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Abstract

Autonomous agent architectures are design methodologies — collections of knowledge and strategies

which are applied to the problem of creating situated intelligence. In this article, we attempt to integrate

this knowledge across several architectural traditions. We pay particular attention to features which have

tended to be selected under the pressure of extensive use in real-world systems. We conclude that the

following strategies provide significant assistance in the design of autonomous intelligent control:

• Modularity, which simplifies both design and control,

• Hierarchically Organized Action Selection, which allows for focusing attention and providing

prioritization when different modules conflict, and

• a parallelEnvironment Monitoring Systemwhich allows a system to be responsive and oppor-

tunistic by allowing attention to shift and priorities to be reevaluated.

We offer a review of four architectural paradigms: behavior-basedAI ; two and three layered systems;

belief, desire and intention architectures (particularlyPRS); and Soar /ACT-R. We document trends

within each of these communities towards establishing the components above, arguing that this conver-

gent evolution is strong evidence for the components’ utility. We then use this information to recom-

mend specific strategies for researchers working under each paradigm to further exploit the knowledge

and experience of the field as a whole.

ii
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1 Introduction

1.1 Approach

Agent architectures are design methodologies. The assortment of architectures our community uses

reflects our collective knowledge about what methodological devices are useful when trying to build an

intelligence. We consider this perspective, derived from Maes (1991a) and Wooldridge and Jennings

(1995), to be significantly more useful than thinking of an architecture as a uniform skeletal structure

specified by a particular program. The definition of an agent architecture as a collection of knowledge

and methods provides a better understanding of how a single architecture can evolve (e.g. Laird and

Rosenbloom, 1994; Myers, 1996) or two architectures can be combined (e.g. Bryson, 1999a).

The design knowledge expressed in agent architectures is of two types: knowledge derived by reason-

ing, and knowledge derived by experience. Knowledge derived by reasoning is often explicit in the

early papers on an architecture: these ideas can be viewed as hypotheses, and the intelligences im-

plemented under the architecture as their evidence. Knowledge derived by experience may be more

subtle: though sometimes recognized and reported explicitly, it may be hidden in the skill sets of a

group of developers. Worse yet, it may be buried in an unpublished record of failed projects or missed

deadlines. Nevertheless, we would like to premise this paper on the idea that facts about building intel-

ligence are likely to be found in the history and progress of agent architectures. That is, we assume that

architectures will tend to include the attributes which have proven useful over time and experience.

Unfortunately, as with most selective processes, it is not always a simple matter to determine for any

particular expressed attribute whether it has itself proven useful. A useless feature may be closely

associated with other, very useful attributes, and consequently be propagated through the community

as part of a well-known, or well-established architecture. Similarly, dominating architectures may lack

particular useful elements, but still survive due to a combination of sufficient useful resources and

sufficient communal support. For these reasons alone one cannot expect any particular architecture

to serve as an ultimate authority on design methodology, even if one ignores the arguments of niche

specificity for various architectures. But we do assume that architectural trends can be used as evidence

for the utility of a particular design approach.

Identifying the design advantage behind such trends can be useful, because it allows the research com-

munity to further develop and exploit the new methodology. This is truer not only within the particular

architecture or architectural paradigm in which the trend emerged, but can also benefit the autonomous

control community in general. To the extent that all architectures face the same problems of supporting

the design of intelligence, any development effort may benefit from emphasizing strategies that have

proven useful. Many architectures have a larger number of features than their communities typically
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utilize. In other words, many architectures are under-specified as a design methodology. Consequently,

even established design efforts may be able to exploit new knowledge of design strategy without chang-

ing their architectural software tools. They may be able to make simple reorganizations or additions to

their established design processes.

In this article, we will demonstrate this approach for evaluating and enhancing agent architectures.

We survey the dominant paradigms of agent architecture technology: behavior-based design; two- and

three-layer architectures;PRSand the belief, desire and intention architectures; and Soar andACT-R.

We begin by looking at some of the historic concerns about architectural approach that have shaped and

differentiated these communities. We then review each paradigm and the systematic changes which

have taken place within it over the last 15 years. We conclude with a discussion of these architec-

tures in terms of the lessons derived from that review, making recommendations for the next stages of

development for each paradigm.

Thesis

To improve the overall coherence of this article, we begin with the results of our research on these

and other architectures. We have concluded that there are several necessary architectural attributes for

producing an agent that is both reactive and capable of complex tasks. One is an explicit means for

ordering action selection, in particular a mechanism exploiting hierarchical and sequential structuring.

Such a system allows an agent with a large skill set to focus attention and select appropriate actions

quickly. This has been a contentious issue in agent architectures, and this controversy is reviewed

below. The utility of hierarchical control has been obscured by the fact it is not itself sufficient. The

other necessary components include a parallel environment monitoring system for agents in dynamic

environments, and modularity, which seems to benefit all architectures.

Modularity substantially simplifies the design process by substantially simplifying the individual com-

ponents to be built. In this article, we will define modularity to be the decomposition of an agent’s

intelligence, or some part of its intelligence, into a number of smaller, relatively autonomous units.

However, we do not mean to necessarily imply the fully encapsulated modules of Fodor (1983), where

the state and functionality of one module are strictly unavailable to others. The most useful form of

modularity seems to be decomposed along the lines of ability, with the module formed of the perception

and action routines necessary for that ability, along with their required or associated state.

Fully modular architectures can create new design difficulties. If sequential and hierarchical control

are avoided, then specifying priority and action selection between the interacting modules becomes

difficult. However, an architecture that does allow for a centralized control system to focus attention

and select appropriate actions may fail to notice dangers or opportunities that present themselves unex-
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pectedly. Agents existing in dynamic environments must have architectural support for monitoring the

environment for significant changes, in order for the complete agent to remain responsive. This may

either be a part of the main action-selection system, or a separate system with priority over primary

action selection.

2 Background

2.1 The Traditional Approach

A traditional architecture for both psychology and artificial intelligence is shown in Figure 1. This

architecture indicates that the problems of intelligence are to transform perception into a useful mental

representationR; apply a cognitive processf to R to createR′, a representation of desired actions;

and transformR′ into the necessary motor or neural effects. This model has lead many intelligence

researchers to feel free to concentrate on only a single aspect of this theory of intelligence, the process

between the two transformations, as this has been considered the key element of intelligence.

— Figure 1 about here. —

This model (in Figure 1) may seem sufficiently general as to be both necessarily correct and uninfor-

mative, but in fact it makes a number of assumptions known to be wrong. First, it assumes that both

perception and action can be separated successfully from cognitive process. However, perception is

known to be guided by expectations and context — many perceptual experiences cannot be otherwise

explained (e.g. Neely, 1991; McGurk and MacDonald, 1976). Further, brain lesion studies on limb

control have shown that many actions require constant perceptual feedback for control, but do not seem

to require cognitive contribution, even for their initiation (e.g. Matheson, 1997; Bizzi et al., 1995).

A second problem with this architecture as a hypothesis of intelligence is that the separation of rep-

resentation from cognitive process is not necessarily coherent. Many neural theories postulate that an

assembly of neurons processes information from perception, from themselves and from each other (e.g.

