
Behaviour Oriented Design for Real-Time-Strategy Games

An Approach on Iterative Development for STARCRAFT AI

Swen Gaudl

Department of Computer

Science

University of Bath

BA2 7AY, Bath, UK

s.e.gaudl@bath.ac.uk

Simon Davies

simon.davies@bath.edu

Joanna J. Bryson

Department of Computer

Science

University of Bath

BA2 7AY, Bath, UK

joanna.bryson@bath.ac.uk

ABSTRACT
Design is an essential part of all games and narratives, yet
designing and implementing believable game strategies can
be time consuming and error-prone. This motivates the
development and application of systems AI methodologies.
Here we demonstrate for the first time the iterative develop-
ment of agent behaviour for a real-time strategy game (here
StarCraft) utilising Behaviour Oriented Design (BOD)
[7]. BOD provides focus on the robust creation and easy
adjustment of modular and hierarchical cognitive agents.
We demonstrate BOD’s usage in creating an AI capable of
playing the StarCraft character the Zerg hive mind, and
document its performance against a variety of opponent AI
systems. In describing our tool-driven development process,
we also describe the new Abode IDE, provide a brief liter-
ature review situating BOD in the AI game literature, and
propose possible future work.

General Terms
Design,Agent Systems, Simulation, Tool-Driven Development,
Behaviour Oriented Design

1. INTRODUCTION
Digital games are a significant part of contemporary life and
a substantial part of many economies. They also o↵er sta-
ble and versatile environments in which to develop artificial
intelligence, o↵ering great potential for researching human
behaviour, intelligent systems, and agents in general [23].
Here we focus on the AI development, design and planning
for an agent usable in real-time strategy games. Game AI
design is typically a complicated process where game de-
signers and programmers aim at the creation of a robust,
challenging, believable subsystem of the game that behaves
in a way that is plausible to the end user, the player. To
address the issue of creating a robust agent in challenging
dynamic environments, we have employed the AI develop-
ment methodology Behaviour Oriented Design (BOD) [7] to

implement a real-time strategy AI. We implemented this pi-
lot case study using and extending a new version of the Ad-
vanced Behaviour Oriented Design Environment (Abode)
[8], which we also present in this paper.

Although originally designed for cognitive robotics, BOD
has most commonly seen use in first-person action (FPS)
games [27, 4, 17, 16, 19]. Here we present the first applica-
tion of BOD in the field of real-time strategy. Due to the
di↵erent nature of first-person action games and strategy
games, di↵erent problems are present. In first-person action
games the focus is primarily on recognising and responding
quickly to opportunities and threats, which may seem a more
obvious application for reactive AI. In strategy games the fo-
cus lies mostly on extended strategic planning, so they are
seen as more “cognitive” than FPS. To prove the feasibility
of using BOD for strategy games we designed and imple-
mented a game AI using BOD for the game StarCraft.
The pilot work presented here cannot claim to present the
current leading strategy. Our focus here is on the presen-
tation of the approach itself, translating the understanding
of ordinary developers into game AI, rather than focusing
solely on the outcome. Nevertheless, performance we report
is quite respectable.

Real-Time strategy games (RTS) o↵er an interesting per-
spective for AI researchers because they originate from com-
plex board games such as Chess or Go. Most RTS games
have fairly simple underlying rules which are easy to learn.
During game play similar strategic concepts found also in
Chess and Go such as openings and counter-strategies are
used by the players to find and exploit the search for an
optimal winning strategy. In contrast to Chess or Go, RTS
games o↵er a greater variety of choices making it even harden
to write robust and believable AI. Because BOD has pre-
viously been successfully applied to FPS games which are
continuous as well but require a di↵erent kind of planning,
it seemed a logical next step to apply BOD to RTS games
to strengthen our understanding of AI planning for games.

This paper is organised as follows. As a starting point a
short review of di↵erent approaches to, and techniques and
strategies for AI development is presented. This is followed
by an introduction to BOD and its underlying concepts. Af-
ter the introduction of BOD the implementation of the game
AI is presented including discussions on the gained experi-
ences while developing the StarCraft bot. Implementa-

tion details, as well as results and analysis of the bot are
given to illustrate the design and implementation. Finally,
we conclude with a description of our case study results and
suggest directions for further work.

