
Modularity and Specialized Learning:
Reexamining Behavior-Based Artificial Intelligence

Joanna J. Bryson
Artificial models of natural Intelligence

University of Bath, BA2 7AY, United Kingdom
J.J.Bryson@bath.ac.uk

Abstract

Learning, like any search, is only tractable if it is tightly
focused. Modularity can provide the information a learn-
ing system needs by supporting specialized representation.
Behavior-based artificial intelligence is a well-known mod-
ular theory of intelligent design, but has not been used sys-
tematically in this way. This paper describes a new design
methodology, behavior-oriented design (BOD), which does.
Examples drawn from mobile robotics and models of learn-
ing in non-human primates show the diversity of informa-
tion this approach supports, from implicit and perceptual
learning to tasks, maps and relationships.

1. Introduction

Behavior-based artificial intelligence (BBAI) is one of
the best-known modular theories of intelligent design. His-
torically, however, although researchers have sometimes in-
corporated learning modules [e.g. 24, 28], there has been
no systematic incorporation of learning into pure behavior-
based design [though see 17]. Some hybrid systems have
been developed which incorporate both BBAI and tradi-
tional planning and learning, but these lose the full ad-
vantages of modularity. Contemporary multi-agent systems
(MAS) are fully modular, but overlook the BBAI advances
in organizing distributed systems of complicated modules.

In this paper I describe how BBAI can be adapted to fully
support modular learning. I begin by reviewing the history
of BBAI. Then I discuss my own methodology, Behavior-
Oriented Design (BOD), and explain how it exploits spe-
cialized learning, using examples from both robotics and
ALife models of non-human primates. BOD allows a sys-
tem with preprogrammed reactive control to behave in an
adaptive manner, because its control relies on modules con-
taining variable state. These modules combine current sen-
sor readings with predictions based on learning.

2 Behavior-Based Artificial Intelligence

Behavior-Based Artificial Intelligence (BBAI) is a
methodology for constructing intelligent agents which spec-
ifies that the attributes of their intelligence should be de-
composed into semi-autonomous modules. The expressed
behavior of these modules is made coherent through some
system of arbitration between these modules. Both the ar-
bitration system and the individual modules are intended to
require relatively little processing power or time, so that the
agent can respond quickly and appropriately to challenges
and opportunities in complex dynamic environments.

When BBAI was introduced by Brooks [3, 5], its primary
purpose was to provide a means to create these responsive
(or reactive) agents. Creating such agents is difficult be-
cause a rich environment provides so many things to react
to. Any living agent in a complex environment must choose
between a large number of possible actions, where each ac-
tion is itself dependent on a large number of environmental
contingencies, and is motivated by competing, mutually ex-
clusive goals.Choosing an optimal next action is impossible
[15]. Even choosing a pretty good one requires searching
an enormous space of possibilities.

Because an individual agent does not have time for such
a search in real time, most of its decisions must be made
in advance of its active life. However, this does not remove
the complexity of the decision nor the amount of search nec-
essary for a pretty-good choice. For animals, most of this
search has been performed by evolution over a period of bil-
lions of years. For animats, the analogous role to evolution’s
is further split between the search conducted by the individ-
ual animat designer and that performed by the designer’s
culture. Designers must anticipate the behaviorally-salient
contingencies that their agent may encounter, and provide
rapid ways to recognize and select the appropriate response.
We do this both through our own analysis and experimen-
tation, and through exploiting the scaffolding of design
knowledge we have previously learned.

BBAI is a piece of design knowledge that significantly



advanced the state of agent design, particularly in the ar-
eas of mobile robotics and virtual reality. I believe that the
primary reasons for this success are:

• the increased emphasis on providing engineered
knowledge, which is a side effect of the emphasis on
bottom-up control (sensing not representing), and

• the modular decomposition around individual ex-
pressed behaviors. This exploits the designers’ exist-
ing skills and talents for writing simple programs.

