a designer.

• Other expectations are derived from an 
individual’s own experience – learning.



Learning

• Learning requires:

• A representation.

• A means of acting on current evidence.

• A means of incorporating feedback 
concerning the outcome of the guess.

• AI learning calls incorporating feedback 
“error correction”.



Learning Outcomes

• Learning is not just memorisation!

• Objective is to do the right thing at the 
right time (to be intelligent.)

• Doing the right thing often requires 
predicting likely possible sensory conditions 
so you can disambiguate situations that 
would otherwise be perceptually aliased.

• Prediction is done by generalising previous 
experience.



Two Kinds of Supervised Learning

Regression: also known as “curve fitting”
or “function approximation”. Learn a
continuous input-output mapping from a
limited number of examples (possibly
noisy).
Classification: outputs are discrete vari-
ables (category labels). Learn a decision
boundary that separates one class from the
other. Generally, a “confidence” is also de-
sired (how sure are we that the input be-
longs to the chosen category).

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/29

What we’ll use as an 
example today.

Includes kernel methods (not 
covered here.)

Yann LeCun (NYU)



Unsupervised Learning

Unsupervised learning comes down to this: if the input looks like the training samples,
output a small number, if it doesn’t, output a large number.

This is a horrendously ill-posed problem in high
dimension. To do it right, we must guess/discover
the hidden structure of the inputs. Methods differ
by their assumptions about the nature of the data.
A Special Case: Density Estimation. Find a
function f such f(X) approximates the
probability density of X , p(X), as well as
possible.
Clustering: discover “clumps” of points
Embedding: discover low-dimensional manifold
or surface near which the data lives.
Compression/Quantization: discover a function
that for each input computes a compact “code”
from which the input can be reconstructed.

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/29

c.f.  Lecture 5 “what the 
brain seems to be doing”



• Learning requires:

• A representation.

• A means of acting on current evidence.

• A means of incorporating feedback concerning 
the outcome of the guess.

• The distinction between “supervised” and 
“unsupervised” learning is fairly arbitrary. There’s 
always some feedback mechanism.

• Information comes from somewhere: either the 
representation, the searched domain, or the error 
signal.  cf. No Free Lunch (Wolpert)

Unsupervised?



Polynomial	Curve	Fi:ng	

Representa)on:		Just	a	polynomial	equa?on.

“Regression”
via Chris Bishop



Example	Applica?on	to	Ac?on	Selec?on
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Sum-of-Squares	Error	Func?on

Use	data	to	fix	
the	world	
model	currently	
held	in	the	
representa?on.



Error functions

• Based on some parameter w (for weight – 
more on why it’s called that later).

• Objective is to minimise error function.

• Take its derivative with respect to w.

• Go down (take second deriv. if nec.)

• Linear functions gives a nice U function ∴ 
you can tell when your done, derivative = 0.



Theory vs Practice

• If we assume that noise in signal is 
Normally distributed (with fixed variance), 
then least squares is equivalent to 
probabilistic methods (Per CM20220). 

• Least squares is a lot easier to implement & 
lighter-weight to run.

• To the extent the assumption doesn’t hold, 
quality of results degrades – may be OK.



Why Representations 
Matter

Green line is model used to generate data (in 
combination with noise).

 Red line is the model learned from observing that data.



0th	Order	Polynomial



1st	Order	Polynomial



3rd	Order	Polynomial



9th	Order	Polynomial



Over-fi:ng

Root-Mean-Square	(RMS)	Error:

When	your	model	is	too	powerful	for	the	
data,	it	just	“rote	memorises”	without	
generalising.

That	means	you	
get	beZer	on	
training	data	but	
worse	on	data	
you	haven’t	seen.



Polynomial	Coefficients			
Spot	an	indica?on	of	
a	problem.



Data	Set	Size:	

9th	Order	Polynomial

More	data	makes	it	
beZer...



Data	Set	Size:	

9th	Order	Polynomial

and	beZer...	more	data	is	
more	informa?on	on	the	
underlying	model!



Overfitting

• If you can memorise everything then you 
have no error signal to learn from, so you 
can’t improve your model.

• If you can really memorise everything this 
doesn’t matter.  “Generalisation isn’t the 
point of learning.  Being right is the point of 
learning.” – Will Lowe

• But mostly, it matters.



Polynomial	Coefficients			
Spot	the	indica?on	
of	a	problem.