McClelland and Rumelhart, 1988; Port and van Gelder, 1995). This processing continues until a recog-

nized configuration is settled. If that configuration involves reaching the critical activation to fire motor

neurons, then there might be only one process running between the perception and the activity. If the

levels of activation of the various neurons are taken as a representation, then the process is itself a con-

tinuous chain of re-representation. Notice that the concept of a “stopping point” in cognition is artificial

— the provision of perceptual information and the processing activity itself is actually continuous for

any dynamic agent. The activations of the motor system are incidental, not consummatory.
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2.2 Hierarchical Theories of the Organization of Intelligent Behavior

The distinctions made in describing the basic traditional architecture and the role of intervening re-

representation have lead to a number of controversies which have in turn influenced the various ap-

proaches to agent architectures. In particular, there has been considerable controversy over whether be-

havior is organized using privileged hierarchical and sequential structures, or whether its order emerges

from a much more dynamic process. It has been argued (by e.g. Vereijken and Whiting, 1998; van

Gelder, 1998; Hendriks-Jansen, 1996; Goldfield, 1995; Maes, 1991b) that hierarchical strategies of

action selection necessarily lead to rigid, brittle systems incapable of reacting quickly and opportunis-

tically to changes in the environment. On the other hand, hierarchical and sequential control are well-

established programming techniques that demonstrably manage enormous complexity. This section and

the following one discuss this history.

Initially it appears obvious that there must be some structure or plan to behavior. Such structures rad-

ically simplify the problem of choosing a next behavior by reducing the number of options that need

to be evaluated in selecting the next act. The standard strategy forAI systems is to convert perceptions

and intentions into a plan — a sequence or partial ordering of behaviors which will attain the current

goal. The term “plan” in this context does not necessarily indicate intentionality, nor even the conven-

tional sense of “planning”. Rather, it refers to a plan as established course for action selection, a sort

of blueprint for action. Whether this blueprint is a result of instinct, past experience or an immediate

creative process is a separate, though related question.

Assuming a hierarchical model, some plans may be of different origins than others. A plan is considered

hierarchical if its elements might in turn be plans. For example, if a dog is hungry, it might go to the

kitchen, then rattle its bowl. Going to the kitchen would itself entail finding a path through the house,

which involves moving through a series of locations. Moving between locations itself requires a series

of motor actions. The theory of hierarchical control supposes that the mechanisms responsible for the

fine muscle control involved in the dog’s walking are not the same as those responsible for choosing

its path to the kitchen, and these in turn are not necessarily the concern of the system that determined

to move to the kitchen the first place. A plan is considered sequential to the extent that its elements

deterministically follow each other in a fixed order, for example the order in which a dog’s feet are

raised and advanced while it is moving with a particular gait.

Hendriks-Jansen (1996) traces the hierarchical theory of behavior organization in animals and man to

the ethologist McDougall (1923), who presented a theory of the hierarchy of instincts. Ethological the-

ory during this period, however, was dominated by Lorenz, who “denied the existence of superimposed

mechanisms controlling the elements of groups” instead believing that “the occurrence of a particular

activity was only dependent on the external stimulation and on the threshold for release of that activity.”
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(Baerends 1976 p. 726 cited in Hendriks-Jansen 1996 pp. 233–234). This theory dominated until Lash-

ley (1951) reintroduced the idea of hierarchical organization of behavior. Lashley supports hierarchy on

the basis that there could be no other explanation for the speed of some action sequences, such as those

involved in human speech or the motions of the fingers on a musical instrument. Neural processes are

simply too slow to allow elements of such sequences to be independently triggered in response to one

another. Lashley therefore proposes that all the elements of such a sequence must be simultaneously

activated by a separate process — the definition of hierarchical organization.

Lashley’s argument has been taken up and extended by Dawkins (1976), who further argues for hi-

erarchical theories of control for reasons of parsimony. Dawkins argues that it is more likely that a

complex action sequence useful in multiple situations should be evolved or learned a single time, and

that it is also more efficient to store a single instance of such a skill. Dawkins’ arguments and proposals

anticipate many the techniques developed later for robust control in artificial intelligence (e.g. Brooks,

1986; Maes, 1991a).

From roughly the time of Lashley’s analysis, hierarchical models have been dominant in attempts to

model intelligence. Particularly notable are the models of Tinbergen (1951) and Hull (1943) in ethol-

ogy, Chomsky (1957) in linguistics, and Newell and Simon (1972) in artificial intelligence and human

problem solving. Mainstream psychology has been less concerned with creating specific models of

behavior control, but generally assumes hierarchical organization as either an implicit or explicit con-

sequence of goal directed or cognitive theories of behavior (Bruner, 1982). Staged theories of develop-

ment and learning are also hierarchical when they described complex skills being composed of simpler,

previously-developed ones (Piaget, 1954; Karmiloff-Smith, 1992; Greenfield, 1991).

Nevertheless, the problem of how this apparently hierarchically ordered behavior emerges from a brain

or machine has been an ongoing issue, in psychology as well asAI . The well-known defenses of

Lashley and Dawkins are still being revisited (Houghton and Hartley, 1995; Nelson, 1990). In response

to a recent target article on imitation in apes which assumed hierarchical structure to behavior (Byrne

and Russon, 1998), nearly a fifth of the commentaries chosen to appear with the article questioned

the existence of hierarchical control (Vereijken and Whiting, 1998; Mac Aogáin, 1998; Jorion, 1998;

Gardner and Heyes, 1998, of 21 commentaries). As Gardner and Heyes (1998) point out, “The mere

fact that [one] can describe behavior in terms of goals and subgoals is not evidence that the behavior

was executed under hierarchical control.”

2.3 Fully Distributed Theories of Intelligence

The competing viewpoint, that responsive intelligence cannot possibly be governed by hierarchical

control, has come from some of the practitioners of the dynamical hypothesis of cognition (Port and
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van Gelder, 1995; van Gelder, 1998). The theory of dynamical action expression suggests that complex

dynamical or chaotic systems operate within the brain producing the next behavior not by selecting an

element of a plan, but rather as an emergent consequence of many parallel processes (e.g. Minsky, 1985;

McClelland and Rumelhart, 1988; Maes, 1991b; Brooks, 1991; Goldfield, 1995; Kelso, 1995; Hendriks-

Jansen, 1996; van Gelder, 1998). Evidence supporting the older hypothesis of structured hierarchical

behavior is seen to have been biased by the hierarchical and sequential nature of human explicit thought

and language. In particular, because much theoretical work in psychology is conducted using computer

models, theories may be biased towards the workings and languages of the serial processors of the

machines available to most psychologists (Brooks, 1991).

This argument for the emergent view of behavior ordering has been developed by two related but to

some extent antithetical perspectives. Some support comes from researchers presuming the modularity

of intelligence. Currently this is much of the behavior-basedAI community; earlier this century it was

the behaviorists. Modularists dismissing structured control prefer the hypothesis that each modular unit

should determine its own expression, using its own perceptive abilities. Several agent architectures

demonstrating this viewpoint are discussed below (but see for reviews Maes, 1990a; Blumberg, 1996).

The other source of support for emergence over explicit structure comes from researchers who favor

dynamical systems theory. This field, arising from physics and mathematics, is related to chaos theory.

In its most extreme form, dynamical systems theory resists thinking of any of the universe, let alone in-

telligence, as segmented or modular. The resistance to hierarchy and sequence is that such organization

implies segmentation of process. In their view process is continuous (Goldfield, 1995; Bohm, 1980). In

this article, we will refer to both of these paradigms as fully distributed theories of intelligence, since

they share the attributes of decomposing traditional theories of intelligence, and explaining apparent

coherence as emergent phenomena.