After these significant advances, the complexity of the
agents being built seems to have plateaued before the de-
velopment of animal-level intelligence [22, 26]. Again, I
believe there were two primary causes:

1. the fact that at leastsomeexpertise is best developed by
the agent through experience, particularly of the local
variations of its own physical plant (‘body’), and its
own local environment, and

2. the complexity of programming the behavior-
arbitration systems increases exponentially as the
complexity and number of behavior modules in-
creases.

The first point is key to the thesis of this paper: modular-
ity presents BBAI with the opportunity to maximally fa-
cilitate individual adaptation through providing specialized
representations and processes. The second point, although
important in the history of BBAI, is really a special case
of the first. Modularizing the process of behavior arbitra-
tion and providing it with appropriate representations can
greatly simplify the design process for a behavior-based
agent.

3 A Brief History of Modular AI

This is a brief history of the critical attributes of BBAI
systems which will support the claims I outlined above.
More extensive reviews of the BBAI literature are available
[6, 8], as are more thorough comparisons to neural and psy-
chological theories [8, 10].

I will begin with Fodor’s “The Modularity of Mind” [19],
both because it introduces many of the concepts familiar to
BBAI, and because it presents a theory of intelligence de-
composition which is still actively researched in the natural
sciences today [e.g. 14].

Fodor introduces the terms ‘horizontal’ vs. ‘vertical’
to describe two different sorts of decomposition of intel-
ligence. Horizontal decompositions for Fodor are those
which identify processes (e.g. memory, attention, percep-
tion, judgment) which underlie all of cognition.Vertical
decompositions identify particular skills or faculties (e.g.

mathematics, language, metaphysics) which each have their
own characteristic processes of memory, attention and so
forth. Roughly speaking, evidence for horizontal decompo-
sition is the extent to which performance across domains is
correlated for a particular individual; evidence for vertical
decomposition is the extent to which it is not.

Fodor believes thatpart of human intelligence is decom-
posed in this vertical sense; those parts being perception
and (separately) action. In Fodor’s system, a number of
semi-autonomous perceptual modules run simultaneously
giving quick, automatic analysis of the perceptual scene.
Each module recognizes its own best input, and effectively
trumps the other modules when it is best utilized. The out-
put of these modules is in the language of thought, which is
operated on by a horizontal reasoning system. He presumes
that the reasoning system’s output is interpreted into action
in a similar way, but theorizes less about this process.

Another precursor of BBAI is the “Society of Mind”
[18, 29]. Minsky’s proposal is more substantially vertical
than Fodor’s, although it still has some horizontal elements.
An individual’s actions are determined by simpler agencies,
which are effectively specialists in particular domains. Min-
sky’s agencies exploit hierarchy for organization, so for ex-
ample the agency of play is composed of agencies such as
block-play and doll-play. Arbitration between agencies is
also hierarchical, so the play agency competes with the food
agency for the individual’s attention. Once play establishes
control, the block and doll agencies compete.

Minsky’s agents have both perception and action, but not
memory, which is managed by another network of agencies
of a different sort. Memory (K) agencies are interconnected
both with each other and with the other, actor (S) agents;
each can activate the other. Keeping the whole system
working requires another horizontal faculty: the B brain,
which monitors the main (A) brain for internally obvious
problems such as redundancy or feedback cycles.

The term ‘behavior-based artificial intelligence’ was in-
vented to describe a simplified but fully-implemented sys-
tem used to control multiple, robotic agents. This was
the subsumption architecture [3, 5]. The subsumption ar-
chitecture is purely vertical. The modules were originally
finite state machines, and arbitration between them was
conducted exclusively by wires connecting the modules —
originally literally, eventually as encoded in software. Each
wire could connect one module to another’s input or output
wires, the signal of which the first module could then either
monitor, suppress or overwrite.

