
Source Code Document

1 Readme

This is an version of Dungeon of Dooom designed to be ready for coursework
two and three. Some extra commands and functionality have been added, such
as an lantern and extra items to pick up, but the game is still not network or
multilayer ready. The game still supports one player, but the classes have been
designed so as to enable easy modification to multiple players. The GameLogic
class is not thread-safe, and will have to be protected for a multilayer game,
and a turn based system will need to be developed.

The code is also designed as a basis for extending functionality coursework
three (excluding the GUI elements, for which separate ”view” classes are recom-
mended). New items can be added to the game through extending the abstract
GameItem class, and skeleton attacking code.

1.1 Compiling

To compile the source, please use the following command in the directory con-
taining src and bin:

javac -d bin -cp src src/dod/Program.java

1.2 Running

java -cp bin dod/Program [-b] [map filename]

where “-b” specifies that a bot should play instead of the local user e.g.

java -cp bin dod/Progam -b example_map

2 General Organisation

The classes for handling the Game’s internal logic lie in the dod.game package.
The game is controlled through the GameLogic class, which can be viewed as
the overall controller. This in turns uses classes Map, Tile, Player, and Item and
sub-classes in the dod.game.items package. In addition, the CompassDirection
enum and Location are used to assist code-readability. Other classes may listen
to a player in the game by implementing the PlayerListener interface.

1



Command handling is carried out by the CommandLineUser abstract class.
This implements the PlayerListener interface and hence can “listen in” on a
player. This is inherited by HumanUser, which allows a user to play the game
from the command line, and Bot, which plays the game using textual commands
instead of operating on GameLogic directly (this may seem excessive, but would
allow a bot to player over a network).

The game is launched by running the Program class, which parses command
line arguments from the terminal and instantiates the right classes.

3 Classes

3.1 Progam

The Progam class parses command-line arguments, instantiates a new Game-
Logic instance, with a chosen or default map, and instantiates and runs Hu-
manUser or Bot on the map depending on the command line arguments.

3.2 CommandLineUser

The abstract CommandLineUser class handles parsing of text commands, op-
erating on the GameLogic instance. The class is abstract to enable the actual
retrieval and output of text commands and responses to be handled in differ-
ent ways, with the abstract run method designed to do the command retrieval
(perhaps with a new thread in future) and doOutputMessage to do the response
output.

In the event of a network game, a NetworkUser class which inherits Com-
mandLineUser could be created and instantiated once per player, with a thread,
to handle the players.

The CommandLineUser class implements the PlayerListener interface, to
enable it to “listen” to a player class. This will become invaluable in a network
game with each instance listening to another player.

3.3 HumanUser

The HumanUser class inherits the abstract CommandLineUser class and uses
“stdin” and “stdout” to allow a human user to enter messages on the command
line.

3.4 Bot

The Bot class is a very basic bot (which moves randomly) which players through
textual commands. The commands and responses are output to the command-
line so you can see it playing.

2



3.5 GameLogic

The GameLogic class handles the overall control of the game and has a public
interface which matches the available map commands (which by this stage have
already been parsed). The class relies on multiple other classes, which handle
other functionality and simplify the logic.

The class does not return any responses, except for clientLook and getGoal.
If no exception is thrown, the command is assumed to be succesful and another
class is responsible for returning success and handling the exception. Otherwise
a CommandException is thrown. Note that, the class may operate on a Player
causing it to inform the PlayerListener resulting in a response being output to
a player, e.g. TREASUREMOD.

In a multiplayer game, the class will need to be modified to handle multipler
users (currently “ENDTURN” and “STARTTURN” occur together). The class
is also not thread-safe, and will need protection if multiple threads are to operate
on it.

Attacking is featured in a method in the class, but has not been implemented.

3.6 CommandException

A checked exception to handle invalid commands, which otherwise parsed suc-
cessfully, e.g. walking into a wall.

3.7 Player

The Player class handles the state of each player, such as location, hit points,
amount of gold, items and action points. In a network game, there would be
multiple instances of Player but only one instance of GameLogic and Map. The
Player is “listened” to by a PlayerListener which is sent to the constructor. This
enables commands such as MESSAGE and TREASUREMOD to be output in
response to something happening to a player or the sendMessage method. In
a multiplayer game, the LOSE message could be handled in this manner by
changing the PlayerListener interface.

The player is also an GameItemConsumer meaning that items can operate
on the player. This is how gold or hitpoints are added to the player.

3.8 Map

The Map class handles reading the map from a file, and mainains an array of
Tile instances. The GameLogic class uses its methods to query it, e.g. to look
up a tile or check if a location is valid.

3.9 Tile

The Tile class represents a Tile on the map, contaning an enum, TileType. The
class has helper fuctions such as isWalkable to handle game logic. A tile may
also contain a GameItem.

3



3.10 Location

The Location class stores a 2D location and has two helper methods to assist
readability in generating an off set location or location at a compass direction.

3.11 CompassDirection

An enum to handle the different compass directions

3.12 GameItem

The GameItem class represtents an item which can be picked up from a tile by
a player and is inherited by the different items. The item may be “retainable”,
such as a sword, in which case the player holds the item (and can pick up
no more) or non-retainable, in which the item immediately dissapears and the
player may collect any number of the same item).

When a player picks up the item, something may happen, through the pro-
cessPickUp method which is executed on the Player class instance. This method
operates through the GameItemConsumer interface, implemented by the Player
class.

Gold is non-retainable, as the player may hold more than one, but the pro-
cessPickUp methods increments the gold count. Health potion (the Health class)
is also non-retainable and instantly increments the player hitpoints by one. Cur-
rently, the only effect of a retainable item is to increase the player’s look distance
(as featured by the Lantern class), but the interface can be expanded to support
more items. The Armour, Lantern and Sword classes are all retainable, but only
the Lantern class has an effect as attacking has not been implemented.

4