Of course, both of these fully distributed communities have been forced to address the issue of complex

sequences of behavior. The behaviorists initially believed that all behavior sequences are learned as

chains of conditioned responses. This hypothesis has been disproved. The behaviorists themselves

showed both that reward fails to propagate over long sequences and that complex structures such as

mazes are learned through latent mechanisms which require no external reward (see Adams, 1984, for

a review and history). Further, neuroscience has shown that the fine coordination between different

elements of behaviors such as speech and piano playing occur too rapidly to allow for triggering of one

act by its predecessor (Lashley, 1951). Dynamical theories have been successful at describing rapid,

integrated sets of behavior, provided these can be described as a part of a rhythmic whole. For example,

swimming and walking can be explained and controlled through understood mathematical mechanisms

providing there exists a pattern generator to keep the rhythm of the cycle (Beer, 1995; Goldfield, 1995;

Reeves and Hallam, 1995). Such oscillatory pattern generators are basic neural structures found in all
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vertebrate life (Carlson, 1994). However, the structuring of more complicated, heterogeneous behaviors

such as nest building, starting a car, or speaking a sentence, have not yet been successfully addressed

(see Saltzman, 1995, for an example of a well analyzed near miss). Further, the significantly greater

combinatorial complexity such heterogeneity opens up is often either ignored or dismissed (e.g. Bohm

(1980, p.182) or Goldfield (1995, pp. 285–288)).

This is not to deny the appeal of the fully distributed hypotheses, and their successes in advancing

our understanding of natural intelligence. One appeal of fully distributed theories of intelligence is

that they better explain the fact that errors are made in sequencing of even familiar tasks (Norman and

Shallice, 1986; Henson, 1996). Another is that they take into account and better explain the time course

of behaviors that traditional architectures treat as discrete events, such as decision making (Townsend

and Busemeyer, 1995). Perhaps most importantly from the perspective of agent architectures, fully

distributed theories allow for new information to constantly influence the course of actions. Thus if the

dog, described earlier, on its way to the kitchen happens to pass a dropped sandwich, the action “eat

what’s here” should suddenly overtake “visit the kitchen.” Systems with this capacity to be responsive

and opportunistic are described in the artificial intelligence literature as beingreactive.

A fundamental strength of the fully distributed hypothesis is that it is necessarily correct, at least to

some level. Assuming a materialist stance, intelligence is known to be based in the parallel operation

of the body’s neural and endocrine systems, which are indeed highly distributed. On the other hand, it

is nearly as well accepted that human and animal behavior can be described as hierarchically ordered

(Dawkins, 1976; Greenfield, 1991; Byrne and Russon, 1998). The question is, how and when are

these behaviors so organized? Is the order purely apparent, or does it emerge in the brain prior to the

external expression of behavior? These questions have a mirror in the architectural choices of theAI

researcher: should there be a dedicated and centralized action-selection mechanism, or would such a

system be a bottle-neck for intelligence, resulting in a sluggish and unresponsive system? The latter is

the claim of Maes (1991b), who has had substantial impact on the modular agent architecture paradigm.

Consequently, her claim has been examined empirically as is documented in Section 3.1 below.

Other architectural trends (e.g. PRS, Georgeff and Lansky, 1987, Section 3.3 below) attempt to com-

bine some centralized hierarchical control with a reactive component attendant at the decision points.

This also falls under harsh criticism from some champions of the fully distributed approach:

[In hybrid systems] Environmental contingencies play a part at the choice points and in

the form of orienting feedback, but the part they play can be explained only in terms of

the entities manipulated by the program, which of course takes the form of a temporal

sequence of formally defined instructions.

Nearly forty years of experience inAI have shown that such a control mechanism soon
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gets into trouble in the real world because of its lack of flexibility, the need to plan for all

possible contingencies, the combinatorial explosion, the frame problem, and the problems

of interfacing a formally defined planner, working with an internal representation of the

world conceptualized as a task domain of objects, properties, and events, to effectors and

receptors that need to deal with a noisy real world that clearly is not pre-registered into

objects, properties, and events. (Hendriks-Jansen, 1996, page 245.)

Hendriks-Jansen (1996) is describing the architecture of Hull (1943) here, but his description fits a

number of recent hybrid architectures. It is representative of the criticism of plan-like elements in an

agent: he carefully covers both the alternative of having plans as pre-existing elements of an agent’s

intelligence and that of having plans constructed by a separate module. His evaluation of the lessons of

AI is however based mostly on work performed before 1990, with selective exceptions in the early part

of that decade. Section 3 of this article provides a considerable update to this review.

2.4 Newer Approaches

2.4.1 A Modular Architecture

All of these more recent architectures have been influenced by the successes of the reactive and behavior-

based movements inAI of the late 1980s. As described earlier, behavior-based architectures assume

that a useful and accurate way to model intelligence is to model behavioral skills independently of each

other. The extreme view in this field is that intelligent behavior cannot emerge from thinking and plan-

ning, but rather that the appearance of planning and thinking will emerge from behaving intelligently

in a complex world (Brooks, 1991).

Though traceable in philosophy at least as far back as Hume (1748), and in psychology as far back

as Freud (1900), the notion of decomposing intelligence into semi-autonomous independent agencies

was first popularized inAI by Minsky (1985). Minsky’s model promotes the idea of multipleagencies

specialized for particular tasks and containing specialized knowledge. Minsky proposes that the control

of such units would be easier to evolve as a species or learn as an individual than a single monolithic

system. He also argues that such a model better describes the diversity and inconsistency of human

behavior.

Minsky’s “agents of mind” are hierarchical and only semi-autonomous. For example, he postulates, a

child might have separate agencies for directing behavior involving sleeping, eating and playing. These

compete for control. When a victorious agent emerges, its subsidiary agencies in turn compete. Once

playing is chosen, blocks compete with dolls and books; if blocks are chosen, building and knocking

down compete during the block-playing episode. Meanwhile, the agency in charge of eating may
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overwhelm the agency in charge of playing, and coherent behavior may be interrupted in mid-stride as

different agencies swap to take control.

The cost of theories that successfully explain the incoherence of human thought and activity is that

they often fail to explain its coherence. Minsky addresses this by postulating a modular rather than

a completely distributed system of thought. He explains coherent behavior as being the output of

a single agency or suite of agents, and incoherence as a consequence of competing agencies. He also

recognizes that there can be coherent transitions between apparently modular behaviors. To address this,

he postulates another type of structure, thek-line. K-lines connect modules associated in time, space,

or as parts of the same entity. He also posits fairly traditional elements of knowledge representation,

frames and knowledge hierarchies, for maintaining databases of knowledge used by the various agents.

2.4.2 A Reactive Architecture

Brooks, quoted above, took modularity to a greater extreme when he established the behavior-based

movement inAI (Brooks, 1986). In Brooks’ model,subsumption architecture, each module must be

computationally simple and independent. These modules, now referred to as “behaviors,” were origi-

nally to consist only of finite state machines. That is, there are an explicit number of states the behavior

can be in, each with a characteristic, predefined output. A finite state machine also completely specifies

which new states can be reached from any given state, with transitions dependent on the input to the

machine.

