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Abstract.

Research in artificial neural networks (ANN) has provided new insights for psy-
chologists, particularly in the areas of memory, perception, representation and learning.
However, the types and levels of psychological modelling possible in artificial neural
systems is limited by the current state of the technology. This chapter discusses mod-
ularity as illuminated from research acomplete agentsuch as autonomous robots or
virtual reality characters. We describe the sorts of modularity that have been found use-
ful in agent research. We then consider the issues involved in modelling such systems
neurally, particularly with respect to the implications of this work for learning and de-
velopment. We conclude that such a system would be highly desirable, but currently
poses serious technical challenges to the field of ANN. We propose that in the mean
time, psychologists may want to consider modelling learning in specialised hybrid sys-
tems which can support both complex behaviour and neural learning.

1. Introduction

Research in artificial neural networks (ANN) has provided new insights for psychol-
ogists, particularly in the areas of memory, perception, representation and learning.
However, the types and levels of psychological modelling possible in artificial neu-
ral systems is limited by the current state of the technology. We are only beginning to
be able to model neurally many of the complex structures and interactions we know to
exist in animal brains. In particular, modularity is a much-discussed feature of the brain,
but we have only rudimentary models of it in neural networks.

This chapter discusses modularity as illuminated by researcbritplete agents
such as autonomous robots or virtual reality characters. We use this research to iden-
tify the sorts of modules that have been found useful in our field. We then describe a
possible mapping between these established Al modules and the modularity present in
mammalian brains. We conclude with a discussion of the implications of this work for
learning, development, and the future of ANN and agent models of animal intelligence.

1 LAS: also Computers and Cognition Group, Franklin W. Olin College of Engineering, 1735
Great Plain Avenue, Needham, MA 024B2@olin.edu



2. Modularity in Al and Psychology

The extensive use of modularity in complete agents was popularised in the mid 1980’s
with the establishment dfehaviour based artificial intelligenc@BBAl). Behaviour-

based Al refers to an approach inspired by Minsky [22], where many small, relatively
simple elements of intelligence act in parallel, each handling its own area of expertise
[3, 19]. In theory, these component elements are both easier to design and more plausi-
ble to have evolved than a single complex monolithic system to govern all of behaviour.
In the modular theory of intelligence, the apparent complexity of intelligent behaviour
arises from two sources: the interactions between multiple units running in parallel, and
the inherent complexity of the environment the individual units are reacting to.

The behaviour-based approach generated significant advances in mobile robotics
[4] and has come to dominate both the fields of robotics and virtual reality [17, 27].

It has lead to a revolution in the way computation is thought about [29]. Nevertheless,
it has not been entirely successful. Advances in the development of humanoid agents
still come disappointingly slowly. Further, there is no single dominant behaviour-based
architecture that is used by even a large percentage, let alone a majority, of complete
agent developers.

The engineering advantage of modularity is simple: it decomposes the problem of
intelligence into manageable chunks. In essence, itis a design advantage. Modularity is
a form of hierarchy. Each module handles a portion of the agent’s overall problem space,
leaving the complete agent with an exponentially reduced space of behaviour options to
consider. However, the modular approach also introduces a number of problems. First,
there is the question of how to decompose an apparently coherent intelligence into mod-
ules. What state and/or behaviour belongs together, and what apart? Even more prob-
lematic, once behaviours have been separated into at least semi-autonomous modules,
how can overall behavioral coherence be reestablished? A modular approach is of no
advantage if the problem of integrating behaviour leads to a greater problem of design
than the decomposition originally avoided.

From a psychological perspective, interest in modularity dates back to Freud [12],
and even to Hume [16]. A modular architecture is motivated not only by the inconsis-
tencies of human behaviour, but also by neuroscience, which has shown a diversity of
organs in the human brain. Here the same questions emerge: how is the brain modu-
larised? To what extent are the modules encapsulated — that is, how strictly are they
separated? Which modules communicate, and at what level of abstraction? What func-
tions do the various organs perform? And how are their parallel operations coordinated
into fluid, largely coherent behaviour? In the following sections, we hope to provide
answers or at least hypotheses for these questions based on our work in complete agent
architectures.