Regulariza?on

Penalize	large	coefficient	values

Another	solu?on	(when	
you	can’t	get	more	data)



Regulariza?on:	



Regulariza?on:	
No	free	lunch!	Have	to	
guess	the	right	λ	now.



Common 
Representations

• Production Rules

• Neural Networks

• “Genomes” (for Genetic Algorithms)

• Mixtures of Gaussians

• Vectors (counts) e.g. Word Embeddings

• Many more (many ad hoc)



A Simple Trick: Nearest Neighbor Matching

Instead of insisting that the input be exactly
identical to one of the training samples, let’s
compute the “distances” between the input and all
the memorized samples (aka the prototypes).
1-Nearest Neighbor Rule: pick the class of the
nearest prototype.
K-Nearest Neighbor Rule: pick the class that has
the majority among the K nearest prototypes.
PROBLEM: What is the right distance measure?
PROBLEM: This is horrendously expensive if the
number of prototypes is large.
PROBLEM: do we have any guarantee that we get
the best possible performance as the number of
training samples increases?

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/29

Problem, problem, 
problem but it 

works really well. Can often also interpolate between 
stored solutions (Atkins, Schaal)



wikipedia

Neural Networks
Biomimetic approaches to  
machine learning date back to 
the fifties (Rosenblatt 1958).

A perceptron, inspired by 
neurons.



Single Layer Perceptron 
Network Note:

mutual inhibition
“winner take all”

WTA



The Linear Classifier

Historically, the Linear Classifier was designed as a highly simplified model of the
neuron (McCulloch and Pitts 1943, Rosenblatt 1957):

y = f(
i=N
∑

i=0

wixi)

With f is the threshold function: f(z) = 1 iff
z > 0, f(z) = −1 otherwise. x0 is assumed
to be constant equal to 1, and w0 is interpreted
as a bias.
In vector form: W = (w0, w1....wn), X =
(1, x1...xn):

y = f(W ′X)

The hyperplaneW ′X = 0 partitions the space
in two categories. W is orthogonal to the hy-
perplane.

Y. LeCun: Machine Learning and Pattern Recognition – p. 13/29

(originally: The Perceptron)



A Simple Idea for Learning: Error Correction

We have a training set Sconsisting of P input-output
pairs: S = (X1, y1), (X2, y2), ....(XP , yP ).
A very simple algorithm:
- show each sample in sequence repetitively
- if the output is correct: do nothing
- if the output is -1 and the desired output +1: increase
the weights whose inputs are positive, decrease the
weights whose inputs are negative.
- if the output is +1 and the desired output -1: de-
crease the weights whose inputs are positive, increase
the weights whose inputs are negative.
More formally, for sample p:

wi(t + 1) = wi(t) + (yp
i − f(W ′Xp))xp

i

This simple algorithm is called the Perceptron learn-
ing procedure (Rosenblatt 1957).

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/29

Perceptron Learning Algorithm



The Perceptron Learning Procedure

Theorem: If the classes are linearly separable (i.e. separable by a hyperplane), then
the Perceptron procedure will converge to a solution in a finite number of steps.
Proof: Let’s denote byW ∗ a normalized vector in the direction of a solution. Suppose
all X are within a ball of radius R. Without loss of generality, we replace all Xp

whose yp is -1 by −Xp, and set all yp to 1. Let us now define the margin
M = minpW ∗Xp. Each time there is an error, W.W ∗ increases by at least
X.W ∗ ≥ M . This meansWfinal.W ∗ ≥ NM where N is the total number of weight
updates (total number of errors). But, the change in square magnitude ofW is
bounded by the square magnitude of the current sample Xp, which is itself bounded
by R2. Therefore, |Wfinal|2 ≤ NR2. combining the two inequalities
Wfinal.W ∗ ≥ NM and |Wfinal| ≤

√
NR, we have

Wfinal.W
∗/|Wfinal| ≥

√

(N)M/R

. Since the left hand side is upper bounded by 1, we deduce

N ≤ R2/M2

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/29

Provably works iff
 linearly separable.

Proof by Minsky
(long story, maybe worth 

reading on wikipedia)



Learning Algorithm 
Terms & Tricks

• How much you add or subtract from the 
weight determines how fast you learn:  
learning rate.

• If you learn too fast you can overshoot the 
ideal value, do this a lot and you dither 
forever.  