Brooks’ intent in constraining all intelligence to finite state machines was not only to simplify the engi-

neering of the behaviors, but also to force the intelligence to bereactive. A fully reactive agent has sev-

eral advantages. Because its behavior is linked directly to sensing, it is able to respond quickly to new

circumstances or changes in the environment. This in turn allows it to beopportunistic. Where a con-

ventional planner might continue to execute a plan oblivious to the fact that the plan’s goal (presumably

the agent’s intention) had either been fulfilled or rendered impossible by other events, an opportunistic

agent notices when it has an opportunity to fulfill any of its goals, and exploits that opportunity.

Two traits make the robots built under subsumption architecture highly reactive. First, each individual

behavior can exploit opportunities or avoid dangers as they arise. This is a consequence of each behavior

having its own sensing, and running continuously (in parallel) with every other behavior. Second, no

behavior executes as a result of out-of-date information. This is because no information is stored — all

information is a reflection of the current environment. Although useful for the reasons expressed, these

traits also create problems for designing agents capable of complex behavior. To begin with, if there

are two behaviors pursuing different goals, then it might be impossible for both to be opportunistic

simultaneously. Consequently, any agent sophisticated enough to have potentially conflicting goals
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(such as “eat” and “escape danger”) must also have some form of behavior arbitration.

Subsumption architecture provides behavior arbitration through several mechanisms. First, behaviors

are organized intolayers, each of which pursues a single goal, e.g. walking. Behaviors within the

same goal are assumed not to contradict each other. Higher layers are added to lower layers with the

capability to suppress their behaviors if necessary. Where behaviors within a layer might interfere with

each other, another mechanism allows for pre-ordained behavior arbitration. Behaviors are allowed to

suppress each other’s outputs (actions) or either block or change their inputs (senses). These actions

occur on communications channels between the behaviors (wires, originally in the literal sense), not in

the behaviors themselves. All such interference is designed as part of the layer; it does not affect the

inner workings of a behavior, only the expressed consequences of those workings.

After experimentation, a third mechanism of behavior selection was introduced into subsumption ar-

chitecture. The description of behaviors was changed from “a finite state machine” to “a finite state

machine augmented by a timer.” This timercouldbe set by external behaviors, and resulted in its own

behavior being deactivated until the timer ran out. The addition of the timer was required due to ne-

cessity during the development of Herbert, the can-retrieving robot (Connell, 1990). When Herbert had

found a can and began to pick it up, its arm blocked its camera, making it impossible for the robot to

see the can. This would allow the robot’s “search” behavior to dominate its “pick up can” behavior, and

the can could never be successfully retrieved.

2.4.3 An Example of Directed Architecture Evolution

Allowing the can-grasping behavior to suppress all other behaviors via a timer was a violation of re-

activeness. The issue being addressed here is memory — Herbert should presumably have been able

to briefly remember the sight of the can, or the decision to retrieve the can, but such a memory would

violate the second trait of subsumption architecture listed above. This is a fundamental problem for

fully reactive systems: they have no memory. Without memory, an agent cannot learn, or even perform

advanced control or perception. Control often requires keeping track of intentions in order to exploit

the result of decisions not evident in the environment. Perception often requires processing ambiguous

information which can only be understood by using other recent sensor information or other stored

knowledge of context to set expectations.

Brooks initially resisted having any sort of memory or learning in his architecture. The timer aug-

mentation was the minimum possible addition to the reactive system. It registers globally (by setting

the timers on each possibly interrupting behavior) that a decision has been made without making any

globally accessible record of that decision. The only evidence of the chosen activity is the single un-

suppressed behavior. Brooks’ early resistance to the concept of learning is strikingly similar to that
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of the ethologist Conrad Lorenz. Both researchers initially considered intelligent behavior to be too

complicated to allow for plasticity and still maintain order.

Subsequent users of subsumption architecture immediately saw the need for plasticity, and generally

ignored the strict limitations on variable state. The tour-giving robot Polly (Horswill, 1993) had global

variables for maintaining its current navigation goal as well as whether or not it was conducting a tour,

and where that tour had begun. The musical system, the Reactive Accompanist (Bryson, 1995) had neu-

ral networks in some of its behaviors, which though theoretically finite state, were effectively variable

storage of recent events. Another robot built under Brooks’ direct supervision, Toto (Matarić, 1990),

actually learned a map. Toto had a module that constructed a landmark-based map as individual nodes

with memory. When making navigation choices, the map itself determined the best route; it was not

read by an external process. Brooks (1991) acknowledges this need, and his current projects also con-

tain neural-network type representations (Brooks et al., 1998; Marjanovic et al., 1996). This is a good

example of an architectural imperative being discovered as a consequence of direct experimentation

and experience.

3 Current Research Trends in AI Architectures

The architectures introduced in the previous section are still serving as models and inspiration to various

members of the agent architecture community. However, they are not in themselves currently being

researched extensively. In this section, we turn to several architectural paradigms for which there are

sufficient numbers of practitioners to result in significant selective pressure. Some of these research

communities share specific software systems which progress in published versions, others are united

only by conferences and journals. To some extent, the latter approach allows for more variation, but

also for less coordinated or principled change. Nevertheless, all show decisive trends, and in particular

those trends outlined earlier in the introduction.

This section does not attempt a full review of the related architecture literature. Instead, we concen-

trate on architectures or architectural traditions that are widely-known or used. The subsections are in

approximate increasing order of the size of their currently active research communities.

3.1 Behavior-Based Architectures

We begin by examining the continued evolution of behavior-based architectures. The use of the reactive

and/or behavior-based approach is still widespread, particularly in academic robotics and character-

based virtual reality. However, no single architecture is used by even ten percent of these researchers.

Subsumption architecture, described above, is by far the best known of the architectures, but relatively
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few agents have been built that adhere to it strictly. For example, Matarić 1990; Bryson 1992 and

Pebody 1995 all include adaptive extensions; Appleby and Steward (1994) make the behaviors nearly

completely independent — they would now be called “agents”. Most roboticists, even within Brooks’

own laboratory, seem to have been more inspired to develop their own architecture, or to develop code

without a completely specified architecture, than to attend to the details of subsumption (e.g. Horswill,

1993; Steels, 1994; Marjanovic et al., 1996; Parker, 1998).

Of the many behavior-based architectures inspired by subsumption, the one that in turn attracted the

most attention has been Maes’ spreading activation network (Maes, 1991a). Maes’ architecture con-

sists of a number of nodes, including action nodes, perception nodes, and goal nodes. The nodes are

connected to one another by a two-way system of links. One link specifies the extent to which the sec-

ond node requires the first node to have executed, the other specifies the extent to which the first node

enables the second node to fire. These conduits are used to allow activation to spread both bottom-up,

starting from the perception nodes, and top-down, starting from the goal nodes. When a single node

gets sufficient activation (over a threshold) that node is executed.

Maes’ greatest explicit hypothetical difference from subsumption architecture is her belief that agents

must have multiple, manipulable goals (see Maes, 1990b). Maes’ claim in that paper that subsumption

architecture only allows the encoding of a single goal per agent is mistaken; however the strictly stacked

goal structure of subsumption is sufficiently rigid that her arguments are still valid. A more implicit

hypothesis is the need for a way to specify sequential behaviors, which her weighting of connections

allows. On the other hand, Maes is very explicitly opposed to the notion of hierarchical behavior

control (Maes, 1991b). Maes states that using hierarchical methods for behavior arbitration creates

a bottleneck that necessarily makes such a system incapable of being sufficiently reactive to control

agents in a dynamic environment.

