ICCS Coursework 2: Game Al
Zack Lyons

Brief

In this coursework you will be designing an Atrtificial Intelligence to play the game Unreal
Tournament 2004. Using the set of behaviours provided, along with any further action or sense
primitives you wish to implement, you will put together at least one POSH (Parallel-rooted,
Ordered Slip-stack Hierarchical) plan which will be executed at run-time by your agents. Three
bots will be running on your team; you should strongly consider giving each its own plan and
working out how they will complement each other. Everything you need is installed on the lab
computers in EB0.8; if you want to get this running on your personal machine you will need to
acquire your own copy of Unreal Tournament 2004, which is available cheaply online. The
tournament will be run on the lab computers.

Tournament
Your game Al will be assessed through a tournament (30%) and a written report (70%). The
tournament will consist of two parts:

e Thursday 3" April (10:15 — 12:05) — Group Stage. This lab is mandatory for everyone
doing this coursework. You will be randomly placed in groups of 4 or 5 and asked to run
matches against every other person in your group. Each team will have three bots whose
goal is to capture the opponent’s flag and protect their own. The winner of a match is the
first to get three flags, or whoever is in the lead after ten minutes. After every group has
finished their matches, the top person will progress to the next stage.

e Tuesday 8™ April (16:15-17:05) — Direct Elimination. The winners of the group stage will
compete against each other and be knocked out of the competition until one is left. This
lab is not mandatory but it would be nice to see people coming along to watch these final
matches.

Tournament Marking
You will get:
e 20% for competing in the tournament and adding in some new functionality (Hint: the
tournament map will have objects that need to be jumped over).
5% for winning two or more games in the Group Stage.
5% for winning the tournament.

If the winner of the tournament has previous experience with POSH or Behaviour Trees (whether
from last year or their dissertation project), the highest-scoring person without such an
advantage will also receive a discretionary 5%.



Getting Started

1.

Download the POSH UT2004 source code from the repository. Git and SmartGit are
installed on all computers in EB0.8.
a. Git command line: git clone https://code.google.com/p/posh-sharp/
b. SmartGit GUI: Go to Project -> Clone and enter
https://code.google.com/p/posh-sharp/ in the Remote Git Repository URL field. Click
Next and select Git as repository type. Set the Local Directory path to somewhere
on the C: drive (if you use the H: drive you will need to copy it to C: before you can
run), then click Next. Enter a name for your project then click Finish.
Go to the source folder you have just cloned and look for POSH-sharp.sin. Right click
and select Open With “Microsoft Visual Studio 2010” (not 2012). You may be asked if you
want to open untrusted projects: click yes (they can be trusted!).
Right-click on the POSH-sharp project and click Properties. Go to the Debug tab and
check that -v -a=PoshBot.d11 POSHBot is in the Command Line Arguments field.
Right-click on the POSH-sharp.core project and click Build. Then do the same for
POSHBot, and finally POSH-sharp.
Run Unreal Tournament 2004 and select Host Game. Double-click on GameBots CTF
Game as the game type, and then choose CTF-Bath-CW3-small for the map. Click
Dedicated and a console window will appear. The server is now running and available to
join. You can configure the server name (there will be lots of servers running on the LAN
during this coursework) under [Engine.GameReplicationInfo] in
C:\UT2004\System\UT2004.ini.
Run Unreal Tournament 2004 again and this time select Join Game. Find your server
from the LAN list and join it, then select Spectate.
In Visual Studio click Start Debugging. Your bot should appear in the game and can be
observed from spectate mode. (The solution contains breakpoints for debugging but
these can be toggled off.)
Finally go to http://code.google.com/p/abode-star/ and download “Abode-star vs 004” to a
convenient location. ABODE is an IDE to be used for writing your bot’s POSH plan.

The Coursework (Getting More Started)

After inevitably spending some time shooting the bot, you may realise that the bot could be
smarter. This is where your coursework comes in. You will be improving bots in several ways:
programmatically implementing actions and senses, and altering its plan.

1.

Implementing actions and senses.

a. Inthe POSHBot project you will see the Combat, Movement, Navigator and Status
classes. These contain all the current actions and senses the bot has; spend
some time having a look at these but do not modify them.

b. Template.cs contains comments that explain the contents of these behaviour
classes, and provides you with a template to make your own. Try to add a new
action or sense.

c. You may have as many additional classes as you like, each with any number of
actions and senses. Changes to the pre-existing classes will not be used in the


http://code.google.com/p/abode-star/
http://code.google.com/p/abode-star/

tournament or marking. Your new behaviours will be automatically added to the
bot’s library the next time you compile POSHBot.
2. Modifying the plan.

a. Open ABODE, then go to File -> Open and navigate to
YourFolderName/POSHBot/plans. Select the .lap plan there and it will be
displayed.

b. After making changes, save as <username>.lap (e.g. ab123.lap).

c. InVisual Studio, open POSHBot _init.txt in the POSH-sharp project (under library
-> init). Change [PoshBot] to [<username>] and change the bot name to
<username> A.

3. Making a bot team

a. You can add more bots simply by adding more entries in the plan file. An example
is commented out by default. You can specify the plan to be used by each bot by
just changing [POSHBot] to the plan you want to use for that bot, e.g. [MyPlanA].

b. Note that all the agents can share the same behaviour library (senses & actions),
they will behave differently because of their individual memories (variable state)
and individual motivations (plan file)

Notes
You are now ready to begin. When developing your bot, keep in mind the following (these will
make more sense after you’ve gotten started):

e The CTF-Bath-CW3-small map is the most optimised for these bots, and is the most
similar to the map that will be used in the tournament.

e You should check for the closest navpoint by using Navigator.close_navpoint(). This will
give the current position of the bot.

e Do not hard code any logic that will make assumptions based on the node names. The
node names will be changed for the tournament.

e You are not allowed to use GETPATH or the action Movement.SendGetPathHome(). You
either have to copy and modify the path logic from Navigator or come up with your own
method of pathfinding. The navpoints provide an interface for finding connected navpoints
which is really useful and should be used. So using an engine call to get a PATH is not
allowed, but getting the navpoint grid from GetBot().navpoints is. Look at navpoints from
the bot’s point of view.

e You cannot change team during a match or add items to your bot. Cheating will result in
disqualification and your code WILL be checked! If you are unsure, just ask!

e The bot can send messages to the server using
GetBot().SendlfNotPreviousMessage(<command>, <dictionary>);

e (GameBots2004.pdf is a resource on Moodle that describes the protocol for
communicating with the server and is really helpful for seeing what you can do.

Good luck!
This document is a help resource intended to explain everything you need to know to get your
bot(s) working and competing. Usual Moodle and lab support will be available as always so if you



are struggling just ask on the forums or in person.



