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Abstract 2 Behavior-Based Artificial Intelligence

Learning, like any search, is only tractable if it is tightly Behavior-Based Artificial Intelligence (BBAI) is a
focused. Modularity can provide the information a learn- methodology for constructing intelligent agents which spec-
ing system needs by supporting specialized representationifies that the attributes of their intelligence should be de-
Behavior-based artificial intelligence is a well-known mod- composed into semi-autonomous modules. The expressed
ular theory of intelligent design, but has not been used sys-behavior of these modules is made coherent through some
tematically in this way. This paper describes a new design system of arbitration between these modules. Both the ar-
methodology, behavior-oriented design (BOD), which does. bitration system and the individual modules are intended to
Examples drawn from mobile robotics and models of learn- require relatively little processing power or time, so that the
ing in non-human primates show the diversity of informa- agent can respond quickly and appropriately to challenges
tion this approach supports, from implicit and perceptual and opportunities in complex dynamic environments.
learning to tasks, maps and relationships. When BBAI was introduced by Brooks [3, 5], its primary
purpose was to provide a means to create these responsive
(or reactivg agents. Creating such agents is difficult be-
cause a rich environment provides so many things to react
to. Any living agent in a complex environment must choose
between a large number of possible actions, where each ac-

Behavior-based artificial intelligence (BBAI) is one of tion is itself dependent on a large number of environmental
the best-known modular theories of intelligent design. His- contingencies, and is motivated by competing, mutually ex-
torically, however, although researchers have sometimes inclusive goals.Choosing an optimal next action is impossible
corporated learning modules [e.g. 24, 28], there has beer[15]. Even choosing a pretty good one requires searching
no systematic incorporation of learning into pure behavior- an enormous space of possibilities.
based design [though see 17]. Some hybrid systems have Because an individual agent does not have time for such
been developed which incorporate both BBAI and tradi- a search in real time, most of its decisions must be made
tional planning and learning, but these lose the full ad- in advance of its active life. However, this does not remove
vantages of modularity. Contemporary multi-agent systemsthe complexity of the decision nor the amount of search nec-
(MAS) are fully modular, but overlook the BBAI advances essary for a pretty-good choice. For animals, most of this
in organizing distributed systems of complicated modules. search has been performed by evolution over a period of bil-

In this paper | describe how BBAI can be adapted to fully lions of years. For animats, the analogous role to evolution’s
support modular learning. | begin by reviewing the history is further split between the search conducted by the individ-
of BBAI. Then | discuss my own methodology, Behavior- ual animat designer and that performed by the designer’s
Oriented Design (BOD), and explain how it exploits spe- culture. Designers must anticipate the behaviorally-salient
cialized learning, using examples from both robotics and contingencies that their agent may encounter, and provide
ALife models of non-human primates. BOD allows a sys- rapid ways to recognize and select the appropriate response.
tem with preprogrammed reactive control to behave in an We do this both through our own analysis and experimen-
adaptive manner, because its control relies on modules contation, and through exploiting the scaffolding of design
taining variable state. These modules combine current senknowledge we have previously learned.
sor readings with predictions based on learning. BBAI is a piece of design knowledge that significantly

1. Introduction



advanced the state of agent design, particularly in the ar-mathematics, language, metaphysics) which each have their

eas of mobile robotics and virtual reality. | believe that the own characteristic processes of memory, attention and so

primary reasons for this success are: forth. Roughly speaking, evidence for horizontal decompo-
sition is the extent to which performance across domains is

o the increased emphasis on providing engineered qre|ated for a particular individual; evidence for vertical
knowledge, which is a side effect of the emphasis on decomposition is the extent to which it is not.

bottom-up control (sensing not representing), and Fodor believes thatart of human intelligence is decom-

e the modular decomposition around individual ex- Posed in this vertical sense; those parts being perception
pressed behaviors. This exploits the designers’ exist-and (separately) action. In Fodor's system, a number of

ing skills and talents for writing simple programs. semi-autonomous perceptual modules run simultaneously
giving quick, automatic analysis of the perceptual scene.