This hypothesis was disputed by Tyrrell (1993), who showed several flaws in Maes approach, most

notably that it is insufficiently directed, or in other words, does not focus attention sufficiently. There

appears to be no means to set the weights between behaviors in such a way that nodes composing

a particular “plan of action” or behavior sequence are very likely to chain in order. Other related

behaviors often fire next, creating a situation known as “dithering”. There is actually a bias against a

consummatory or goal behavior being performed rather than one of its preceding nodes, even if it has

been enabled, because the goal, being in a terminating position, is typically connected to fewer sources

of activation.

Tyrrell’s competing hypothesis is that hierarchy can be exploited in action selection, providing that all

behaviors are allowed to be fully active in parallel, and that the final decision is made by combining

their computation. Tyrrell refers to this strategy as afree-flow hierarchyand attributes it to Rosenblatt

and Payton (1989). Tyrrell (1993) gives evidence for his hypothesis by comparing Maes architecture
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directly against several hierarchical ones, of both free-flow and and traditional hierarchies, in a purpose-

built artificial life environment. In Tyrrell’s test world, a small animal needs to balance a large number

of often conflicting goals of very different types. For example, it must eat, maintain body temperature,

sleep in its home at night, avoid two different types of predators, and mate as frequently as possible.

Simulations cover up to 10 days of life and involve thousands of decision cycles per day. Using ex-

tensive experimentation, Tyrrell demonstrated substantial advantage to all the hierarchical architectures

over Maes approach.

Tyrrell also shows statistically significant superiority of the free-flow hierarchy over its nearest strictly-

hierarchical competitor, which was in fact the most simple one, a drive-based model of control. He

claims that free-flow hierarchy must be an optimal action selection mechanism, because it is able to

take into account the needs of all behaviors. These sorts of cooperative rules have been further refined.

For example, Humphrys (1997) suggests choosing a course that minimizes the maximum unhappiness

or disapproval of the elements tends to lead to the optimal solutions. Such thoroughly distributed

approaches have been challenged by Bryson (1999b). Bryson suggests that simplicity in finding an

optimal design, whether by a programmer or by a learning process such as evolution, outweighs the

advantage of cooperative negotiation. Bryson’s behavior system uses a hierarchical controller where

only a small subset of nodes, corresponding in number to the elements in the top layer in the hierarchy,

actively vie for control of the agent. Further, these nodes do not compete on the basis of relative

activation levels, but are activated by threshold and strictly prioritized. Thus on any particular cycle,

the highest priority node that has threshold activation takes control. Within the winner’s branch of the

hierarchy, further competitions then take place. This is very similar to a traditional hierarchy, excepting

parallel roots and some other details of execution, yet Bryson (1999b) shows a statistically significant

improvement over the Tyrrell (1993) results using the same system for evaluation.

Blumberg (1996) presents another architecture which takes considerable inspiration from both Maes

and Tyrrell, but also extends the control trend further towards conventional hierarchy. Blumberg’s sys-

tem, like Tyrrell’s, organizes behaviors into a hierarchy while allowing them to be activated in parallel.

However, in Blumberg’s system the highest activated module wins and locks any critical resources it

requires, such as legs if the module regulates walking. Nodes that are also active but do not require

locked resources are allowed to express themselves. Thus a dog can both walk and wag its tail at the

same time for two different reasons. The hierarchy is also exploited to focus attention in the voting

system. Not every behavior participates in the vote: a fact that was initially minimalized (Blumberg,

1996), but more recently has become a stated feature of the system (Kline and Blumberg, 1999). Blum-

berg’s architecture is being used by his own and other research groups (including Brooks’ (Breazeal

and Scassellati, 1999)) as well as a major commercial animation corporation, so its future development

should be of significant interest.
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Summary

All behavior-based systems are modular; the modular design strategy to a large part defines the paradigm.

Most behavior-based systems rely on their modularity as their source of reactiveness — any particular

behavior may express itself opportunistically or when needed. This has however lead to difficulties in

action selection which seem to have limited the complexity of the tasks addressed by these systems.

Action selection mechanisms vary widely between individual architectures, indicating the field has not

settled on a stable solution. However, several architectures are now incorporating hierarchical and or

sequential elements.

3.2 Multi-Layered Architectures

The achievements of behavior-based and reactiveAI researchers have been very influential outside of

their own communities. In fact, there is an almost universal acceptance that at least some amount

of intelligence is best modeled in these terms, though relatively few would agree that all cognition

can be described this way. Many researchers have attempted to establish a hybrid strategy, where a

behavior-based system is designed to work with a traditionalAI planner, which deduces the next action

by searching a knowledge base for an act that will bring it closer to a goal. Traditionally, planners

have micro-managed, scripting every individual motion. By making their elements semi-autonomous

behaviors which will react or adapt to limited uncertainty, the planners themselves can be simplified.

The following is a recent account of a project from the late 1980s:

“The behavior-based plan execution was implemented bottom up to have as much useful

capability as possible, where a useful capability is one which looked like it would simplify

the design of the planner. Similarly, the planner was designed top down towards this inter-

face, clarifying the nature of useful capabilities at which the behavior-based system should

aim. This design method greatly reduced the complexity of the planner, increasing the

complexity of the agent much less than this reduction, and thus reduced the overall system

complexity. It also produced a robust system, capable of executing novel plans reliably

despite... uncertainty.” (Malcolm, 1997, Section 3.1)

Malcolm’s system can be seen as a two-layer system: a behavior-based foundation controlled by a

planning system. More popular of late have been three-layer systems. These systems are similar, except

that there is a middle layer that consists of precoded plan fragments, sometimes referred to as “implicit

knowledge”, in contrast to the “explicit” reasoning by the top-level planner. Another distinction is that

the middle layer is often considered reactive, in that it does not create plans, but selects them based on

the situation; while the top layer is a traditional constructive planner. In most systems, the top-layer
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planner manipulates or generates this intermediate representation level rather than acting directly on the

behavior primitives.

The currently dominant layered robot architecture is probably 3T (Bonasso et al., 1997), which features

Reactive Action Packages (RAP, Firby, 1987), for its middle layer.RAP is an architecture for creating

reactive, flexible, situation-driven plans, and itself uses a lower layer of behavior primitives. 3T inte-

grates this system with a constructive planner. 3T has been used on numerous robots, from academic

mobile robots, to robotic arms used for manipulating hazardous substances, previously controlled by

teleoperation, to maintenance robots for NASA’s planned space station. Leon et al. (1997) uses 3T

in simulation to run an entire space station, including farming and environmental maintenance. See

Hexmoor et al. (1997) and Kortenkamp et al. (1998) for recent reviews of many two- and three-layer

architectures.

3T may seem a more likely tool for modeling of human-like intelligence than the behavior-based mod-

els discussed earlier, in that it has something approximating logical competence. However, planning

has been mathematically proven an unrealistic model of intelligence because it relies on search (Chap-

man, 1987). Search is combinatorially explosive: more behaviors or a more complex task leads to an

exponentially more difficult search. Though there is no doubt that animals do search in certain contexts

(e.g. seeking food, or for a human, choosing a gift), the search space must be tightly confined for the

strategy to be successful. A better model of this sort of process is ATLANTIS (Gat, 1991), which is

controlled by its middle layer, and only operates its top, planning layer on demand. This model is in

fact quite similar to the Norman and Shallice (1986) model of human action selection, where conscious

control is essentially interrupt driven, triggered by particularly difficult or dangerous situations. Al-

though the alternative model, with the top level being the main controller, is more typical (Bonasso

et al., 1997; Albus, 1997; Hexmoor et al., 1997; Malcolm, 1997), Gat’s model would also seem a more

natural extension of the behavior-based approach. It is also notable that Bonasso et al. (1997) report a

number of 3T projects completed using only the lower two layers.

