
The Labyrinth of Dooom Protocol Specification

March 11, 2010

This document describes the protocol used by the The Labyrinth of

Dooom game for communication between the client and the server.

1 Notation

Within this document, the phrases MUST, MUST NOT, SHOULD, SHOULD
NOT and MAY have a specific meaning. The convention used is the one
described in RFC 2119. See:

http://www.ietf.org/rfc/rfc2119.txt

2 Commands

The protocol is made up of a series of commands. These comprise the name
of the command (a human readable string) and then optionally a space and
any arguements to the command, then a new line character. There are
two types of command, client commands and server commands. A client
command MUST only be sent by a client and a server command MUST
only be sent by a server. Most client commands have a response. If a
command has a response, it MUST recieve exactly one of these possible
messages as the next message sent from the server. Server commands are
used in two different ways, they are either responses or are informational
(and thus do not require a response from the client). Responses MUST only
be sent after the server processes a client command that requires such a
response. Informational message MAY be sent at any time, regardless of
which player’s turn it is.

2.1 Client Messages

2.1.1 HELLO

Command: HELLO <string:username>
Type: Client
Responses: HELLO <string:username>

1



This command sets the name of the player. The client MAY send this
command immediately after connecting to the server. If this message is not
recieved the server SHOULD assign a unique default name to the client.
The client MUST NOT send this more than once or at any other time.

2.1.2 LOOK

Command: LOOK
Type: Client
Responses: LOOKREPLY
The client sends this command to request a look return message from the
server, indicating his immediate surroundings. The client MAY send these
at any time after it has recieved it’s first STARTTURN or CHANGE, even
if it is not currently the player’s turn. The server MUST reply with a look
reply.

2.1.3 MOVE

Command: MOVE <character:direction>
Type: Client
Responses: SUCCEED, FAIL
The client sends this command to move one square in the indicated direction.
The direction MUST be either N, S, E or W. The client MUST only send
this message during the player’s turn.

2.1.4 ATTACK

Command: ATTACK <character:direction>
Type: Client
Responses: SUCCEED, FAIL
The client sends this command to attack another player in an adjacent
square in the indicated direction. The direction MUST be either N, S, E
or W. The client MUST only send this message during the player’s turn.
The server will return FAIL if the attack fails to cause any damage or if the
attack is directed against something other than a player.

2.1.5 PICKUP

Command: PICKUP
Type: Client
Responses: SUCCEED, FAIL
The client sends this command to pick up the item in it’s current location.
The client MUST only send this message during the player’s turn.

2



2.1.6 SHOUT

Command: SHOUT
Type: Client
Responses: None
Sends a message to be passed to other clients. The server MAY choose a
subset of clients (for example, only those who are nearby) to recieve the
message. The server message type MESSAGE will be used to send the
message to other clients. The client MAY send these at any time after it
hasrecieved it’s first STARTTURN or CHANGE, even if it is not currently
the player’s turn.

2.1.7 ENDTURN

Command: ENDTURN
Type: Client
Responses: ENDTURN
The client can send this command to end their turn.

2.2 Server Messages

2.2.1 HELLO

Command: HELLO <string:username>
Type: Server
Usage: Response
Returned as a response to a client HELLO.

2.2.2 GOAL

Command: GOAL <number:n>
Type: Server
Usage: Informational
The server SHOULD define the amount of gold required to win the game.
If this message is sent it MUST only be sent once and MUST be the first
message to be sent to the client. The argument MUST NOT be negative.

2.2.3 WIN

Command: WIN
Type: Server
Usage: Informational
The server MUST send this to the winning client.

3



2.2.4 LOSE

Command: LOSE
Type: Server
Usage: Informational
The server MUST send this to all losing clients (either at the end of the
game or if they are killed in combat). After recieving a LOSE message, a
client MAY disconnect, alternatively they may remain in the game but they
MUST only send SHOUT commands and MUST only recieve MESSAGE
and LOSE messages.

2.2.5 CHANGE

Command: CHANGE
Type: Server
Usage: Informational
When a player changes the state of the game (moves, picks up an object,
attacks, etc.) the server SHOULD inform all other players who may be
aware (via LOOK) of this change. The server MAY choose not to send a
CHANGE message to any player who (via LOOK) can not see the change.

2.2.6 STARTTURN

Command: STARTTURN
Type: Server
Usage: Informational
The server MUST send this message to a client at the start of the player’s
turn.