2. GAME DESIGN TECHNIQUES AND BOD
There are many di↵erent techniques that have been pro-
posed and developed for AI applications. In the presented
project one such approach, BOD, is used and evaluated in
the context of real-time strategy games. In this section we
introduce BOD in the context of related AI techniques both
to provide context and to elucidate the understanding of the
AI concepts underlying the BOD approach. This will cover
both general AI and more specifically approaches that have
been used for StarCraft or similar games.

2.1 Finite State Machines
One of the first methods for AIs that was developed and is
still fairly common is the finite state machine (FSM). It is
an abstraction of a system represented through states and
a set of conditions where changes in the system are repre-
sented by transitions between them. FSMs have been used
for game AI since some of the earliest games, eg. Namco’s
Pac-Man [2, p. 165]. FSMs are suited for small purely re-
active systems or ideally subsystems in a larger AI system,
as they do not support planning and prediction but o↵er an
intuitive logic representation. A perfect subsystem inside
StarCraft would be controlling of the di↵erent states of a
single unit.

2.2 Potential Fields
For the control of individual units, one method that is cur-
rently popular is potential fields, also known as potential
functions [2, p. 80]. A potential function can be mapped
to entities within the world and gives them either a repul-
sive or attractive force [26]. In the case of game AI, this
can be used to attract units to weak and desirable targets
while repelling them from stronger more dangerous forces.
With potential fields, a single function can be used to pro-
vide a large amount of control. By modifying the variables
of the repelling and attraction forces a way can be provided
to include learning and improvement into an AI mechanism.
This has been done by AI’s such as the Berkeley Overmind to
great e↵ect [20]. There are also approaches covering evolu-
tionary multi-agent potential fields (EMAPF) in small con-
trolled training examples [28].

2.3 Machine Learning and Planning
For most naive developers, the expectation for AI is that it
should fully replace the design with automated search ap-
proaches such as machine learning or planning. For exam-
ple the neural network approach attempts to replicate the
neural systems of the brain. The most prominent case of
a still-active neural network use inside a deployed commer-
cial game is the creature in Black&White2. Other games
such as Creatures [18] evolve neural networks for control and
learning in the virtual world. A more general-purpose type
of machine learning approach called reinforcement learning
has been used for developing StarCraft AIs [24], and has
been proven to be e↵ective way to control groups of units.
However, all forms of machine learning still require careful
design in order to reduce the combinatorial possibilities of

the behaviour to be learned to something tractable. This
fact is sometimes overlooked or under-reported in the de-
scription of the algorithms.

Search Algorithms (SA) such as Monte Carlo Tree Search
(MCTS) [6] have seen recent success in games like Go and
even in games with incomplete information such as Magic:
The Gathering [30]. SA o↵er great potential in exploring a
huge search space, but again require careful problem specifi-
cation. The main di�culty when trying to use search in cur-
rent commercial digital games such as StarCraft is, as with
machine learning, the search space is too big. There is also
normally no parallel simulation of su�cient play-throughs
of a complete game possible [3] which is necessary to allow
for a decently-skilled artificial player.

2.4 Goal-Driven Autonomy
An approach to creating an AI model that can allow auto-
mated planning to be tractable is using Goal-Driven Auton-
omy as a conceptual model [31]. This approach has been
used in the context of StarCraft. The key components of
goal-driven autonomy are a planner module that generates
plans to reach a goal, and another module that can detect
discrepancies from the expected outcome and the actual out-
come, see figure 1. Explanations for these discrepancies are
then used to generate new goals which are then sent back
to the planner. This approach was found to be useful for
the high level strategies in StarCraft, where the system
would have an overall plan. A goal oriented approach has
many useful features that make this approach a large im-
provement over less complex approaches such as finite state
machines. The ability for plans to dynamically be adjusted
based on the discrepancies in the desired outcome and the
actual outcome of events proves to be a powerful feature in
the case of a strategy game.