Another incompatibility between at least early behavior-based work and the layered system approach is

the behavior-based systems’ emphasis on emergence. For a hybrid system, emergent behavior is useless

(Malcolm, 1997). This is because an emergent behavior definitionally has no name or “handle” within

the system, consequently the planning layer cannot use it. In humans at least, acquired skills can be

recognized and deliberately redeployed (Karmiloff-Smith, 1992). Hexmoor (1995) attempts to model

both the development of a skill (an element of the middle layer) from actions performed deliberately

(planned by the top layer) and the acquisition of deliberate control of skills. His hypothesis of requiring

both these forms of learning are probably valid, but his actual representations and mechanisms are still

relatively unproven. Another group researching the issue of learning behaviors and assigning their lev-

els is that of Stone and Veloso (1999). Veloso’s group has had a series of highly successful entrants into
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various leagues of robot soccer; their architecture is thus also under strenuous selective pressure. It also

seems to be converging to modularity in the areas which are most specialized, such as communication

and learning, while having a DAG for action selection over preset plans.

Summary

Two- and three-layer architectures succeed at complex tasks in real environments. They generally have

plans and plan hierarchies at their second layer, carefully organized into reactive plans in order to

maintain reactivity, although some architectures rely on the bottom-level behaviors for this function,

and others do not operate in dynamic environments. Modularity has generally been limited to the lower

level, though in some architectures the top-level planner can also be seen as a specialized module.

Current research indicates there are still open questions concerning the optimal kind of planning for the

top layer, and how to manipulate and shift information between representations, particularly learned

skills.

3.3 PRS — Beliefs, Desires and Intentions

Although robotics has been dominated by three-layer architectures of late, the field of autonomous

agents is dominated, if by any single architecture, by the Procedural Reasoning System, orPRS(Georgeff

and Lansky, 1987; d’Inverno et al., 1997).PRS also began as a robot architecture, but has proven suf-

ficiently reliable to be used extensively for tasks such as aircraft maintenance and defense simulations.

It was originally developed at roughly the same time as subsumption architecture, as a part of a follow-

up program to the longest running robot experiment ever, Shakey (Nilsson, 1984).PRS is designed

to fix problems with traditional planning architectures exposed by the Shakey project. Such problems

include:

• Forming a complete plan before beginning action. This is a necessary part of the search process

underlying planning — a planner cannot determine whether a plan is viable before it is complete.

Many plans are in fact formed backwards: first selecting the last action needed to reach the goal,

then the second last and so on. However, besides the issues of opportunism already discussed,

many details of a real problem cannot be known until the plan is executed. For example, when

crossing a room full of people, the locations of the people are determined at the time of crossing,

and cannot be predetermined.

• Taking too long to create a plan, ignoring the demands of the moment. The standard example is

trying to cross a road — a robot will not have time to replan if it suddenly spots a car, it will need

to know reactively to move out of the way.
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• Being unable to create plans that contain elements other than primitive acts — to take advantage

of skills or learned procedures.

• Being unable to manipulate plans and goals. Plans may need to be abandoned, or multiple goals

pursued simultaneously.

Obviously, this list is very similar to the problems the behavior-based programmers attempted to solve.

There are two main differences. First,PRSmaintains as a priority the ability to construct plans of action.

The architecture allows for incorporating specialized planners or problem solvers. The second differ-

ence is thatPRS development is couched very much in psychological terms, the opposite of Brooks’

deprecation of conscious impact on intelligent processes.PRS is referred to as aBDI architecture,

because it is built around the concepts of beliefs, desires and intentions.

Many researchers appreciate the belief, desires and intentions approach in concept, without embracing

PRSitself. For example, Sloman and Logan (1998) consider the notions of belief, desire, intention and

emotion as central to an agent, but proposes expressing them in a three-layer architecture. Sloman’s top

layer is reflective, the middle deliberative, and the bottom layer reactive. This is similar to Malcolm

(1997) or the first and third layer of 3T (Bonasso et al., 1997), but with an additional layer dedicated to

manipulating the goals of their top layers, and considering its own current effectiveness. This particular

role assignment for the layers of a three-layer architecture is also proposed in Figure 2, below.

The PRSarchitecture consists of four main components connected by an interpreter (sometimes called

the “reasoner”) which drives the processes of sensing, acting, and rationality. The first component is a

database ofbeliefs. This is knowledge of the outside world from sensors, of the agent’s own internal

states, and possibly knowledge introduced by outside operators. It also includes memories built from

previous knowledge. The second component is a set ofdesires, or goals. These take the form of

behaviors the system might execute, rather than descriptions of external world state as are often found

in traditional planners. The thirdPRScomponent is a set ofplans, also known as knowledge areas. Each

plan is not necessarily completely specified, but is more likely to be a list of subgoals useful towards

achieving a particular end, somewhat like the hierarchical reactive plans described earlier in the context

of Bryson (1999b). These may include means by which to manipulate the database (beliefs) to construct

a next action or some new knowledge. The final main component is a stack ofintentions. Intentions are

simply the set of plans currently operating. A stack indicates that only one plan is actually driving the

command system at a time, but multiple plans may be on the stack. Typically, ordering of the stack is

only changed if one plan is interrupted, but new information may trigger a reorganization.

Like multi-layer architectures,PRS works from the hypothesis that a system needs both the ability

to plan in some situations, such as navigation, and the ability to execute skilled acts for situations

where search is not reasonable, such as avoiding trucks. In some sense, each plan is like a behavior
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in behavior-basedAI . Behavior-basedAI is essentially a retreat to allowing programmers to solve the

hard and important problems an agent is going to face in advance. A procedure to solve an individual

problem is usually relatively easy to design. Thus some modularity can be found in the design of

the knowledge areas that make up the plan library. On the other hand,PRS does not see specialized

state and representations dedicated to particular processes as worth the tradeoff from having access to

general information. It has moved the procedural element of traditional planners closer to a behavior-

based ideal, but only allows for specialized or modularized data by tagging. The interpreter, goal list

and intention stack are the action selection device ofPRS.

PRS exists as a planning engine and a set of development tools. It exists in several versions and can be

acquired from a number of different sites. It is used by industry and the US government as well as for

research. One large, relatively recent change in the basic structure has been the adoption of a formalism

for its plan libraries that can also be used by a conventional constructive planner (Wilkins et al., 1995).

This move can be seen as a part of a general trend in currentPRS research to attempt to make the

system easier to use — the idea of a planner is to allow plan libraries to be generated automatically.

The majority of this research is concerned with easing the design task underPRS. There is now a “PRS-

lite” (Myers, 1996), and a number of tool benches and formal methods for proving code correct (e.g

Huber, 1999; d’Inverno et al., 1997). The original development lab forPRS, SRI, is now focusing effort

on a much more modularizedAI architecture, built under a multi-agent paradigm (Wilkins and Myers,

1998).