After these significant advances, the complexity of the Each module recognizes its own best input, and effectively
agents being built seems to have plateaued before the detrumps the other modules when it is best utilized. The out-
velopment of animal-level intelligence [22, 26]. Again, | put of these modules is in the language of thought, which is
believe there were two primary causes: operated on by a horizontal reasoning system. He presumes
that the reasoning system’s output is interpreted into action
in a similar way, but theorizes less about this process.

Another precursor of BBAI is the “Society of Mind”
[18, 29]. Minsky’s proposal is more substantially vertical
than Fodor’s, although it still has some horizontal elements.

2. the complexity of programming the behavior- Anindividual's actions are determined by simpler agencies,
arbitration systems increases exponentially as thewhich are effectively specialists in particular domains. Min-
complexity and number of behavior modules in- SKy's agencies exploit hierarchy for organization, so for ex-
creases. ample the agency of play is composed of agencies such as

block-play and doll-play. Arbitration between agencies is
The first point is key to the thesis of this paper: modular- also hierarchical, so the play agency competes with the food
ity presents BBAI with the opportunity to maximally fa- agency for the individual’s attention. Once play establishes
cilitate individual adaptation through providing specialized control, the block and doll agencies compete.
representations and processes. The second point, although Minsky’s agents have both perception and action, but not
important in the history of BBAI, is really a special case emory, which is managed by another network of agencies
of the first. Modularizing the process of behavior arbitra- o 5 different sort. Memory (K) agencies are interconnected
tion and providing it with appropriate representations can poih with each other and with the other, actor (S) agents;
greatly simplify the design process for a behavior-based gach can activate the other. Keeping the whole system
agent. working requires another horizontal faculty: the B brain,

which monitors the main (A) brain for internally obvious
3 A Brief History of Modular Al problems such as redundancy or feedback cycles.

The term ‘behavior-based artificial intelligence’ was in-

This is a brief history of the critical attributes of BBAI  vented to describe a simplified but fully-implemented sys-
systems which will support the claims | outlined above. tem used to control multiple, robotic agents. This was
More extensive reviews of the BBAI literature are available the subsumption architecture [3, 5]. The subsumption ar-
[6, 8], as are more thorough comparisons to neural and psychitecture is purely vertical. The modules were originally
chological theories [8, 10]. finite state machines, and arbitration between them was

I will begin with Fodor’s “The Modularity of Mind” [19], conducted exclusively by wires connecting the modules —
both because it introduces many of the concepts familiar tooriginally literally, eventually as encoded in software. Each
BBAI, and because it presents a theory of intelligence de-Wwire could connect one module to another’s input or output
composition which is still actively researched in the natural wires, the signal of which the first module could then either
sciences today [e.g. 14]. monitor, suppress or overwrite.

Fodor introduces the terms ‘horizontal’ vs. ‘vertical Brooks initially asserted that most apparent horizontal
to describe two different sorts of decomposition of intel- faculties (e.g. memory, judgment, attention, reasoning)
ligence. Horizontal decompositions for Fodor are those were actually abstractions emergent from an agent's ex-
which identify processes (e.g. memory, attention, percep-pressed behavior, but had no place in the agent’s actual con-
tion, judgment) which underlie all of cognitionVertical trol [5, p. 146-147]. However, his system was rapidly ex-
decompositions identify particular skills or faculties (e.g. tended to have learning systems either inside modules or

