
The Dungeon of Dooom Protocol Specification

March 5, 2015

This document describes the protocol used by the The Dungeon of Dooom
game for communication between the client and the server.

1 Notation

Within this document, the phrases MUST, MUST NOT, SHOULD, SHOULD
NOT and MAY have a specific meaning. The convention used is the one
described in RFC 2119. See:

http://www.ietf.org/rfc/rfc2119.txt

2 Commands

The protocol is made up of a series of commands. These comprise the name
of the command (a human readable string) and then optionally a space
and any arguments to the command, then a new line character. There are
two types of command, client commands and server commands. A client
command MUST only be sent by a client and a server command MUST only
be sent by a server. Most client commands have a response. If a command
has a response, it MUST receive exactly one of these possible messages as
the next non-informational message sent from the server. Server commands
are used in two different ways, they are either responses or are informational
(and thus do not require a response from the client). Responses MUST only
be sent after the server processes a client command that requires such a
response.

Your implementation MAY be turn based or real-time. In the turn based
version, Informational message MAY be sent at any time, regardless of which
player’s turn it is.

2.1 Client Messages

2.1.1 HELLO

Command: HELLO <string:username>

Type: Client

1

http://www.ietf.org/rfc/rfc2119.txt


Responses: HELLO <string:username>

This command sets the name of the player. The client MAY send this
command immediately after connecting to the server. If this message is not
received the server SHOULD assign a unique default name to the client.
The client MUST NOT send this more than once or at any other time.

2.1.2 SETPLAYERPOS

Command: SETPLAYERPOS <number:x> <number:y>

Type: Client
Responses: SUCCEED, FAIL

The x and y positions specify where in the map the client wishes their player
to be located. The client MAY send this message more than once. (This
message is to aid debugging by removing the randomness from the play.)

2.1.3 LOOK

Command: LOOK
Type: Client
Responses: LOOKREPLY (See the section on LOOKREPLY)
The client sends this command to request a look return message from the
server, indicating his immediate surroundings. The client MAY send these
at any time, even if it is not currently the player’s turn. The server MUST
reply with a look reply.

2.1.4 MOVE

Command: MOVE <character:direction>

Type: Client
Responses: SUCCEED, FAIL

The client sends this command to move one square in the indicated direction.
The direction MUST be either N, S, E or W. The client MUST only send
this message during the player’s turn (if turn based).

2.1.5 ATTACK - CW3 ONLY!

Command: ATTACK <character:direction>

Type: Client
Responses: SUCCEED: <string:optional message>, FAIL: <string:optional message>

The client sends this command to attack another player in an adjacent
square in the indicated direction. The direction MUST be either N, S, E
or W. The client MUST only send this message during the player’s turn (if
turn based). The server will return FAIL if the attack fails to cause any
damage or if the attack is directed against something other than a player.

2



2.1.6 PICKUP

Command: PICKUP
Type: Client
Responses: SUCCEED: <string:optional message>, FAIL: <string:optional message>

The client sends this command to pick up the item in its current location.
The client MUST only send this message during the player’s turn (if turn
based).

2.1.7 SHOUT

Command: SHOUT
Type: Client
Responses: None
Sends a message to be passed to other clients. The server MAY choose a
subset of clients (for example, only those who are nearby) to receive the
message. The server message type MESSAGE will be used to send the
message to other clients. The client MAY send these at any time, even if it
is not currently the player’s turn.

2.1.8 ENDTURN

Command: ENDTURN
Type: Client
Responses: ENDTURN
The client can send this command to end their turn.

2.2 Server Messages

2.2.1 HELLO

Command: HELLO <string:username>

Type: Server
Usage: Response
Returned as a response to a client HELLO.

2.2.2 GOLD

Command: GOLD <number:n>

Type: Server
Usage: Informational
The server SHOULD define the amount of gold required to win the game.
If this message is sent it MUST only be sent once and MUST be the first
message to be sent to the client. The argument MUST NOT be negative.

3



2.2.3 WIN

Command: WIN
Type: Server
Usage: Informational
The server MUST send this to the winning client.

2.2.4 LOSE

Command: LOSE
Type: Server
Usage: Informational
The server MUST send this to all losing clients (either at the end of the
game or if they are killed in combat). After receiving a LOSE message, a
client MUST disconnect.

2.2.5 CHANGE

Command: CHANGE
Type: Server
Usage: Informational
When a player changes the state of the game (moves, picks up an object,
attacks, etc.) the server SHOULD inform all other players who may be
aware (via LOOK) of this change.

2.2.6 STARTTURN

Command: STARTTURN
Type: Server
Usage: Informational
The server MUST send this message to a client at the start of the player’s
turn, if the game is turn based.

2.2.7 ENDTURN

Command: ENDTURN
Type: Server
Usage: Informational
The server MUST send this message to a client at the end of the player’s
turn, if the game is turn based.