2.2.7 ENDTURN

Command: ENDTURN
Type: Server
Usage: Informational
The server MUST send this message to a client at the end of the player’s
turn.

2.2.8 HITMOD

Command: HITMOD <number:n>
Type: Server
Usage: Informational
The server MUST send this message to the client if his hit points change.
The argument indicates the number to add to the current hitpoints. (This
can be negative.) Changes to hit points are normally caused by picking up
health potions or being attacked by another player.

4



2.2.9 TREASUREMOD

Command: TREASUREMOD <number:n>
Type: Server
Usage: Informational
The server MUST send this message to the client if the amount of trea-
sure they have changes. The argument indicates the number to add to the
treasure score. (This can be negative.)

2.2.10 MESSAGE

Command: MESSAGE <string:content>
Type: Server
Usage: Informational
The arguement given for this message is a text string that a client SHOULD
pass to the user. The server MAY use these messages to pass human read-
able, game related informations, for example announcing that as user has
fulfilled the conditions required to win the game.

2.2.11 SUCCEED

Command: SUCCEED
Type: Server
Usage: Response
Returned as a response if a client action suceeds.

2.2.12 FAIL

Command: FAIL <string:comment>
Type: Server
Usage: Response
Returned as a response if a client action fails. The arguement MAY be used
to provide a comment or additional information.

2.2.13 LOOKREPLY

Command: LOOKREPLY
Type: Server
Usage: Response
After a LOOKREPLY, a number of lines, indicating the layout of the nearby
labyrinth, are transmitted. The symbols used are defined as following:

• X Indicates a grid location cannot be seen

• # Indicates a wall

• . Indicates a space

5



• E Indicates an exit tile

• G Indicates a space with one or more bits of treasure

• H Indicates a space with a health pickup

• S Indicates a space with a sword pickup

• A Indicates a space with an armour pickup

• L Indicates a space with a lantern pickup

• P Indicates a space with a player

The current player is assumed to be at the centre of the reply but is not
included in the look reply. The look reply MUST be as small as possible
(i.e. only include four ‘X’ characters if the player doesn’t have a latern and
twelve ‘X’ characters if the player does). This is an example of a look reply:

LOOKREPLY
X###X
#.###
.GG..
###.#
X##.X

In this example, the player is located at the same position as the second
’G’. This look reply consists out of five lines, each terminated by a new line
character.

The server MAY provide additional detail about items and other players
using RENDERHINT messages. This MUST be sent immediately after the
LOOKREPLY it refers to.

2.2.14 RENDERHINT

Command: RENDERHINT <number:hints>
Type: Server
Usage: Informational
This message MUST only be sent after a LOOKREPLY and MUST relate
to the LOOKREPLY it follows. Hints are intended to allow better graphical
clients to be developed. Thus client software MAY choose to disregard them.
The argument to the message gives the number of hints to be transmitted.
This MUST be a positive number greater than 1. Each hint in then sent on
a separate line, using the following format:

<number:relative-x> <number:relative-y> <string:hint>

6



Where relative-x and relative-y give the location of the square in the
LOOKREPLY to which the hint refers (the centre square is taken to be
location (0,0) ). The string describes the square or the object in the square.
It’s format is implementation specific.

3 Example

This gives an example of communication between a client and a server using
the protocol described above.

7



Client Server Comment
HELLO Dave HELLO Dave

GOAL 5 The goal of the game is to collect
5 lots of treasure.

STARTTURN
LOOK

LOOKREPLY
X##GX
G##.#
.GG..
###G#
X..AX The square with the player on also

contains treasure.
MOVE N

FAIL Wall The player can’t move because
there is a wall in the way.

PICKUP
SUCCEED
TREASUREMOD 1 The result of picking up the

treasure.
LOOK

LOOKREPLY
X##GX
G##.#
.G...
###G#
X..AX

ENDTURN The player chooses not to do
anything else.

CHANGE Another player’s actions have
changed something visible.

LOOK
LOOKREPLY
X##GX
G##.#
.G..P
###G#
X..AX Note that another player is

visible.
MESSAGE Oi! Message from another player.

8



Client Server Comment
CHANGE

LOOK
LOOKREPLY
X##GX
G##.#
.G.P. The other player moves closer.
###G#
X..AX
HITMOD -1 The other player attacks.
STARTTURN The start of the player’s next

turn ...

9