Brooks initially asserted that most apparent horizontal
faculties (e.g. memory, judgment, attention, reasoning)
were actually abstractions emergent from an agent’s ex-
pressed behavior, but had no place in the agent’s actual con-
trol [5, p. 146–147]. However, his system was rapidly ex-
tended to have learning systems either inside modules or



local to layers of modules [e.g. 4, 28]. Unfortunately, this
promising approach was apparently smothered by the at-
tractive simplicity and radicalism of his deemphasis on rep-
resentation and centralized control.

Of the researchers who didnot immediately adopt “no
representation” as a mantra, most attributed the impressive
success of Brooks approach to the fact that he had created
abstracted primitives — the action/perception modules. Be-
cause these primitive units could sort out many of the details
of a problem themselves, they made the composition of in-
telligence underany approach relatively easy [27]. Thus
behavior systems were incorporated as a component into
a large variety of AI architectures which still maintained
centralized, logic-based planning and learning systems [e.g.
2, 21]. Unfortunately, the difficulty of reasoning about rel-
atively autonomous components motivates the trivialization
of behavior modules, e.g. to “fuzzy rules” [25] or vec-
tor spaces [1] which can be easily composed. Despite the
lack of commonality of such approaches to Brooks’ original
ideal, they are still often called either behavior-based or hy-
brid behavior-based systems. Further, by the late nineties,
the work of these researchers had so far outstripped that of
the ‘pure’ BBAI researchers that two significant publica-
tions declared this hybrid approach to have been demon-
strated superior to non-hybrid ones [22, 26].

Given the attributes of BBAI outlined earlier, in some
senses multi-agent systems (MAS) are closer to BBAI than
hybrid behavior-based systems. Each agent performs a par-
ticular task, and may have its own private knowledge store
and representations which are presumably well suited to its
function. However, to date there are fundamental differ-
ences between a MAS and a single, modular agent. These
differences can be seen in the emphasis on communication
and negotiation between modules / agents [35]. The MAS
community is concerned with interoperability between un-
specified numbers and types of agents, and with distribution
across multiple platforms. This creates an administrative
overhead not necessary for a single, modular agent1.

In summary, BBAI was originally conceived and imple-
mented as a clean, simple version of modular hypotheses
that were already influential in psychology and AI. It lead
to substantial improvements in real-time AI, and still has
a great deal of influence not only in robotics [1, 26] but
in virtual reality [33]. However, it is famously difficult to
program [33, 35]. This difficulty has supported the wide-
spread acceptance of hybridization between behavior-based
and traditional AI. Unfortunately, these hybrids lose many
of the advantages of modularity. The next section suggests
ways to reclaim these advantages.

1Where MAS are in fact limited to a single platform and a relatively
fixed architecture, I suspect their engineers should consider them to be
modular single agents [9].

4 Modularity and Learning

In the previous section I explained Fodor’s use of the
terms “horizontal” and “vertical” to describe modular de-
compositions along generic function vs. task specific lines
(respectively.) I also showed that the original behavior-
based AI, the subsumption architecture, used the most
strictly vertical modular decomposition. In this section I
describe my own approach to BBAI and modular decompo-
sition — that is, the problem of deciding how many modules
an agent needs and what should be their capacities.

I believe modular decomposition should be determined
by the requirements of variable state needed for learn-
ing. This idea is not entirely original; it is inspired by
object-oriented design [e.g. 16, 30]. Consequently, I call
it Behavior-Oriented Design (BOD). Under BOD, modular
decomposition is done along the lines of specialized rep-
resentations underlying adaptive requirements for the agent
to be implemented. Most of these representations will sup-
port vertical abilities, for example representations under-
lying navigation or language, but some of them reliably
support horizontal abilities, such as behavior arbitration or
smoothing motor control.

Although this suggestion is simple, I think it brings a
great deal both to BBAI and to the understanding of learn-
ing in intelligent systems, including animals. Compared to
the original BBAI, BOD provides for learning while simpli-
fying behavior arbitration. Compared to hybrid BBAI, BOD
provides both a return to full modularity and a reemphasis
on facilitating hand design.