• Want learning to converge on right values.



Historical Note

• Our understanding of linear classifiers and 
probability-based learning came from our 
attempts to understand what neural 
networks (NN) could & couldn’t do.

• NN are intuitive, easy, algorithmic & 
attractive, biologically inspired.

• But from about 1990, the real action was 
happening in straight maths.



Neat vs Scruffy
• How can you be sure your problem is 

linearly separable?

• You can’t.  Just try it.  Scruffy.

• Only use methods in situations you can 
prove the outcome for.  Neat.

• Neat methods once known tend to work 
well, but may take unnecessarily long or 
overlook solvable problems.



Neats + Scruffies
• A collection of hacks is more likely to win if  it 

is motivated by theory – if each hack is a 
reasonable approximation of what a sound 
system would do.

• Neat “hacks” are safer – but never perfect! All 
computation uses fallible hardware.

• A systems approach can improve safety by 
using indicators of fail states for scruffy 
solutions (e.g. the ballooning coefficients.)



Neats vs Scruffies: 
Multilayer Perceptrons
• NN “learned like people” will solve AI.

• Minsky & Papert (1969) proved single-
layered perceptron networks can’t solve 
some pretty basic problems.

• No one knew how to train multi-layer 
perceptrons, funding dried up, field almost 
died.

AI Winter



Multi Layered 
Perceptron

• Would solve 
the problem!

• But if there’s 
an error, which 
weight caused 
it?



Neats vs Scruffies: 
Backpropagation

• In the 1980s, several people realised if the 
threshold was a sigmoid not a step function, 
you could assign “credit” across layers using 
calculus – backpropagation.

• But then they realised they could do lots of 
things with calculus & statistics – serious 
machine learning academics do Bayes now.

(Backpropagation is essentially the chain rule.)



Backpropagation

Geoff
Hinton

• One of the (independent) 
backprop inventors.

• cf. deep learning, Boltzman 
Machines



Evolution & Genetic Algorithms



Theory & Fact

• Evolution:  Change over time.

• Evolution of Life:  

• Changes in & diversification of species over 
time.

• Natural Selection:

• Current scientific explanation of the 
observed data. 

Definition

Fact

Theory



Fact of Evolution

• Fossil record.

• Observed in laboratory (e.g. with bacteria).

• Genome record of the “tree of life”.

• Totally unknown when the theory of 
evolution (natural selection) was 
developed.



Darwin’s Theory

• Animals tend to produce more 
offspring than survive to reproduce. 

• Individuals vary.  Offspring more like 
parents than average for a species.

• The individuals most fit to their 
environment are most likely to 
survive and reproduce.

 ⇒ gradual change



Contemporary 
Understanding

• Evolution requires variation, 
reproduction and selection.

• Wherever you have these 
conditions, you will get 
change / optimisation to the 
selection criteria.

• Powerful mechanism for 
learning / concurrent search.

“Universal acid”



What about the bees?

• Most honey bees have no offspring, but will 
die for their nest.

• Definition:  altruistic behaviour is costly to 
the individual, but benefits others.

• Fundamental to sociality, seen even in 
bacteria.

• How can “survival of the fittest” explain 
altruistic behaviour?



Replicators

• The mechanisms of heredity (what gets 
replicated) are called genes.

• Genes are an instruction set that, with the 
proper biological and environmental 
context, can produce a new organism.

• Since genes replicate more perfectly than 
whole animals, and affect behaviour, means 
social traits like altruism can evolve.



Evolution of Social 
Traits

• Evolution: variation, selection & transmission.

• What is transmitted is the replicator.

• The unit of selection is the vehicle (or 
interactor.)

• In the current ecology, most vehicles are 
composed of many, many replicators. 

 ⇒ group selection, kin selection, inclusive fitness 

(Dawkins 1982)



Intelligence & Design

• Combinatorics is the problem, search is the only 
solution.

• The task of intelligence is to focus search.

• Called bias (learning) or constraint (planning).

• Most `intelligent’ behavior has no or little real-
time search (non-cognitive) (cf. Brooks IJCAI91).

• For artificial intelligence, most focus from design.

Revision:  From Lecture 2

priors



Evolution as Learning
• Bias is provided by phylogeny (evolutionary 

history), transmitted in the genome.

• Search space is determined by variation in the 
population.

• Greater variation accelerates evolution 
(rate of change, Fisher 1930, Price 1972) but 
also less exact (remember: “overshooting” 
with high learning rate).