The pre-history ofPRS, the Shakey project, also has relevant evolutionary trends (Nilsson, 1984). Al-

though Shakey had a traditional planner (called STRIPS), over the term of the project the concept of

triangle tableswas developed. A triangle table decomposes a plan into its steps and assumptions, then

creates a contingency table allowing the plan to be restarted from any point. Perception is then used to

determine which element of the plan should be executed next. This allows action selection to be reac-

tive within the confines of the plan, rather than relying on memory of what steps should have already

been executed. This approach leads naturally into teleo-reactive plans (Nilsson, 1994), another recently

developed form of storage for skilled behaviors developed by planners. Benson (1996) describes using

this as the basis of a system that learns to fly airplanes in flight simulators, and the architecture is being

used at a number of research laboratories.

The Shakey project also moved from having multiple world models in its first implementation to having

a single storage place for predicates of observed data. Any predicate used to form a new plan was

rechecked by observation. This development under the selective pressure of experimentation lends

credence to the idea that too much modeling of the world is a likely cause of difficulties.
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Summary

PRS and its relatedBDI architectures have been much more popular than behavior-based systems, par-

ticularly outside of academic settings. This may be because they are easier to program. They provide

significant support for developing the action-selection mechanism, a hierarchical library of plans, and a

separate, specialized mechanism for reprioritizing the agents attention in response to the environment.

Particularly when taken over their long-term history, however, these architectures have converged on

some of the same important principles such as simplified representations (though not specialized ones)

and modularization (at least in the plan libraries.) Current research trends indicate that designing the

agent is still a critical problem.

3.4 Soar and ACT-R

Soar (Newell, 1990) andACT-R (Anderson, 1993) are theAI architectures currently used by the largest

number of researchers, not only inAI , but also in psychology and particularly cognitive science. These

architectures are fundamentally different from the previously reviewed architectures. Both are also

older, dating to the late 1970s and early 1980s for their original versions, but both are still in active

development (Laird and Rosenbloom, 1994; Anderson and Matessa, 1998). The Soar community in

particular has responded to the behavior-based revolution, both by participating directly in competitions

with the approach (Kitano et al., 1997) and even by portraying their architecture in three layers (see

Figure 2).

— Figure 2 about here. —

Soar andACT-R both characterize all knowledge as coming in two types: data or procedures. Both

characterize data in traditional computer science ways as labeled fields, and procedures in the form of

production rules.

Soar is a system that learns to solve problems. The normal procedure is to match its production rules

against the current state of the world, find one that is applicable, and apply it. This is automatic, roughly

equivalent to the middle or bottom layer of a three-layer architecture. If more than one production might

work, or no production will fire, or nothing has changed since the previous application of a production,

then Soar considers itself to be at animpasse. When Soar encounters an impasse, it enters a new

problem space of trying to solve the impasse rather than the current goal. The new problem space

may use any means available to it to solve the problem, including planning-like searches. Soar has

several built-in general purpose problem solving approaches, and uses the most powerful approach

possible given the current amount of information. This process is thus something like the top level of
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ATLANTIS (Gat, 1991), except that Soar allows the process to recurse, so the meta-reasoner can itself

hit an impasse and another new reasoning process is begun.

Soar includes built-in learning, but only of one type of information. When an impasse is resolved, the

original situation is taken as a precondition and the solution as a procedure, and a new rule is created

that takes priority over any other possible solution if the situation is met again. This is something

like creating automatic skills out of declarative procedures, except that it happens quickly, on only one

exemplar. This learning system can be cumbersome, as it can add new rules at a very high rate, and the

speed of the system is inversely related to the number of rules. To partially address this problem, Soar

has the concept of aproblem space, a discrete set of productions involved in solving a particular goal

or working in a particular context. This makes the system roughly hierarchical even in its non-impasse-

solving mode.

ACT-R is essentially simpler than Soar: it does not have the impasse mechanism nor does it learn

new skills in the same way. Nevertheless,ACT-R is used extensively for cognitive modeling, and has

been used to replicate many psychological studies in decision making and categorization (Anderson,

1993).ACT-R also faces the difficulty of combinatorics, but it takes a significantly different approach: it

attempts to mimic human memory by modeling the probability that a particular rule or data is recalled.

Besides the two sets of “symbolic” knowledge it shares with Soar,ACT-R keeps Bayesian statistical

records of the contexts in which information is found, its frequency, recency and utility (Anderson and

Matessa, 1998). It uses this information to weight which productions are likely to fire. It also has a noise

factor included in this statistical, “sub-symbolic” system, which can result in less-likely alternatives

being chosen occasionally, giving a better replication of the unpredictability of human behavior. Using

alternatives is useful for exploring and learning new strategies, though it will often result in suboptimal

performance as most experiments prove to be less useful than the best currently-known strategy.

Soar, likePRS, is used on an industrial level. However, the fact that it is losing popularity within the

cognitive science research community toACT-R is attributed by researchers largely to the the fact that

ACT-R is significantly easier to work with. This is largely because Soar was designed primarily to learn

— researchers compared programming Soar to teaching by brain surgery. One simplification inACT-R

had to be done away with, however. Originally it did not have problem spaces, but over the course

of research it was found that hierarchical focusing of attention was necessary to doing anything nearly

as complex as modeling human mathematical competences, the primary goal ofACT-R’s development

team (Anderson, 1993).

Soar has also evolved significantly (Laird and Rosenbloom, 1994). In particular, when moving to solve

problems in a dynamic, real-world domain, it was found to be critical to allow programmers to specify

chains or sequences of events explicitly, rather than in terms of simple productions. The encoding of

time and duration was another major challenge that had to be overcome when Soar moved into robotics
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— a problem that also needed to be addressed in early versions ofPRSandRAP, the middle layer of

3T (Myers, 1996).ACT-R has not yet been adapted to the problems of operating in a dynamic world:

representing noisy and contradictory data, and reasoning about events over time.

Summary

Despite coming from significantly different perspectives and research communities, the long and well-

documented histories of Soar andACT-R exhibit many of the same trends as the other paradigms pre-

viously examined. Since both systems are very distributed, (their control is based almost entirely on

production rules) they are necessarily very reactive. In fact, Soar had to compromise this feature to

be able to provide real-time control. Modularity of control if not data is provided in problem spaces,

which can be hierarchical, and Soar now provides for explicit sequential action selection. Soar’s generic

representations were also found to be not entirely satisfactory. There has been forced specialization of

procedure types due to the new benchmark tasks of the 1990’s, particularly mobile robotics. Soar still

suffers from an extreme overhead in programming difficulty, but is also still in widespread use.ACT-R

exploits a niche as a simpler though similar form of learning system, and has been further specialized

to improve its ability to model human cognition.

4 Discussion and Recommendations

There have been complaints within the autonomous control community about the over-generation of

architectures: what is wanted by users are improvements on systems with which they are already famil-

iar, rather than a continuous diversification. This argument contains some truth, however it overlooks

the perspective stated in the introduction. An agent architecture is a design methodology, and a design

methodology is not simply a piece of software. Although some architectural features will conflict, in

many cases there is no reason architectures cannot be combined, or one architecture implemented within

another. We have already demonstrated this principle by two combining relatively minor behavior-based

architectures (Bryson, 1999a; Thórisson and Bryson, tion) and are currently working on establishing

idioms withinPRSto better exploit reactive planning. Some of the insights from this work are discussed

below.