In terms of understanding learning in intelligent systems,
BOD makes explicit the continuum of adaptivity underlying
intelligent behavior. The BOD development process [see 8]
emphasizes two things:

• increasing the probability of success in learning (or
any other type of search) by providing the agent with
as much information (bias) as possible, and

• maintaining the simplicity of the agent by trading off
complexity between various representations.

4.1 A Module for Behavior Arbitration

BOD particularly emphasizes the tradeoffs to be made
between adaptive state for specialized perception and that
for action selection through behavior arbitration [8]. This
goes back to the notion of whether a module can, on its own,
recognize a situation in which it should operate. I believe
it is more reasonable for a module to recognize when itcan
operate. To recognize when itshouldoperate requires more
information than a largely encapsulated, semi-autonomous
module ought to have access to.



Figure 1. A patrolling robot cannot base its
steering decisions entirely on external con-
text and cover the entire maze.

In any particular context, there may well be more than
one module that could or even should operate. This is the fa-
miliar problem ofperceptual aliasing, which was originally
seen as a problem of perception, but is in fact just a charac-
teristic of the world. For example, consider a watch-robot
intended to patrol an office space composed of corridors and
junctions (Figure 1). For some junctions, the direction to go
is entirely determined by either the robot’s history (where it
has most recently been) or its intentions (where it needs to
go next.) We could try to read the robot’s history or in-
tentions off of its physical states (such as the direction it is
pointing) but these can be perturbed by other subtasks such
as avoiding people in the hallway. It is far simpler to keep
a brief history of decisions or intentions in the specialized
state that supports arbitration.

The strategy of making behavior arbitration into a spe-
cial, horizontal module allows for a tradeoff between the
complexity of action selection and the complexity of per-
ception. I have argued at length elsewhere that ideally there
should be a structured hierarchical representation under-
lying behavior arbitration, which represents behavior or-
dering and prioritization given a particular context [6, 7].
The advantage of such a decomposition is that it simpli-
fies knowledge acquisition by separating acquisition tasks
that have minimal correlation between them. The behavior-
arbitration module doesn’t need to know how task modules
recognize context or perform their tasks; task modules don’t
need to know what other tasks might be performed in the
same location at the same time, or what their relative prior-
ities are.

4.2 From Perception to Knowledge

I will use the domain of mobile-robot navigation in or-
der to demonstrate the variety of adaptation usefully mod-
eled in behaviors in the BOD system. Although the robot
work described here is old [12], the problems of robot per-

ception and action provide clear and intuitive explanations
for the different requirements for variable state. The robot,
a radially symmetric, 16 sided Nomad 200, navigated in a
smooth, continuous fashion around an office environment,
negotiating doorways barely wider than itself and avoiding
obstacles. It also learned simple paths from instruction.

Direction
current

preferred
∗directions

narrow, has dir?, pick open dir

correct dir, lose dir, move, moveview? //
_ _ _ _Â

Â

Â

Â
_ _ _ _

Action
Selection

direction
which-direction
sense-ring-mask

move, moveview?
ddHHHHHHHHHH

P-Memory
sonar-history sonar-expect

// C-Sense
sensor-ring-vector

csense

RR

csenseDDDDDDDDD

aaDDDDDDD

compound-sense
°°°°°°°°°°°°°°

FF°°°°°°°°°°°°°°

Bump
∗bumps

reg bump,
bumped

VV---------------------------
bump-fuseoo

_ _ _Â
Â

Â
Â

_ _ _Robot

sonarQQQQQQQQQQQQQQQQQ

hhQQQQQQQQQQQQQQ
infra-red

OO

bumpersqqqqqqqqqqqqq

88qqqqqqqqqqqq

odometry //
bump
x, y

next∗

bump-fuse

OO

Figure 2. Behaviors for moving a robot.