3. Modularity in Complete Agent Architectures

In this section we describe the sorts of modules that are requisite for making a complete
agent function. We also show how these required modules relate to animal intelligence.
To begin though, we delineate two different sorts of modularity: architectural modules
vs. skill modules.



3.1 Types of Modularity

In thinking about the organisation of agent behaviour, we must consider two differ-
ent sorts of modular decomposition. One is decomposition of generic function, where
modules might include planning, vision, motor control, and such-like. The second is de-
composition by task, where modules might include walking, sleeping, hunting, groom-
ing and so forth. Initially, the behaviour-based revolution was about moving from the
former, generic sort of modularity to the latter, task-oriented sort of modularity. Al-
though the major benefits of BBAI come from the special-purpose, task-oriented sort of
modularity, the experience of the last 15 years has shown that some generic modules are
also necessary in an architecture in order for that architecture to be useful and usable.
One of our hypotheses (described further below) is that this more generic modular-
ity is analogous to the modularity by organ in the brain, e.g. the roles of the cerebellum
or the hippocampus. We call this sort of modudgshitectural modulesboth because
in the brain it often characterised by different underlying neurological architectures,
and because in agent organisation it contributes architectural features. The task-specific
modules we hypothesise to be more analogous to the within-organ modularity exhibited
in the brain, by neural assemblies differentiated only by physical space and connectiv-
ity. We will call this sort of moduleskill modulesThe emphasis in this chapter will be
primarily on different sorts of architectural modules, since this is the emphasis of our
own research. The reader should be aware, however, that most work in BBAI concen-
trates on the development of skill modules.

3.2 Architectural Modularity in Complete Agents

Bryson [5] describes the emergence over the last 15 years of three sorts of architectural
requirements for complete autonomous agents capable of complex, scalable behaviour.
That article reviews the literature in four separate agent traditions: BBAI; the hybrid or
multi-layer community, which combines behaviours with more conventional planning;
the Procedural Reasoning System (PRS) / Beliefs, Desires and Intentions (BDI) com-
munities, which have adapted conventional planning and representation in response to
the success of BBAI and the demands of real-time, embedded systems; and the Soar
/ ACT-R communities, which have been working with their distributed representation
cognitive agent architectures for many years. In this chapter, we will not reiterate that
review, but will only describe the results.

Briefly, there are three sorts of architectural modules that seem necessary. First,
nearly all autonomous agents consist primarily of a system of skill modules. These are
often referred to abehaviourdue to BBAI. Despite their name, “behaviours” actually
generatebehaviour; they are not a description of expressed behaviour. There is no one-
to-one correspondence between a behaviour module and an expressed behaviour. Much
of expressed behaviour is supposeéneergefrom the interaction of two or more skill-
module behaviours operating at the same time. The second sort of architectural module
performsaction selectionwhich provides for coherent behaviour in a distributed sys-
tem. Finally, because action selection generally works by focusing attention on one
subset of possible behaviour, there needs also to be a dedaatednment monitor-
ing module. This module switches the action-selection attention in response to salient
environmental events.



Nearly all autonomous agent architectures today use a modular skill structure. They
incorporate a set of primitive behaviours that no other part of the system needs to under-
stand the workings of. This reflects the combinatorial advantage of modularity referred
to in the introduction. It comes at a cost of less fine-grained control and the inefficien-
cies of not being able to combine the outputs of related actions or motions. But for
a resource-constrained agent working in a dynamic, real-time environment where re-
sponses must be quick and appropriate, the advantage of being able to quickly activate
pre-compiled skills outweighs these sorts of costs.