• Learning to learn – evolvability.



Science as Evolution

• Evolution requires variation, reproduction 
and selection.

• Variety of theories get taught.

• Theories in new experiments bear some 
resemblance to what got taught.

• Memory of scientists, peer review, & 
prediction success perform selection.

example of memetics–ideas as replicators



Evolution in AI
 (Genetic Algorithms, GA)
• Variation in some trait.

• Reproduction with inheritance.

• Often asexual + noise.  Sometimes 
crossover between two or more parents.

• Selection resulting in population change

• Probability of staying in pool must depend 
at least partly on differential success.



One trait going to fixation in two different conditions.
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Summary
• Machine learning is one way to program AI.

• Requires ways to represent and act on 
evidence, and to improve evidence based 
on actions’ outcomes.

• Nearest neighbour, neural networks, and 
genetic algorithms are three (of many!) 
classes of representations. 

• More everywhere on line, in old lecture 
recordings, and at the end of this file.



Neats vs Scruffies: 
Theory vs Practice

• Serious fast applied stuff e.g. Google do the 
serious neat stuff (though sometimes scruffily 
hacked together).

• But many, many, many applications of 
backpropagation on 3-layer networks in 
ordinary industry by students like you.

• This bullet in 2013: “NN still used by 
psychologists, some artificial life researchers.”



Other Topical NN 
Research

Spike timing networks

Compartmental
models

Also from 2013



2014 
Deep 
Mind

See also
lecture
notes…



Multi-Level Selection 
(different interactors)

Rah!

Boo.

Replicator (Gene)

Organism

ha haboo

boo
nyah
nyah

Group



• Most honey bees have no offspring, but will 
die for their nest.

• All eusocial insects have a 100% 
monogamous ancestor species  ∴ 50% 
related to sisters.

• In that special case, siblings as useful for 
propagating genes as offspring.

(Hughes et al 2008)

What about the bees?



Questions…

• Are genes the only replicator?

• Maybe individuals & groups replicate?

• Maybe memes replicate?

• Evolution is one of the best-supported 
theories in science, but the details are still 
constantly being worked out (just like 
physics.)



Introduction to  
Genetic Algorithms

(modified) Slides from: 
David Hales 

www.davidhales.com



Evolution in the real world
• Each cell of a living thing contains chromosomes - strings of 

DNA
• Each chromosome contains a set of genes - blocks of DNA
• Each gene determines some aspect of the organism (like eye 

colour)
• Your set of genes is called a genotype
• Your set of expressed traits is called a phenotype.
• Reproduction involves recombination of genes from parents 

and then small amounts of mutation (errors) in copying 
• The fitness of an organism is how much it can reproduce 

before it dies (or how much its kids can...)
• Evolution based on “survival of the fittest”

The relation 
between these is 
very complex.

This definition of gene is controversial.



Dumb AI

A “blind generate and test” algorithm:

Repeat
Generate a random possible solution
Test the solution and see how good it is

Until solution is good enough



Can we use this dumb idea?

• Sometimes - yes:
–if there are only a few possible solutions
–and you have enough time
–then such a method could be used

• For most problems - no:
–many possible solutions
–with no time to try them all
–so this method can not be used



A “less-dumb” idea (GA)

Generate a set of random solutions
Repeat

Test each solution in the set (rank them)
Remove some bad solutions from set
Duplicate some good solutions 

make small changes to some of them
Until best solution is good enough



GA as Evolution

• Evolution requires variation, reproduction 
and selection.

• Variation from crossover and mutation.

• Reproduce best performers of a set.

• Select best performers based on a fitness 
function.



GA as Learning

• Learning requires:

• A representation:  genome.

• A means of acting on current evidence: 
phenotype.

• A means of incorporating feedback: 
selection and variation.



How do you encode a solution?
• Obviously this depends on the problem!
• GA’s often encode solutions as fixed length 

“bitstrings” (e.g. 101110, 111111, 000101)
• Each bit represents some aspect of the 

proposed solution to the problem
• For GA’s to work, we need to be able to “test” 

any string and get a “score” indicating how 
“good” that solution is

Representation!



Silly Example - Drilling for Oil

• Imagine you had to drill for oil somewhere 
along a single 1km desert road

• Problem: choose the best place on the road 
that produces the most oil per day

• We could represent each solution as a position 
on the road

• Say, a whole number between [0..1000]



Where to drill for oil?