Figure 2 shows behaviors that allow the robot to choose
its speed and precise direction given that it has already de-
termined an approximate goal heading. The vertical mod-
ules have solid boxes, the horizontal ones (including the
robot’s body) are dashed. Beginning at the bottom of the
figure, the robot provides four types of sensory information
relevant to picking a safe path. Adirection behavior will
determine the speed and direction for the robot, based on a
16 value array representing the approximate distance from
each of the robot’s faces to the next obstacle. This array is
maintained byC-sense(compound sense).

Sonar, infra-red and bumpers all give information about
the location of obstacles. Sonar operates by emitting sound
then listening for it to bounce off obstacles. It can be ac-
curate from about 20cm to 6m, but is subject to a variety
of deflections and interference which can make objects ap-
pear suddenly closer or further away. Perceptual memory,
P-Memory processes this information with a simple 6 item
memory buffer. Each time a new sonar reading is received
(about 7 times a second) the reading for each sensor is com-
pared with those of the previous half minute. If a major
discontinuity is perceived in one reading, it is ignored, and
a new one computed based on the previous average value.
However, if the new reading persists for 2 more readings, it
is then ‘believed’ and becomes the new value for that sonar.

Infra-red sensors do not have the non-linearities of sonar,
but have a far more limited range (approximately 0-24cm),
and are also influenced by the color of the reflected surface.
Infra-red sensors must be used for delicate maneuvers such
as passing through doorways which require obstacle detec-



tion within the blind zone of the sonars. However, some
things will not be detected by either long-range system, and
are instead detected by the robots bumpers. Thebump be-
haviors each represent one such past event. Since a bump
is only detectable at the time and location of the event, the
robot must compute the bump’s approximate location af-
ter having disengaged from the obstacle in order to avoid
it. This computation is based on odometric data. However,
odometry accumulates errors rapidly, so bump events are
forgotten after the robot has moved a few yards.
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Figure 3. Behaviors added for map learning.

The robot thus brings a diverse array of “knowledge” to
the continuous task of choosing a new speed and direction
at any given instant.Direction andAction Selectionwork
in concert for determining whichdirection controls these
variables. Direction stores the current intended direction,
while Action Selectiondetermines the behavioral context
(e.g. going forward normally toward a goal direction, or
backing up after a collision). Eachdirection contains a
template for determining discounts on the importance of the
values of the array inC-Sensepertaining to whether the par-
ticular array value is directly in front, mostly to the side, or
behind the direction of motion before thatdirection’s face.
The value of the discount templates in thedirection behav-
iors was learned off-line by the developer. The values in
theC-Sensearray are determined at any time, based on the
most recent infra-read reading, the last half second of sonar
readings, and perhaps a few minutes of bumper readings.

None of this adaptation would be considered “learning”
in the common usage of the term, because it does not change
state permanently for the lifetime of the agent. Never-
theless, all this knowledge may be considered predictions
which lead to adaptive behavior. For example, the state
recording the last direction of motion is used to predict the
next one, which in turn determines what values are used
in computing the robot’s velocities. Similarly, the historic
sonar readings are treated as more predictive of the true dis-
tance to obstacles than any one current sensor reading. The
only reason to have adaptive state in the robot is because the
past can be used to predict the present, and can do so more

reliably than sensors on their own.
This argument extends to the modules that do map learn-

ing (see Figure 3, described further in [8, Section 7.6.3]).
Heredecision points— locations where the robot suddenly
has a choice of direction (e.g. when it enters a room or
encounters a doorway in a hall) are stored along with the
decisions that were made at them, possibly after soliciting
advice. Thus the robot can create a map (or learn a plan)
from an instructor. This particular robot does not learn a
complete, connected 2-D representation of the world, but
rather a set of cues that can be read from the environment
in order to make future decisions autonomously. Neverthe-
less, it behaves as if it has learned its way around. Now the
common usage of ‘learning’ does apply, but the knowledge
system is fundamentally the same.