2.5 Behaviour-Based Artificial Intelligence
Building upon the ideas of a finite state machine is a tech-
nique known as Behaviour-Based Artificial Intelligence, de-
veloped by Brooks [5]. This approach adds modularity to a
FSM system, by having multiple finite state machines each
specialised to a sub task of the problem and thus easier to
program. In the original BBAI methodology, the subsump-
tion architecture, FSM can only have interactions with one
another by modifying the inputs and outputs of the other
FSM / modules. Di↵erent layers of control are built into a
simple stack hierarchy, where the higher layers can subsume
the roles of the lower level modules by modifying their out-
puts appropriately. This is the idea behind a BBAI where
an AI is built bottom-up with the overall goal on the high-
est layer of the system. The original proposition of BBAI
made no inclusions for machine learning or planning; In this
form it is another purely reactive architecture, however one
much more scalable to large systems compared to a basic
FSM. However, later BBAI used other representations for
the modules than FSM, including potential fields [22, 1].

2.6 Behaviour Oriented Design (BOD)
BOD is an AI development methodology that combines an
iterative development process based around variable state
for learning and planning with the modular, responsive ar-
chitecture of BBAI. It emphasises producing extensible and

Figure 1: Components in the simplified Goal-Driven
Autonomy conceptual model [31]

maintainable AI projects. First introduced in 2001 [7], the
approach emphasises the design of AI systems allowing and
facilitating strong human design, which in turn facilitates
the application of search techniques like learning and plan-
ning by focussing them on only the representations and prob-
lems these algorithms can reliably and e�ciently solve. Un-
like approaches that attempt to use single representations
for all behaviours (e.g. potential fields or FSM [1, 5]), BOD
encourages the designer to utilize a variety of representations
to enrich the designed behaviour. Facilitating human design
is important because in most AI systems, human designers
are still required to do most of the hard work of coping with
the combinatorial explosion of available options [9]. The it-
erative design heuristics encourage developers to find a more
intuitive and better way to solve a problem, whether with
their own coding or by inserting learning or even o↵-the-shelf
AI components.

1 /∗∗ Bui lds a pa i r o f z e r g l i n g s from any la rvae ∗∗/
public boolean spawnZergl ing () {

3 for (Unit un i t : bwapi . getMyUnits ()) {
i f (un i t . getTypeID () ==

UnitTypes . Zerg Larva . o rd i na l ()) {
5 i f (resourceManager . getMineralCount () >= 50 &&

resourceManager . getSupplyAvai lab le () >= 1

&& buildingManager . hasSpawningPool (true)){
bwapi . morph(un i t . getID () ,

UnitTypes . Ze rg Ze rg l i ng . o rd i na l ()) ;

7 return true ;

}
9 }

}
11 return fa l se ;

}

Listing 1: The primitive action “spawnZergling”
which is implemented in Java. Such primitives
are referenced by the POSH plan which determines
when they should be executed.

To determine the priorities between modules and thus to
specify when an action should be performed in a BOD sys-
tem, an action plan, also known as a reactive plan is used.
These are a prioritised set of conditions and the related ac-
tions that should be performed when these conditions are
met. The action selection mechanism used in BOD is ordi-
narily a Parallel-rooted Ordered Slip-stack Hierarchical (POSH)

reactive plan. POSH plans, first described in [] build upon
the idea of Basic Reactive Plans (BRP) which are a collec-
tion of production rules, arranged hierarchically according
to subtasks.

There are thus two parts to the BOD architecture:

• Behaviour Libraries These are primitives — actions
and senses that can be called by the action selection
mechanism, and any associated state or memory re-
quired to support these. They are created in the native
language for the problem space, see Listing 1. They
determine how to do something. The separation of be-
haviour libraries from the action selection is important.
This faciliates code reuse, introducing the possibility
of a pool of complex specialized approaches and tech-
niques and at the same time hiding this the underlying
structure from the plan itself.

• POSH Action Selection Plans in contrast specify
the particular priorities and even personality of a given
character. The POSH action selection mechanism con-
sists of plans which are a hierarchy of actions with as-
sociated triggers. Those triggers determine when to
perform an action. A POSH plan is split up into a
drive collection, competences and action patterns. See
Figure 2 for a basic plan using the primitive action
spawnZergling which will be active as soon as a Spawn-
ingPool — the building which creates those units —
is available and enough supply remains after spawning
those units.