Some researchers try to reduce some of the complexity of coordinating skill mod-
ules by using homogeneous behaviour representations or coordinated output formats for
all the modules (see for examples Arkin [1] and Tyrrell [30] respectively). We feel these
strategies overconstrain the sorts of computation and representation in a skill module.
Skill modules should contain not only motor actions, but also whatever perceptual skills
are necessary in order to support them. Perception is not just sensing. Sensory stimuli
are often ambiguous and often require both recent context and longer-term experience
and expectations to discriminate. The state needed to learn or tune skills, or to disam-
biguate or categorise the perception, should also be a part of the skill module. Actions
may also vary significantly depending on context, but a designer may want to encap-
sulate all these expressions as a single behaviour for simplicity. For this reason, we
prefer using objects specified in object-oriented programming languages to represent
skill modules.

This representation of skill modules has advantages for two reasons. From an engi-
neering perspective, it allows for the behaviour decomposition problem to be addressed
with techniques similar to those developed for object decomposition (e.g [9]) and al-
lows us to quickly develop more powerful, complex behaviour [6]. From a cognitive
modelling perspective, this level of abstraction is more closely analogous to the level
of description usually used for ascribing functions to cortical areas. Although early
BBAI eschewed variable state, in general the notion of empowered, perceiving semi-
autonomous behaviours is more in keeping with this work than the trend in hybrid and
BDI architectures to making the skill modules into simple motor primitives. It is also
very like the recent contributions of the multi-agent systems (MAS) community [31].

The next architectural module is hierarchically structured plans for action selection.
“Action selection” is the term applied to the ongoing problem of determining exactly
what an agent is going to do next. The BBAI literature often refers to this problem as
“behaviour arbitration”, in MAS it is called “agent coordination”. When all behaviours
are running in parallel, each may have an action it is currently attempting to express. If
these conflict, some method of coordination must maintain the coherence of the com-
plete agent’'s behaviour.

Plansin the context of agent action selection are structures which indicate, given a
particular environmental context and decision history, what to do next. BBAI originally
strongly resisted the use of plan-like structures for coordination, because they were
felt to lose most of the advantages of modularity by imposing a form of centralised
control. However, these systems proved useful not only for coordination, but also as
simple memory. A system using plans to coordinate behaviour does not need complex



or perfectly ordered episodic memory in order to disambiguate where it is in a multi-step
plan, even if the consequences of its previous actions are not present in its environment.

For example, consider, a robot tidying an office. If it has a fixed order for tidying
drawers it neither needs to repeatedly inspect closed drawers it had already tidied, nor
to remember the complete list of drawers already visited each time it selects the next
one. It only needs to remember its agenda, and its current place in its agenda. Notice the
agenda does not need to specify any details about how a drawer is cleaned. The drawer
cleaning behaviour is free to chose a methodology appropriate to its perceptions, or to
determine whether a drawer is already “clean enough.”

Although such structures for supporting action selection are referregtarasthis
does not necessarily imply that they are createglayning at least not by the agent.
Most complete agents exploit plans provided by their designers, rather than engaging
in the slow and unreliable constructive planning process. Choosing what to do next this
way, without deliberation, is often calledactive planningWhen plan-like structures
are provided to facilitate this process, they are referred teative plans

Hierarchical structures for action selection allow for the focus of attention on a par-
ticular set of behaviours that are likely to be applicable in a particular circumstance. The
hierarchies are parsed by the recognition of circumstance, and can be reparsed arbitrar-
ily frequently in order to ensure the applicability of current behaviour. This observation
leads to the third architectural module found in all successful agent architectures: a
mechanism for monitoring the environment and realizing that the agent should attend
to new goals. This sort of system is sometimes referred to adeam systemn(e.qg.
[28]). Having a parallel system is necessitated by hierarchical control: any agent in a
dynamic environment that may have its attention focussed on a particular task needs
a system to guarantee that it notices salient events in the environment. Otherwise, the
agent may overlook both dangers and opportunities. The alarm system must necessar-
ily be relatively simple, requiring no cognitive overhead that would distract from the
primary task. It is usually a case of pattern matching, of recognising salient indicators
in the environment and then switching cognitive attention to analysing and coping with
such situations.