Behavior-based architectures began with many of the advantages of modularity and reactive systems,

but development of complex control software in them has been hampered by the lack of specific control

architectures for supporting hierarchical and sequential ordering of action selection. This is largely due

to theoretical opposition: Is a system truly autonomous if it is forced to carry out a plan? Is centralized

control biologically plausible? The answer to both of these questions is almost certainly “yes”, but

space does not permit the arguments here — see for example Barber and Martin (1999) and Bryson
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(2000) respectively for some discussion. Regardless, it can be observed empirically that all autonomous

agents do still have and require action selection mechanisms. In behavior-based systems, these systems

are often distributed across the behaviors. This may lead to some improvement of robustness, but at a

considerable cost in programmability and ease of debugging.

The shift to layered architectures may therefore seem a natural progression for behavior-basedAI , but

we have some reservations about this model. As mentioned above, many of the systems have the

deliberate or constructive planner in ultimate control, which may be intuitive but has not yet been

demonstrated correct. The frequent lack of such a layer within this research tradition, and the success

of PRS and Soar with something more like a middle layer in primary control of action selection are

good indications that primary action selection should probably emphasize reactive planning rather than

deliberation.

A further concern is that layered systems, and indeed some of the more recent behavior-based sys-

tems such asHAP (Bates et al., 1992; Reilly, 1996) or the free-flow hierarchy architectures reviewed

above, have denigrated the concept of a “behavior” to a mere programming language primitive, thus

losing much of the advantage of modularity. Blumberg (1996) addressed this by creating “clusters of

behaviors”; We would argue that these clusters are at the more appropriate level for a behavior.

Behaviors were originally designed as essentially autonomous entities that closely coupled perception

and action to achieve a particular competence. Unfortunately, they were also conceived as finite state

machines, with no internal variable state. In nature, perception is universally accompanied by memory

and learning: much of development in mammals is dedicated to learning to categorize and discriminate.

We would argue that behaviors should therefore also contain state appropriate to their competence, and

further that this state and learning should be at the center of behavior decomposition, much as it is

at the center of modern object decomposition in object-oriented design. We are currently developing

this concept of “behavior-oriented design” forAI ; some early work on these ideas is already available

(Bryson, 1995; Bryson and McGonigle, 1998).

In general, we suspect that the two- or three-layered architectures are still an over-simplification of the

number of modules needed to have a complete architecture. Besides constructive and reactive planners,

other systems that have proven useful in autonomous agents are an emotional or affective system (e.g.

Reilly, 1996; Sloman and Logan, 1998), or an autonomous scheduler which selects the appropriate

expression of a selected action (Thórisson, 1999). Our primary suggestion for behavior-basedAI is

further attention to easing the design of action selection. We also suggest experimenting with limited

functional modules for abilities such as operating sequential plans and smoothing motor output. This

development would be parallel to the nearly universal, though still reductionist, use of state in this

paradigm.
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Our suggestion for three-layered architectures is that they look for ways to increase support of modular-

ity in their systems. We are also concerned about the reactiveness of systems not using a middle layer

specifically designed to compensate for dynamic environments, such asRAP. It is still not clear whether

it is a better idea for a system to separate action selection from reactivity concerns, asPRSdoes, rather

than using one system for both, as do 3T and the behavior-based architectures which use hierarchical

action selection (e.g. Bryson and McGonigle, 1998).

PRS is in some ways similar to a three-layer architecture with the emphasis on the middle layer — the

building of the plan library. In particular, the software version ofPRSdistributed bySRI has a fairly

impressiveGUI for supporting the editing and debugging of this level of intelligence. As might be

gathered from our discussion of three-layer architectures above, we consider this type of support very

useful.

Unfortunately,PRSstill leaves two important levels of abstraction largely unsupported, and somewhat

difficult to manage. The construction of primitives is left to the user, to be done in the language of

the PRS implementation; in the case ofSRI’s implementation, this is common lisp. Our suggestion

for behavior-based and three-layer architectures applies equally here: primitives should be ordered

modularly. They can in fact be built from methods on objects with proprietary state, not shared by the

PRS database system. We recognize that this might offendPRS purists, particularly because it might

have consequences for the theoretical work on proving program correctness that relies on the database.

Nevertheless, we stand by our claim that state is a part of perception. Having some state proprietary to

a module should be no more difficult than having an external sensor proprietary to a primitive function;

in fact it is exactly equivalent.

The other design level that is surprisingly neglected is the hierarchical organization and prioritization

of the various elements of the plan library. Although it is possible to organize plans in the file space (a

collection of plans may be saved in a single file) and in lisp by placing them in packages, there is no

GUI tool that allows for viewing more than one plan at a time. There is no tool for ordering plans within

clusters or agents. Consequently, there is no visual idiom for prioritizing plans that might otherwise

be simultaneously able to fire. Prioritization must be handled in lisp code that is triggered during the

meta-rule section of the main processing cycle. Providing a tool to address this would make it far

simpler to program a reactive plan structure (e.g. Shakey’s triangle tables (Nilsson, 1984), Nilsson’s

teleo-reactive plans (Nilsson, 1994), or Bryson’s competences (Bryson and McGonigle, 1998)), which

seems fundamental to true reactive planning.

It should be noted thatPRS-lite actually addresses both of these complaints, though not in the man-

ner recommended above. It supports “fuzzy” behaviors as primitives, which have their own design

methodology, and it attempts to eliminate the need for meta-reasoning or prioritization by a combina-

tion of simplifying the task and increasing the power of the goal descriptions (Myers, 1996). Whether
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these solutions prove adequate, the fact that these areas are a focus of change indicates agreement on

the areas of difficulty in usingPRS.

Of the paradigms reviewed, we have the least personal experience with Soar andACT-R, having only

experienced them through tutorials and the anecdotes of programmers. Given their very different back-

ground and structure, they appear to have remarkably similar design issues to those experienced under

the early behavior-based architectures. This is perhaps unsurprising since both systems are thoroughly

distributed. The parallel between the story of the augmenting of subsumption architecture recounted

above and the story of the augmentation of Soar with time and sequencing in order to facilitate robot

control recounted in Laird and Rosenbloom (1994) is also striking. Our suggestions for improving

Soar are consequently essentially our recommendations for agent architectures in general: to focus

on making agents easier to design via enhancing the ease of use of modular decomposition and pre-

programmed action selection, while still maintaining Soar’s provision for reactivity and opportunism.

Conclusions

Every autonomous agent architecture seems to need:

• A modular structure and approach for developing the agent’s basic behaviors, including percep-

tion, action and learning.

• A means to easily engineer individual competences for complex tasks. This evidently requires

a means to order action selection in both sequential and hierarchical terms, using both situation-

based triggers and agent-based priorities derived from the task structure.

• A mechanism for reacting quickly to changes in the environment. This generally takes the form

of a system operating in parallel to the action selection, which monitors the environment for

salient features or events.

In addition to the technical requirements just listed, the central theme of this article is that agent ar-

chitectures are first and foremost design methodologies. The advantages of one strategy over another

are largely a consequence of how effectively programmers working within the approach can specify

and develop the behavior of the agent they are attempting to build. It should be noted that this stance

is not necessarily antithetical to concerns such as biological plausibility or machine learning: natural

evolution and automatic learning mechanisms both face the same problems of managing complexity as

human designers. The sorts of bias that help a designer may also help these other processes. Similarly,

where it is understood, natural intelligence serves as a knowledge source just as well as any other suc-

cessful agent. Our intention with this article is to draw attention to the knowledge developed in our field

over the past two decades. In particular, we have attempted to cross boundaries between significantly
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different paradigms of agent architecture development, and present useful recommendations for each

of these various approaches.
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