Figure 2: Initial POSH plan from inside the Abode
Editor for the Zerg Hivemind which builds drones,
mines Crystal and builds Zerlings after creating a
SpawningPool.

Besides its archictecture, BOD also consists of a set of heuris-
tics for refactoring between these representations and main-
taining the clearest model possible for the AI character [10].
BOD has previously been used in the context of writing
game AI by Partington, in which an evaluation of BOD prin-
ciples are performed in the context of writing an AI for the
first person shooter title Unreal Tournament [27]. Further
details on BOD and the development process are given be-
low.

2.7 Behaviour Trees
The behaviour tree is another type of AI design methodol-
ogy based on reactive planning that has over the past decade
come into a fairly widespread use within the games industry.
Due to a similar underlying planning concept, BTs display
several noticeable similarities to BOD. An AI development
technique first used in an commercial product by the Bungie
games studio with the release of Halo2 [21], BTs have since
been used in titles such as Spore, Crysis as well as being
used again by Bungie in the game Halo3. Unfortunately,
there are few academic publications on behaviour trees, but
there are several industry articles [13, 14, 25] as well as con-
ference talks [12]. Much of the information about behaviour
trees in this document comes from industry resources and
is centred around the approach established by Champan-
dard [14]. It is worth noting that di↵erent companies have
taken di↵erent approaches in using BTs. However the basic
concept of all those implementations is a modular decompo-
sition of actions into a hierarchical tree, much like POSH.
The iterative development methodology core to BOD can
in principle be applied to any hierarchical reactive planning
system, including BTs; however, here we have used POSH.

VHTXHQFH

VHTXHQFHD E

F G H

URRW

[�
!�
�

\

�

GR�
EDU

GR�
IRR

]�
 �
�

Figure 3: Behaviour Tree featuring two sequence
nodes. The Tree is traversed top to bottom, left to
right creating a priority order for horizontal traver-
sal and a vertical hierarchical structure.

An example behaviour tree can be found in Figure 3. In
this behaviour tree, the root node is a sequence with three
children, two conditionals and a sequence node.

3. CASE STUDY: BOD APPLIED TO
REAL-TIME STRATEGY GAMES

The previous section positioned BOD inside the field of
other AI approaches commonly used for game AI. While au-
tomated planning and machine learning techniques can be
powerful tools, they cannot solve large problems in tractable
amounts of time. A design methodology focussing on hand-
programmed plans allows the developer greater control over
the resulting behaviour of an AI system. Behaviour trees
do not have a standardised complete implementation like
POSH does, or arguably POSH is the only freely-availabe
and fully-described form of BT, given the techniques are so
close. Automated learning and planning can be used in a
modular way to produce actions where useful, while BOD
provides high-level structuring and planning.As this work
focuses on demonstrating the development of an AI for com-
plex strategic games, we now turn this.

3.1 StarCraft
For our case study we designed a first prototype AI for Star-
Craft to play the hive mind of the Zerg, and played it
against a variety of other AI systems including the one the
final game was shipped with and several available AIs over
the Internet. StarCraft, first released in 1998 focusses on
strategic real-time player-versus-player game play in a fu-
turistic setting. Due to the good balance of the available
in-game parties the players can choose from, it has become
famous in e-sports [29] and attracted significant media at-
tention.

There has been a recent influx of work that has been done
in this area, due to the AIIDE and CIG organisations that
started using StarCraft for AI competitions. The creation
of the BWAPI [11] interface has facilitated the creation of
artificial agents for StarCraft. This has lead to much
recent interest in the AI development community over the
past few years. The game provides a complex environment
with many interaction possibilities which involves players
having to manage a multitude of di↵erent tasks simultane-
ously. StarCraft also requires players to be able to react
to changes in the game world in real-time while in paral-
lel controlling and keeping track of long term goals. The
given setting introduces many challenges regarding pro and
re-activeness of an agent, planning, and abstraction, modu-
larity and robustness of game AI implementations.