5 Generic Types of Specialized State

The key observation about the robot example above is
that BOD has been used to produce a reactive system which
can operate well in a dynamic environment. It does this by
exploiting a variety of types of information:

• Engineering, provided by the developer (or evolution),
which does not change over the lifetime of the agent.
This includes both fixed program code and parameters
set by off-line tweaking and experimentation.

• Reactive plans, which keep track of the robots current
decision context and focus its attention on particular
behaviors. These are the basic representation underly-
ing the Action Selection module.

• Learned values of variable state. Variable state is at
the heart of the vertical / task modules. The ‘learning’
may persist only as very-short-term perceptual mem-
ory, as medium-term working memory, or for the life-
time of the agent.

This decomposition can also be found in real animals
[10, for more details]. The engineered information is
roughly equivalent to genetic predispositions, though in real
animals, it is more difficult to separate development from
learning, since development has evolved to rely on ubiqui-
tous features of the environment as an information source.
Reactive plans play a similar role to the behavior of the
vertebrate forebrain [31], which, when working correctly,
selects, sequences and inhibits behavior expression [13],
though again note that in animals this can be more plas-
tic than it is in BOD. Finally, the vertical behaviors I would
equate with various sorts of cortical activation and plastic-
ity. BOD does not currently discriminate between plastic-
ity from activation levels and plasticity through long-term
changes in connectivity.



These three types of information are not entirely disjoint:
the reactive plans are hand coded, and are run in a special
action-selection module. Reactive plans are themselves an
elaborate form of specialized variable state. They encode
both engineered information in the form of contingencies
the designer anticipates the agent will encounter, and vari-
able state indicating recent decision-making context, which
constrains choices in the immediate future in order to pro-
vide persistence and reduce search.

In fact, all modules mix engineering with variable state.
What makes the reactive plans special is that both their rep-
resentation and the code that exploits it are used in all BOD
agents. Extensive research has lead me to believe the BOD
reactive plans are simply the best way to do behavior ar-
bitration in a modular single agent [7, 8]. Obviously it
would be useful to find other such generically useful rep-
resentations, since reusing solutions reduces development
time. In the rest of this section, I will discuss three other
biologically-inspired types of learning or plasticity, two of
which I am currently developing under BOD.

5.1 Drives and Emotions

Because the reactive plans underlying BOD action se-
lection are relatively fixed, they do not represent well the
sorts of variation that the brain represents chemically such
as drives for food or sleep, or emotional states such as anger
or fear. Drives and emotions represent and intermediate
time course for intelligent state between the electrical / neu-
ral firing rate (which BOD represents in reactive plans) and
long-term potentiation (which BOD stores in modules.) Re-
active agents without this sort of state can seem erratic [33].
We are currently exploring how including this sort of dura-
tive decision state influences action selection, both from the
perspective of believability (for VR agents) and for evolving
social behavior (in Artificial Life agents.

The way to encode variable state in BOD is as behavior
modules. However, these behaviors are so stereotyped, and
have such simple state (essentially a single drive level) that
they are effectively their own type. We are consequently
developing a standardized representation for modeling of
emotions and drives. Although the drive level itself is sim-
ple variable, each drive or emotion has its own onset and
decay characteristics [34]. Further, the interactions between
these states — with each other and with standard action se-
lection — varies. For example, there must either be a latch-
ing or a blending mechanism to decide which of two con-
flicting drives or emotions is expressed.

To date we have used this type of behaviors both to create
realistic real-time facial animation [34] and to create a sim-
ulation of a primate colony. The primate colony is the first
exploration of combining all three types of intelligent state
together. Its members have two drives: one for grooming

(a stand in for general social behavior) and one for wander-
ing alone (a stand in for foraging.) I have been using this
model to explore the impact of adding simple social behav-
iors (such as tolerance of grooming) on the time spent by the
group as a whole pursuing their goals [9]. We are currently
extending the social model to include emotions or drives
such as anger and affinity in an effort to model differences
in different species of primates social structures.