0 500 1000

Road

Solution2 = 900Solution1 = 300



Digging for Oil

• The set of all possible solutions [0..1000] is 
called the search space or state space
–In this case it’s just one number but it could be 

many numbers or symbols
• Often GA’s code numbers in binary producing 

a bitstring representing a solution
–In our example we choose 10 bits which is enough 

to represent 0..1000



Convert to binary string

512 256 128 64 32 16 8 4 2 1

900 1 1 1 0 0 0 0 1 0 0

300 0 1 0 0 1 0 1 1 0 0

1023 1 1 1 1 1 1 1 1 1 1

In GA’s these encoded strings are sometimes called 
“genotypes” or “chromosomes” and the individual bits are 

sometimes called “genes”



Drilling for Oil

0 1000
Road

Solution2 = 900 
(1110000100)

Solution1 = 300 
(0100101100)

O
 I 

L

Location

30
5



Search Space

• For a simple function f(x) the search space is one 
dimensional.

• But by encoding several values into the chromosome 
many dimensions can be searched e.g. two dimensions 
f(x,y)

• Search space an be visualised as a surface or fitness 
landscape in which fitness dictates height

• Each possible genotype is a point in the space
• A GA tries to move the points to better places (higher 

fitness) in the the space



Fitness landscapes

The search space, fitness landscape and gradient ascent 
metaphors work for most if not all kinds of learning.



Search Space

• Obviously, the nature of the search space 
dictates how a GA will perform

• A completely random space would be bad for 
a GA

• Also GA’s can get stuck in local maxima if 
search spaces contain lots of these

• Generally, spaces in which small 
improvements get closer to the global 
optimum are good



Adding Sex - Crossover

• Although it may work for simple search 
spaces our algorithm is still very simple
–It relies on random mutation to find a good solution

• It has been found that by introducing “sex” 
into the algorithm better results are obtained

• This is done by selecting two parents during 
reproduction and combining their genes to 
produce offspring



Adding Sex - Crossover

• Two high scoring “parent” bit strings 
(chromosomes) are selected and with some 
probability (crossover rate) combined

• Producing two new offspring (bit strings)
• Each offspring may then be changed randomly 

(mutation)



Crossover - Recombination

1010000000

1001011111

Crossover 
single point - 

random

1011011111

1010000000

Parent1

Parent2

Offspring1

Offspring2

With some high probability (crossover 
rate) apply crossover to the parents. 
(typical values are 0.8 to 0.95) 

0
slight error in Hale’s slides



Mutation

1011011111

1010000000

Offspring1

Offspring2

1011001111

1000000000

Offspring1

Offspring2

With some small probability (the mutation rate) flip 
each bit in the offspring (typical values between 0.1 

and 0.001)

mutate

Original offspring Mutated offspring



Many Variants of GA

• Different kinds of selection (not roulette)
–Tournament
–Elitism, etc.

• Different recombination
–Multi-point crossover
–3 way crossover etc.

• Different kinds of encoding other than bitstring
–Integer values
–Ordered set of symbols

• Different kinds of mutation

AI can use many more types 
than strictly genetic, but if 
you add in social behaviour 
(let alone memetics) nature 
may be using these too.

“3 way etc” = different 
numbers of parents.



Many parameters to set

• Any GA implementation needs to decide on a 
number of parameters: Population size (N), 
mutation rate (m), crossover rate (c), 
proportion of agents in next generation, 
selection function

• Often these are “tuned” based on results 
obtained (exploration by the programmer) - no 
general theory to deduce good values

Scruffiness is hard to avoid (DeepMind)



Genetic Programming

• When the chromosome encodes an entire 
program or function itself this is called genetic 
programming (GP)

• In order to make this work encoding is often 
done in the form of a tree representation

• Crossover entails swapping subtrees between 
parents



Genetic Programming

It is possible to evolve whole programs like this but 
only small ones. Large programs with complex 
functions present big problems



History: Genetic Algorithms & 
Evolutionary Programming

• Pioneered by John Holland in the 1970’s
• Got popular in the late 1980’s
• GA can be used to solve a variety of problems, 

but still not well understood.
–“Second best way to do anything.”

• Evolutionary or Genetic Programming still 
unproved.  
–The more semantic content in the representation, 

the less sense blind search makes.