2.2.8 HITMOD

Command: HITMOD <number:n>

Type: Server
Usage: Informational

4



The server MUST send this message to the client if his hit points change.
The argument indicates the number to add to the current hitpoints. (This
can be negative.) Changes to hit points are normally caused by picking up
health potions or being attacked by another player.

2.2.9 TREASUREMOD

Command: TREASUREMOD <number:n>

Type: Server
Usage: Informational
The server MUST send this message to the client if the amount of trea-
sure they have changes. The argument indicates the number to add to the
treasure score. (This can be negative.)

2.2.10 MESSAGE

Command: MESSAGE <string:content>

Type: Server
Usage: Informational
The argument given for this message is a text string that a client SHOULD
pass to the user. The server MAY use these messages to pass human read-
able, game related informations, for example announcing that as user has
fulfilled the conditions required to win the game.

2.2.11 SUCCEED

Command: SUCCEED
Type: Server
Usage: Response
Returned as a response if a client action succeeds.

2.2.12 FAIL

Command: FAIL <string:comment>

Type: Server
Usage: Response
Returned as a response if a client action fails. The argument MAY be used
to provide a comment or additional information.

2.2.13 LOOKREPLY

Command: LOOKREPLY
Type: Server
Usage: Response
After a LOOKREPLY, a number of lines, indicating the layout of the nearby
dungeon, are transmitted. The symbols used are defined as following:

5



• X Indicates a grid location cannot be seen

• # Indicates a wall

• . Indicates a space

• E Indicates an exit tile

• G Indicates a space with one or more bits of treasure

• H Indicates a space with a health pickup

• S Indicates a space with a sword pickup

• A Indicates a space with an armour pickup

• L Indicates a space with a lantern pickup

• P Indicates a space with a player

The current player is assumed to be at the centre of the reply but is not
included in the look reply. The look reply MUST be as small as possible
(i.e. only include four ‘X’ characters if the player doesn’t have a lantern and
twelve ‘X’ characters if the player does). This is an example of a look reply:

LOOKREPLY

X###X

#.###

.GG..

###.#

X##.X

In this example, the player is located at the same position as the second
’G’. This look reply consists out of five lines, each terminated by a new line
character.

The server MAY provide additional detail about items and other players
using RENDERHINT messages. This MUST be sent immediately after the
LOOKREPLY it refers to.

2.2.14 RENDERHINT

Command: RENDERHINT <number:hints>

Type: Server
Usage: Informational
This message MUST only be sent after a LOOKREPLY and MUST relate
to the LOOKREPLY it follows. Hints are intended to allow better graphical
clients to be developed. Thus client software MAY choose to disregard them.
The argument to the message gives the number of hints to be transmitted.

6



This MUST be a positive number greater than 1. Each hint in then sent on
a separate line, using the following format:

<number:relative-x> <number:relative-y> <string:hint>

Where relative-x and relative-y give the location of the square in the
LOOKREPLY to which the hint refers (the centre square is taken to be
location (0,0) ). The string describes the square or the object in the square.
It’s format is implementation specific.

3 Example

This gives an example of communication between a client and a server using
the protocol described above, with a turn based version.

7



Client Server Comment

HELLO Dave HELLO Dave

GOAL 5 The goal of the game is to collect

5 lots of treasure.

STARTTURN

LOOK

LOOKREPLY

X##GX

G##.#

.GG..

###G#

X..AX The square with the player on also

contains treasure.

MOVE N

FAIL Wall The player can’t move because

there is a wall in the way.

PICKUP

SUCCEED

TREASUREMOD 1 The result of picking up the

treasure.

LOOK

LOOKREPLY

X##GX

G##.#

.G...

###G#

X..AX

ENDTURN The player chooses not to do

anything else.

CHANGE Another player’s actions have

changed something visible.

LOOK

LOOKREPLY

X##GX

G##.#

.G..P

###G#

X..AX Note that another player is

visible.

MESSAGE Oi! Message from another player.

8



Client Server Comment

CHANGE

LOOK

LOOKREPLY

X##GX

G##.#

.G.P. The other player moves closer.

###G#

X..AX

HITMOD -1 The other player attacks.

STARTTURN The start of the player’s next

turn ...

9


	Notation
	Commands
	Client Messages
	HELLO
	SETPLAYERPOS
	LOOK
	MOVE
	ATTACK - CW3 ONLY!
	PICKUP
	SHOUT
	ENDTURN

	Server Messages
	HELLO
	GOLD
	WIN
	LOSE
	CHANGE
	STARTTURN
	ENDTURN
	HITMOD
	TREASUREMOD
	MESSAGE
	SUCCEED
	FAIL
	LOOKREPLY
	RENDERHINT


	Example