5.2 Task Learning

The fact that BOD reactive plans are engineered bars
BOD agents from doing something else real animals do:
learn new tasks or new vertical modules. Again though, the
extent to which animals have this capacity tends to be ex-
aggerated in folk psychology. For example, pigeons can’t
learn to flap their wings for food or to peck to avoid shock,
although theycanlearn to flap their wings to avoid shock or
to peck to get food [see further 20, 32].
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Figure 4. Behaviors used for an artificial life
model of transitive inference learning.

I have built a model that learns what is effectively one
component of a reactive plan within a particular context.
The context is a model of transitive inference learning as
performed by animals and children [8, 11]. The model
shows simultaneous learning of both context / action pairs,
and a set of prioritizations between the different contexts.
These prioritizations determine when more than one con-
text applies, which action should be taken. This amounts to
a reactive plan — a prioritized set of context / action pairs.

To date we have demonstrated that this models both hu-
man and non-human primate learning of transitive infer-
ence. I am currently working to extend this model. True
task learning should include not only context / action pairs
and their priorities, but also when new contexts or actions
need to be discriminated, and how this impacts the task rep-
resentation as a whole. The performance context the agent
believes itself to be in will determine the set of things it
might learn as well as the things it might do.



This task-learning mechanism also has a biological cor-
relate: the hippocampal learning system [11]. Neverthe-
less, such a general-purpose horizontal task-learning mod-
ule should probably not become an expected component of
all BOD agents. Such open-ended learning takes a great
deal of time even with heavy bias, so defies the BOD prin-
ciple of guaranteeing successful and timely learning. How-
ever, it is necessary for true mammalian intelligence.

5.3 Phenotype Swaps

Finally, I’d like to describe a very different form of natu-
ral plasticity. Hofmann and Fernald [23] have shown that
both physical characteristics and expressed behavior can
change extremely rapidly (within minutes) following a sin-
gle traumatic (whether positive or negative) social event.
The representations underlying these changes seem to be
phenotypicin nature, with concurrent changes of gene ex-
pression in large numbers of neural synapses. The pheno-
types in question determine whether a male Cichlid fish fol-
lows a behavior pattern of simple schooling, feeding and
growth, or one of aggressive mating and territory defense
which does not allow much time for growth. Male cichlid
apparently alternate between these phenotypes. Not only
behavior, but coloration change immediately after a deci-
sive social event (a fight outcome), while gonad and overall
size and shape gradually shift during the following weeks.

I have no immediate plans to model this sort of behavior,
but it could be fairly easily done by implementing more than
one action-selection plan hierarchy per agent, plus a special
arbitration mechanism dedicated to swapping between these
two plans. Since top-down expectations influence which
behaviors are actively utilized by a BOD agent, this would
effectively (though not actually) excite or inhibit other rele-
vant behavior modules.

Is this learning? The representation involves no mental
structure, and could not be used or manipulated in any other
way. Yet an event (the result of a fight) selects a set of be-
havior which is only cost effective if that outcome serves to
predict a reasonable period of success in near-future events
of the same kind. The fish will only receive payoff for the
hard work of defending a territory if it does so long enough
to reproduce and protect its progeny. Again, adaptation is a
continuum, and this perhaps the ultimate vertical module.

6 Conclusions

In this paper, I have described how modularity can be
used to facilitate specialized learning, and shown how this
is central to intelligent behavior. I have concentrated on how
this perspective illuminates the history of modular AI, but
I believe it also informs the modularity debate in psychol-
ogy, and provides some explanation for the modularization

we see in the brain. In the future I hope that modular AI
will be able to do for psychology and systems neuroscience
what neural networks research has done for neuroscience
— provide testbeds and intuition pumps to help the natural
sciences form and refine their models.
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