1. the fact that at leasbmeexpertise is best developed by
the agent through experience, particularly of the local
variations of its own physical plant (‘body’), and its
own local environment, and



local to layers of modules [e.g. 4, 28]. Unfortunately, this 4 Modularity and Learning
promising approach was apparently smothered by the at-
tractive s_;implicity and rgdicalism of his deemphasisonrep- | the previous section | explained Fodor's use of the
resentation and centralized control. terms “horizontal” and “vertical” to describe modular de-
Of the researchers who ditbt immediately adopt “no  compositions along generic function vs. task specific lines
representation” as a mantra, most attributed the impressivgrespectively.) | also showed that the original behavior-
success of Brooks approach to the fact that he had createthased Al, the subsumption architecture, used the most
abstracted primitives — the action/perception modules. Be-strictly vertical modular decomposition. In this section |
cause these primitive units could sort out many of the detailsdescribe my own approach to BBAI and modular decompo-
of a problem themselves, they made the composition of in- sition — that is, the problem of deciding how many modules
telligence undeany approach relatively easy [27]. Thus an agent needs and what should be their capacities.
behavior systems were incorporated as a component into | believe modular decomposition should be determined
a large variety of Al architectures which still maintained by the requirements of variable state needed for learn-
centralized, logic-based planning and learning systems [e.ging. This idea is not entirely original; it is inspired by
2, 21]. Unfortunately, the difficulty of reasoning about rel- object-oriented design [e.g. 16, 30]. Consequently, | call
atively autonomous components motivates the trivialization it Behavior-Oriented Design (BOD). Under BOD, modular
of behavior modules, e.g. to “fuzzy rules” [25] or vec- decomposition is done along the lines of specialized rep-
tor spaces [1] which can be easily composed. Despite theresentations underlying adaptive requirements for the agent
lack of commonality of such approaches to Brooks'’ original to be implemented. Most of these representations will sup-
ideal, they are still often called either behavior-based or hy- port vertical abilities, for example representations under-
brid behavior-based systems. Further, by the late ninetieslying navigation or language, but some of them reliably
the work of these researchers had so far outstripped that okupport horizontal abilities, such as behavior arbitration or
the ‘pure’ BBAI researchers that two significant publica- smoothing motor control.
tions declared this hybrid approach to have been demon-  Ajthough this suggestion is simple, | think it brings a
strated superior to non-hybrid ones [22, 26]. great deal both to BBAI and to the understanding of learn-
Given the attributes of BBAI outlined earlier, in some ing in intelligent systems, including animals. Compared to
senses multi-agent systems (MAS) are closer to BBAI thanthe original BBAI, BOD provides for learning while simpli-
hybrid behavior-based systems. Each agent performs a parfying behavior arbitration. Compared to hybrid BBAI, BOD
ticular task, and may have its own private knowledge store provides both a return to full modularity and a reemphasis
and representations which are presumably well suited to itson facilitating hand design.
function. However, to date there are fundamental differ-  Interms of understanding learning in intelligent systems,
ences between a MAS and a single, modular agent. Thes®80OD makes explicit the continuum of adaptivity underlying
differences can be seen in the emphasis on communicatiorintelligent behavior. The BOD development process [see 8]
and negotiation between modules / agents [35]. The MAS emphasizes two things:
community is concerned with interoperability between un-
specified numbers and types of agents, and with distribution ® increasing the probability of success in learning (or
across multiple platforms. This creates an administrative ~ any other type of search) by providing the agent with
overhead not necessary for a single, modular dgent as much information (bias) as possible, and

In summary, BBAI was originally conceived and imple-
mented as a clean, simple version of modular hypotheses
that were already influential in psychology and Al. It lead
to substantial improvements in real-time Al, and still has ) o
a great deal of influence not only in robotics [1, 26] but 4-1 A Module for Behavior Arbitration
in virtual reality [33]. However, it is famously difficult to
program [33, 35]. This difficulty has supported the wide- BOD particularly emphasizes the tradeoffs to be made
spread acceptance of hybridization between behavior-basedetween adaptive state for specialized perception and that
and traditional Al. Unfortunately, these hybrids lose many for action selection through behavior arbitration [8]. This
of the advantages of modularity. The next section suggestsgoes back to the notion of whether a module can, on its own,
ways to reclaim these advantages. recognize a situation in which it should operate. | believe

it is more reasonable for a module to recognize wheaiit

IWhere MAS are in fact limited to a single platform and a relatively _operate._ Torecognize whensitouldoperate req_uwes more
fixed architecture, | suspect their engineers should consider them to beinformation than a largely encapsulated, semi-autonomous
modular single agents [9]. module ought to have access to.