3.3 Equivalent Modularity in Animal Brains

In summary of the last section, complete agent architectures have converged on three
sorts of architectural modules for supporting complex, dynamic behaviour. These are
a system of skill modules, structured action selection, and an environment monitoring
system. If such an organisation is necessary or at least very useful for controlling intel-
ligent agents, then it is also likely to be present in animals, since they have evolved to
face similar problems of information management. In this section we speculate about
what the analogous modules might be.

First, the skill modules we believe are reflected in within-organ modularity in the
brain. This is not to imply that they are represented only within one organ or region:
many skills necessarily combine vertically a large number of brain areas and organs, for
example the retinas, visual cortex, associative cortices, motor pre-planning and motor
coordination. To some extent, each of these areas is architecturally specialised, but the



combination of a particular ensemble of simultaneous activations across these structures
might model the various skill sets modularised in agent architectures.

Next, Prescott et al. [24] postulate that the basal ganglia is the architectural module
responsible for action selection (see also [21]). These researchers focus primarily on the
problem of action selection as behaviour arbitration, but the basal system is also well
integrated with some of the mid-brain systems that have been implicated in species-
typical action patterns as well as the cortical systems which might hold the perceptual
skill modules required to discriminate context.

Finally, the behaviour of the alert system is analogous to behaviour attributed to the
limbic system. In particular, the amygdala has been implicated in learning to recognise
and attend to salient situations [8]. This attention takes the form of emotional responses,
which are characterised by the selective activation of appropriate behaviours and expec-
tations.

Thus it is plausible, if far from proven, that the sorts of modularity used in com-
plete autonomous agents are also present in animals and humans. This reenforces our
proposal that the agent platform could be useful for psychological modelling.

4. Learning in Behaviour Oriented Architectures

A particular modular organisation provides structure not only for how an intelligence
operates in particular situations, but also for how it can learn. We assume that learning
happenswithin modules, not across or outside them. So, for the organisation of mod-
ules described in the previous section, there are only certain places learning can take
place. There can be specialised or perceptual learning within the skill modules. There
can be learning of new skill modules within the architectural module of skill modules.
There can be the learning of new reactive plans within the action selection module, and
there can be learning of selection rules for priorities and alarms. Notice that the sorts of
perceptual learning that takes place in skill-modules can also affect the execution of re-
active plans and of attention switching. In our model, learning new categories, both new
discriminations and new generalisations, is the sort of perceptual learning that should
take place in a skill module.

Not all complete agent architectures perform learning in this way. Some which are
more closely aligned traditional planning maintain a single database of “beliefs” [15].
Production-based agents [18] often have both a database of beliefs and a database of
productionsif-then rules governing intelligent control. These productions, analogous to
behaviours in their modularity, are not as complex as the sorts of skill modules we have
been describing. For the remainder of this chapter, we will be emphasising complete
agent architectures that drehaviour orientedBehaviour-oriented systems differ from
being strictly behaviour-based because they have structured action selection, but are
otherwise near to traditional BBAI systems in their emphasis on relatively autonomous
behaviours capable of perception and action (see Figure 1).

Agents tend to be created for particular environments and tasks; in other words they
are niche specific. Consequently, the kinds of things they are likely to need to learn can
generally be determined in advance. This is a currently popular view of animal learn-
ing [13, 25], and we have made it central to our methodology for developing behaviour
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Figure 1: Behaviour-oriented systems have multiple, semi-autonomous skill modules- or
haviours (b, ...) which generate actions:{...) based on their own perception (indicated by
the eye icon). Actions which affect state outside their generating behaviour, whether internal to
the agent or external, are generally subject to arbitration by an action selection (AS) system.

oriented agents, which we call behaviour oriented design (BOD) [6]. We determine the
modular decomposition for a set of skills around the kinds of perception and memory
those skills need to operate appropriately. Thus each skill module contains specialised
representations and perception and action routines for maintaining those representa-
tions, as well as control for the skilled actions that the agent applies to its environment.