3.2 System Architecture
For the presented work the design made use of the Java Na-
tive Interface version of BWAPI (JNIBWAPI). This was cho-
sen because the Java Interface can easily be connected to the
current POSH action selection mechanism by running POSH
in Jython. This means that Java methods can be called di-
rectly from the action selection mechanism, without using
an additional wrapper as shown in Figure 2. JNIBWAPI
makes use of the capabilities of BWAPI where it acts as a
proxy. Here BWAPI runs as a server, and the AI connects
to this to control StarCraft. This allows the flexibility to
run external applications such as JyPOSH, which is much
more di�cult with standard BWAPI which simply executes
code from .dll files.

The result of using JNIBWAPI to communicate with Star-
Craft, is that the behaviour libraries are written in Java.
Then, these behaviours are called from the POSH action se-
lection mechanism through Python code that is run using
Jython. The overall architecture can be seen in Figure 5.

Once the system architecture had been developed, the next
step was to create a proof of concept that performed most
of the basic tasks required to play a game of StarCraft. To
do this, the first goal was to implement an AI that would
only build the basic o↵ensive unit, the zergling, as quickly
as possible, and then attack. This is a basic strategy that
has been used by players to attempt to quickly win games
without having to have a long-term strategy, see Figure 6.
Once all of the behaviours were implemented and tested,
the JNIBWAPI behaviour code was integrated with POSH
via Python behaviour modules. These were scripts that con-
tained behaviour wrappers for the Java methods, and is used
by POSH to determine which methods are senses or actions.
As mentioned earlier these are the interfaces that can be

Figure 4: Extending the previous plan from Figure 2 to include the Zergling-Rush strategy. It will send a
large group of Units to the enemy base as early as possible in the game.

JyPOSH
(Jython)

Action
Selection

Behaviour
Layer
(Java)

JNI
BWAPI

Java Interface
for BWAPI

BWAPI
(C++)

StarCraft

JyPOSH Process StarCraft Process

Figure 5: The architecture model for the StarCraft
BOD AI. The architecture is separated into three
elements the action selection done by POSH on
the left. The middle part represents the behaviour
primitives, e.g. actions and senses. The rightmost
block shows the actual game and the interface which
allows the deployment of strategies.

used by POSH plans. The Python code for this project is
little more than calls to the Java methods. All of the logic
and behaviour for the AI is either in the POSH action plan,
or in the Java behaviour modules.

3.3 Iterative Development
The BOD architecture provides developers with a structure
and a process to quickly develop an AI system provided that
the POSH mechanism can be connected to the behaviour
modules. BOD’s design methodology and process also in-
forms developers how to approach AI problems [10]. In con-
trast to the standard waterfall model, development of AI
following BOD is an iterative or agile process that focuses
on having a flexible set of requirements, and heuristics to re-
evaluate the system’s decomposition as behaviours and plans
are implemented and tested. The Abode editor which is
freely available1 helps facilitate BOD by providing a graph-
ical tool to edit and create plan files. The plans presented
in Figure 2 and 4 were created using it. The editor allows
node collapsing which increases the overall readability of the

1Search for amoni software. Links to ABODE, and our
Brood War AI are near the top of the Amoni Software page.

plan, because one can collapse sub-trees which currently do
not need to be touched. This allows attention to be con-
centrated on specific parts of the tree, keeping the structure
clear.

Because BOD facilitates the extension of existing behaviours
by adding new elements such as being able to use new unit
types, complex behaviour can be iteratively developed and
step-wise tested. Due to the separation of the behaviour
libraries from the POSH plans, the underlying implementa-
tion can be adjusted and independently developed creating
an interface-like structure. Also, once a behaviour library
is developed, di↵erent strategies or players can be quickly
implemented by shifting priorities within the reactive plan.
Further, an advantage of using hierarchical plans is that they
are very extensible — new drive elements can be added with-
out any major changes to an existing POSH plan.

In applying BOD the first step is to specify at a high-level
what the agent is intended to to. To start with the sim-
plest complete strategy—Zergling-Rush— we have zer-
glings overwhelm the opponent as early as possible in the
game. Based on this more complex strategies can be de-
veloped by building on the first one, including re-using its
components. The iterative process of starting with a basic
strategy is well suited for all complex development processes
because the tests and progress of the intended behaviour /
outcome can be traced throughout the iterations and un-
wanted behaviour can be traced back to when it was first
included.