e maintaining the simplicity of the agent by trading off
complexity between various representations.




ception and action provide clear and intuitive explanations
for the different requirements for variable state. The robot,
a radially symmetric, 16 sided Nomad 200, navigated in a

smooth, continuous fashion around an office environment,
e negotiating doorways barely wider than itself and avoiding

obstacles. It also learned simple paths from instruction.
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Figure 1. A patrolling robot cannot base its
steering decisions entirely on external con-
text and cover the entire maze.
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In any particular context, there may well be more than
one module that could or even should operate. This is the fa- na infra-red bumpers  bump-fuse
miliar problem ofperceptual aliasingwhich was originally \ ]
seen as a problem of perception, but is in fact just a charac- (Robot———odometry
teristic of the world. For example, consider a watch-robot
intended to patrol an office space composed of corridors and Figure 2. Behaviors for moving a robot.

junctions (Figure 1). For some junctions, the direction to go
is entirely determined by either the robot’s history (whereit  Figure 2 shows behaviors that allow the robot to choose
has most recently been) or its intentions (where it needs toits speed and precise direction given that it has already de-
go next.) We could try to read the robot’s history or in- termined an approximate goal heading. The vertical mod-
tentions off of its physical states (such as the direction it is ules have solid boxes, the horizontal ones (including the
pointing) but these can be perturbed by other subtasks suchiobot’s body) are dashed. Beginning at the bottom of the
as avoiding people in the hallway. It is far simpler to keep figure, the robot provides four types of sensory information
a brief history of decisions or intentions in the specialized relevant to picking a safe path. direction behavior will
state that supports arbitration. determine the speed and direction for the robot, based on a
The strategy of making behavior arbitration into a spe- 16 value array representing the approximate distance from
cial, horizontal module allows for a tradeoff between the each of the robot’s faces to the next obstacle. This array is
complexity of action selection and the complexity of per- maintained byC-sensgcompound sense).
ception. | have argued at length elsewhere that ideally there  Sonar, infra-red and bumpers all give information about
should be a structured hierarchical representation underthe location of obstacles. Sonar operates by emitting sound
lying behavior arbitration, which represents behavior or- then listening for it to bounce off obstacles. It can be ac-
dering and prioritization given a particular context [6, 7]. curate from about 20cm to 6m, but is subject to a variety
The advantage of such a decomposition is that it simpli- of deflections and interference which can make objects ap-
fies knowledge acquisition by separating acquisition taskspear suddenly closer or further away. Perceptual memory,
that have minimal correlation between them. The behavior- P-Memory processes this information with a simple 6 item
arbitration module doesn’t need to know how task modules memory buffer. Each time a new sonar reading is received
recognize context or perform their tasks; task modules don’t (about 7 times a second) the reading for each sensor is com-
need to know what other tasks might be performed in the pared with those of the previous half minute. If a major
same location at the same time, or what their relative prior- discontinuity is perceived in one reading, it is ignored, and

ities are. a new one computed based on the previous average value.
However, if the new reading persists for 2 more readings, it
4.2 From Perception to Knowledge is then ‘believed’ and becomes the new value for that sonar.

Infra-red sensors do not have the non-linearities of sonar,
but have a far more limited range (approximately 0-24cm),
and are also influenced by the color of the reflected surface.
Infra-red sensors must be used for delicate maneuvers such
as passing through doorways which require obstacle detec-

I will use the domain of mobile-robot navigation in or-
der to demonstrate the variety of adaptation usefully mod-
eled in behaviors in the BOD system. Although the robot
work described here is old [12], the problems of robot per-



tion within the blind zone of the sonars. However, some reliably than sensors on their own.