The second most common form of learning in complete agents is the learning of
new reactive plans. This is usually done in one of two ways, either by reasoning or
planning a new plan (e.g. [2, 14]), or more recently by social learning such as imitation
or receiving instruction (e.g. [10, 26]). However, in practice, a surprisingly large number
of agents use plans programmed by their designers. So far, this is still the fastest and
most reliable way to get appropriate behaviour from an agent.

5. Learning New Behaviours

In our earlier discussion of skill modules, we claimed that behaviour oriented design
requires the use of complex algorithms and specialised representations, and that mod-
ules are therefore better represented in object oriented languages than in current ANN.
However, there is at least one reason to favour an ANN representation of skill modules.
That is the problem of designing an agent that can learn or demelgkill modules.

This is clearly desirable, and has been the focus of significant research (see [10] for a
recent example and review.) However, to date, most efforts on these lines would qualify
as specialised learningithin a single skill module / representation system from the
perspective of behaviour oriented design.

The reason that we would like to be able to represent behaviours in terms of ANN is
as follows. Consider Figure 2. In this figure, representation of the skill modules has been
split into two functional modules: the Behaviour Long Term Memory (BLTM) and the
Working Memory (WM). The working memory allows for rapid, short term changes not
only for perceptual memory, but also in the representation of the behaviours. The BLTM
provides a relatively stable reference source for how these modules should appear when
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Figure 2: A system capable of learning behaviours must 1) represent them on a common sub-
strate and 2) allow them to be modified. Here behaviours are represented in a special long term
memory (BLTM)andin a plastic working memory (WM) where they can be modified. During
consolidation (dashed lines) modifications may either alter the original behaviours or create new
ones.

activated. Skill representations might be modified due to particular circumstances, such
as compensating for tiredness or high wind, or responding to a novel situation such as
using chopsticks on slippery rice noodles for the first time.

In this model, the adjustments made in plastic, short term memory also affect the
long term memory. This sort of dual- or multi-rate learning is receiving a good deal of
attention in ANN currently (see [7, 11, 20]). Depending on long term experience, we
would like this consolidation to have two possible effects. Let's imaginesthiaas been
modified in working memory in order to provide an appropriate expression.df the
same modifications df; prove useful in the near future, then they will be present for
consolidation for a protracted period, and likely to effect the permanent representation
of b,. However, if the modifications are only sometimes applicable, we would like a
new behavioub,’ to become established. This process should also trigger perceptual
learning, so that the two behaviours can discriminate their appropriate context for the
purpose of action selection. Aldg andb,’ would now be free to further specialise
away from each other.

6. Conclusions and Future Directions

In this chapter we have shown that complete agents can provide higher-level Al models
for psychologically important concepts such as modularity and specialised learning. We
have also described the sorts of systems that are the current state-of-the-art in complete
agent architectures. We have shown that using ANN to represent at least some parts of
a complete agent might be highly desirable, but unfortunately we have also argued that
the complexity of the algorithms and the specialised representations are not yet met in
current models of ANN modularity (e.g. [23]).
On the other hand, we believe that combining research in these two fields might

be a highly useful direction. Complete agent researchers are already experimenting



with ANN for learning and simple control, but most such systems are not yet ad-
vanced enough to be interesting to psychologists. However, the psychologically in-
teresting ANN systems currently under development such as those described in this
volume might be furthered by embedding them in a complete agent. In this way, con-
ventional programming can be used to provide for appropriate experimental platforms
to test such systems. A complete agent can provide realistic inputs, and test outputs in
realistic settings. Thus, we hope to see a further uniting of these two fields in the future.
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