The second step is to decompose the strategy into sequences
of actions needed to build up the strategy. Next, identify a
list of required senses (observations of the game) and actions
(commands the agents uses to control the game).

Race # Matches # Wins AVG BOD Score StdDev AVG Opponent Score StdDev AVG Score Di↵erence
Protoss 17 7 19546 35729 43294 18916 -70.75%
Terran 18 12 56651 26077 35696 15380 37.11%
Zerg 15 13 47961 19218 24333 7974 50.64%
Total 50 32 48257 27680 30523 17594 43.56%

Table 1: Results from 50 matches of the Behaviour Oriented Design bot described in Figure 6 against the
Blizzard AI set to random race on the Azalea Map.

Top-Down Analysis:

1. To attack using zerglings, the AI has to build a mass of
those units first and then attack the opponents base.
,!build mass of zerglings

2. To attack the opponents base, the AI has to know its
location.
,!scout the map

3. To build a zergling, a spawning pool is needed and
enough resources has to be available.
,! build spawning pool
,! ensure enough resources

4. To ensure su�cient resources, they have to gathered.
,! send drones to gather resources

It is important to to remember to always aim for the simplest
possible approach first. From the top-down analysis two
lists of actions (mineral count, support count, larvae count,
has spawning pool, know opponent base) and senses
(harvest resources, build spawning pool, scout map,
build zerglings, attack enemy) were identified.

Having derived a number of basic primitives, those now need
to clustered in behaviours as is appropriate to their state de-
pendencies. Keeping in mind the basic principles of OOD
such as clustering those elements which create classes having
a high internal cohesion and a low external one, we itera-
tively create a behaviour library. In our case it seemed rea-
sonable to create di↵erent behaviours for managing struc-
tures, building units, combat and exploration & observa-
tion. Those behaviours were in our case written in Java,
see for example Listing 1. Once the first behaviours have
been developed, a POSH action plan is created to execute
them. The plan determines when the AI should call each
behaviour to perform an action. The POSH action planning
mechanism is part of the BOD architecture using “learnable
action plan2” (.lap) files which have a lisp-like syntax. The
POSH plan was implemented using Abode, which provides
both editing and visualisation of POSH plans with a variety
of di↵erent perspectives on the same plan, see Figure 6 for
an easy-print version of the complete plan.

New behaviours were later introduced one or two at a time,
and then tested, until the plan was robust enough to deal
with a full strategy for StarCraft. The iterative process
facilitated by BOD allowed us to build a solid and human-
understandable foundation for our first strategy. In Figure 4

2Note this name is misleading — early experiments in learn-
ing plans lead to the current emphasis on design.

the extended plan is presented which introduces the Zerg-
Rush Drive, one of the most prominent early game strate-
gies. The Drive uses the Zergling-Rush Competence as a first
step. We would like to extend this plan to allow switching
between di↵erent Rush tactics by including competences for
these. These would need to be prioritized di↵erently ac-
cording to the assessed stage of the game. Mechanisms for
varying priorities include code reuse with multiple drive en-
try points [27] or setting drives to the same priority and
having them guarded by mutually exclusive triggers.

Now we have our first simple strategy which reacts accord-
ingly to the information available in the game and sends in
periodic time frames swarms of zerglings to the enemy base.
This strategy works well against human players once or twice
before they realize how to counter it. After testing this plan
one will encounter that if the strategy plays against itself an
obvious flaw is present — the absence of a defence.

Following this process a very visual and easily traceable
design of the bot is introduced which allows the designer
more control over the resulting behaviour by increasing the
complexity of the aimed behaviour step-wise. The next
POSH elements that were developed were those that dealt
with the upgrading of units. Then behaviours were added
for research, unit production and then attacking with basic
units. The final plan that resulted can be found in Figure 6
which creates units when needed, scouts for the opponent,
researches unit upgrades and attacks.

As a next step the underlying primitives were independently
updated without the need to touch the POSH plan. The
plan could be improved separately; adding more behaviours
for creating di↵erent types of units.