things will not be detected by either long-range system, and  This argument extends to the modules that do map learn-
are instead detected by the robots bumpers. btimep be- ing (see Figure 3, described further in [8, Section 7.6.3]).
haviors each represent one such past event. Since a bumpleredecision points— locations where the robot suddenly
is only detectable at the time and location of the event, the has a choice of direction (e.g. when it enters a room or
robot must compute the bump’s approximate location af- encounters a doorway in a hall) are stored along with the
ter having disengaged from the obstacle in order to avoid decisions that were made at them, possibly after soliciting
it. This computation is based on odometric data. However, advice. Thus the robot can create a map (or learn a plan)
odometry accumulates errors rapidly, so bump events arefrom an instructor. This particular robot does not learn a

forgotten after the robot has moved a few yards. complete, connected 2-D representation of the world, but
rather a set of cues that can be read from the environment
DP-Map untried .near.neighbor?, untried far neighbor? I Action in order to make future decisions autonomously. Neverthe-
landmarky pick.near.neighbor, pick further .neighbor Selecton less, it behaves as if it has learned its way around. Now the
add'“eiw i in-dp, entereddp common usage of ‘learning’ does apply, but the knowledge
Tan .
Xy continue untried system is fundamentally the same.
in-d(ij( keep.going
out-dir

csense, odometry done-that

5 Generic Types of Specialized State

«times

The key observation about the robot example above is

R that BOD has been used to produce a reactive system which

(@ng. Qense) can operate well in a dynamic environment. It does this by
””” exploiting a variety of types of information:

direction, time

Figure 3. Behaviors added for map learning.
e Engineering provided by the developer (or evolution),

The robot thus brings a diverse array of “knowledge” to which does not change over the lifetime of the agent.
the continuous task of choosing a new speed and direction ~ This includes both fixed program code and parameters
at any given instantDirection andAction Selectionwork set by off-line tweaking and experimentation.

in concert for determining whickirection controls these
variables. Direction stores the current intended direction,
while Action Selectiondetermines the behavioral context
(e.g. going forward normally toward a goal direction, or
backing up after a collision). Eadflirection contains a
template for determining discounts on the importance of the
values of the array i€-Sensepertaining to whether the par-
ticular array value is directly in front, mostly to the side, or
behind the direction of motion before thditection’s face.
The value of the discount templates in tfieection behav-
iors was learned off-line by the developer. The values in
the C-Sensearray are determined at any time, based on the  This decomposition can also be found in real animals
most recent infra-read reading, the last half second of sonaf10, for more details]. The engineered information is
readings, and perhaps a few minutes of bumper readings. roughly equivalent to genetic predispositions, though in real

None of this adaptation would be considered “learning” animals, it is more difficult to separate development from
in the common usage of the term, because it does not changkarning, since development has evolved to rely on ubiqui-
state permanently for the lifetime of the agent. Never- tous features of the environment as an information source.
theless, all this knowledge may be considered predictionsReactive plans play a similar role to the behavior of the
which lead to adaptive behavior. For example, the statevertebrate forebrain [31], which, when working correctly,
recording the last direction of motion is used to predict the selects, sequences and inhibits behavior expression [13],
next one, which in turn determines what values are usedthough again note that in animals this can be more plas-
in computing the robot’s velocities. Similarly, the historic tic than it is in BOD. Finally, the vertical behaviors | would
sonar readings are treated as more predictive of the true disequate with various sorts of cortical activation and plastic-
tance to obstacles than any one current sensor reading. Thity. BOD does not currently discriminate between plastic-
only reason to have adaptive state in the robot is because théy from activation levels and plasticity through long-term
past can be used to predict the present, and can do so morehanges in connectivity.

¢ Reactive planswhich keep track of the robots current
decision context and focus its attention on particular
behaviors. These are the basic representation underly-
ing the Action Selection module.

e Learned values of variable staté/ariable state is at
the heart of the vertical / task modules. The ‘learning’
may persist only as very-short-term perceptual mem-
ory, as medium-term working memory, or for the life-
time of the agent.



These three types of information are not entirely disjoint: (a stand in for general social behavior) and one for wander-
the reactive plans are hand coded, and are run in a speciaihg alone (a stand in for foraging.) | have been using this
action-selection module. Reactive plans are themselves amodel to explore the impact of adding simple social behav-
elaborate form of specialized variable state. They encodeiors (such as tolerance of grooming) on the time spent by the
both engineered information in the form of contingencies group as a whole pursuing their goals [9]. We are currently
the designer anticipates the agent will encounter, and vari-extending the social model to include emotions or drives
able state indicating recent decision-making context, which such as anger and affinity in an effort to model differences
constrains choices in the immediate future in order to pro- in different species of primates social structures.
vide persistence and reduce search.

In fact, all modules mix engineering with variable state. 5.2 Task Learning
What makes the reactive plans special is that both their rep-
resentation and the code that exploits it are used in all BOD ~ The fact that BOD reactive plans are engineered bars
agents. Extensive research has lead me to believe the BOMBOD agents from doing something else real animals do:
reactive plans are simply the best way to do behavior ar-learn new tasks or new vertical modules. Again though, the
bitration in a modular single agent [7, 8]. Obviously it extent to which animals have this capacity tends to be ex-
would be useful to find other such generically useful rep- aggerated in folk psychology. For example, pigeons can't
resentations, since reusing solutions reduces developmerigarn to flap their wings for food or to peck to avoid shock,
time. In the rest of this section, | will discuss three other although theycanlearn to flap their wings to avoid shock or
biologically-inspired types of learning or plasticity, two of to peck to get food [see further 20, 32].
which | am currently developing under BOD.
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Because the reactive plans underlying BOD action se-
lection are relatively fixed, they do not represent well the [ monkey
sorts of variation that the brain represents chemically such|visual-atientio
as drives for food or sleep, or emotional states such as ange
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active agents without this sort of state can seem erratic [33].
We are currently exploring how including this sort of dura-
tive decision state influences action selection, both from the
perspective of believability (for VR agents) and for evolving
social behavior (in Artificial Life agents. | have built a model that learns what is effectively one

The way to encode variable state in BOD is as behavior component of a reactive plan within a particular context.
modules. However, these behaviors are so stereotyped, antthe context is a model of transitive inference learning as
have such simple state (essentially a single drive level) thatperformed by animals and children [8, 11]. The model
they are effectively their own type. We are consequently shows simultaneous learning of both context / action pairs,
developing a standardized representation for modeling ofand a set of prioritizations between the different contexts.
emotions and drives. Although the drive level itself is sim- These prioritizations determine when more than one con-
ple variable, each drive or emotion has its own onset andtext applies, which action should be taken. This amounts to
decay characteristics [34]. Further, the interactions betweena reactive plan — a prioritized set of context / action pairs.
these states — with each other and with standard action se- To date we have demonstrated that this models both hu-
lection — varies. For example, there must either be a latch-man and non-human primate learning of transitive infer-
ing or a blending mechanism to decide which of two con- ence. | am currently working to extend this model. True
flicting drives or emotions is expressed. task learning should include not only context / action pairs

To date we have used this type of behaviors both to createand their priorities, but also when new contexts or actions
realistic real-time facial animation [34] and to create a sim- need to be discriminated, and how this impacts the task rep-
ulation of a primate colony. The primate colony is the first resentation as a whole. The performance context the agent
exploration of combining all three types of intelligent state believes itself to be in will determine the set of things it
together. Its members have two drives: one for grooming might learn as well as the things it might do.

Figure 4. Behaviors used for an artificial life
model of transitive inference learning.



This task-learning mechanism also has a biological cor- we see in the brain. In the future | hope that modular Al
relate: the hippocampal learning system [11]. Neverthe- will be able to do for psychology and systems neuroscience
less, such a general-purpose horizontal task-learning modwhat neural networks research has done for neuroscience
ule should probably not become an expected component of— provide testbeds and intuition pumps to help the natural
all BOD agents. Such open-ended learning takes a greasciences form and refine their models.
deal of time even with heavy bias, so defies the BOD prin-
ciple of guaranteeing successful and timely learning. How- Acknowledgments
ever, it is necessary for true mammalian intelligence.
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