4. RESULTS
After finishing the first stable prototype the StarCraft
Bot was tested on the Azalea3 map against the original Bots
provided by the game itself playing adversary races (Protoss,
Terran and Zerg) in random mode. Our implementation
faired reasonably well in the first tests winning 32 out of 50
matches, see Table 1. We then set the BOD bot against the
Artificial Intelligence Using Randomness (AIUR)4 Protoss
bot , which proved a harsher competitor, winning 7 out of
10 against our implementation. On analysis, we realised the
BOD bot performed well when it was not attacked by a rush
early in the game, indicating more room for further iterative
development for closing the gap between our prototype and
other available bots. The major advantage of our approach
is the focus on rapid prototyping and short development
times allowing for continuous testing of the implementation.

4AIUR:http://code.google.com/p/aiurproject/

build-supply
(C) (supply_available 2<=)

build-overlords
Competence

building_overlords
(mineral_count 100 >=) (larvae_count 0 >)

attack-enemy
(AP) (has_completed_spawning_pool)
(found_enemy_base)

attack-enemy-with-zerglings
Action Pattern

attack_zerglings

build-forces
(C) (has_completed_spawning_pool)

build-forces-competence
Competence

try_spawn_zerglings
(has_completed_spawning_pool)
(mineral_count 50 >)

find-enemy
(C) (found_enemy_base 0 =)

scouting
Competence

scout-overlord
(scouting_overlord 0 =)

scout-drone
(has_spawning_pool)
(scouting_drone 0 =)

get-spawning-pool
(C) (mineral_count 200 >=)
(has_spawning_pool = 0)

build-pool
Competence

build-spawning-pool
(AP)(mineral_count 200 >)

build_spawning_pool

keep-building-drones
(C) (alife)

drone-production
Competence

try-spawn-drone
(drone_count 5 >)
(mineral_count 50>)

Figure 6: A more complete POSH plan to attack with a units and includes defensive behaviour as well.

5. CONCLUSIONS AND FUTURE WORK
Real-time game character development requires leaving suf-
ficient space for expert human authoring. This underscores
the overwhelming importance of systems AI, even where al-
gorithmic AI like machine learning can be exploited to solve
regular subproblems. Here we have analysed and discussed
a variety of approaches and techniques, most with imple-
mentations in existing strategy game environments. After
describing Behaviour Oriented Design and POSH, we intro-
duce the iterative implementation of a demonstration pro-
totype AI for a real-time strategy game. The clean and
easy-to-grasp AI produced demonstrates a proof of feasibil-
ity. The usage of a separation of underlying mechanics and
behavioural logic allows independent development of both
systems. The visual presentation of the plan itself can be
a powerful tool because it o↵ers a di↵erent perspective on
the behaviour. Using features like node collapsing, the plan
editor and visualiser Abode also minimizes cognitive load
when dealing with large plans. The test runs using the orig-
inal bot for StarCraft show good potential — though the
developed AI was a prototype representing one of the less-
advanced but recognised strategies.

Based on these first results of our prototype further work
on the StarCraft AI using BOD seems feasible to allow
a closer comparison to more advanced strategies and imple-
mentation, e.g. [32, 31]. First steps would be the inclusion
of a more sophisticated strategy such as the Mutalisk-Rush
and fixing the identified early-game defence problem.

The development of AI using Abode provides good graphi-
cal feedback and allowed for fast prototyping the higher level
behaviour while separating the underlying implementation
allowed for a clean cut between design and close-to-engine

4The map Azalea, which has previously been used in high
level professional tournaments is available at: http://www.

teamliquid.net/tlpd/korean/maps/25_Azalea, checked: 16.July
2012

programming. A complete tutorial on how to test and set
up the environment for the AmonI StarCraft Bot AI and
ABODE5 is available on the AmonI Website6.

During this development, connections between BOD and
other approaches became apparent. While Behaviour Trees
(BT) have not been standardised nor su�ciently described
in academic papers, they are widely used and many paral-
lels between BT and POSH were visible. In future work we
intend to clarify the di↵erences between both approaches,
or to show possibilities of how to subsume one approach by
the other and create a new more formalised and accessible
approach. It would also be good if Abode was extended to
provide real-time debugging o↵ering the AI designer useful
feedback and statistics on the developed plan. Other di-
rections which are clearly visible are the inclusion of lower-
level approaches such as potential fields, neural networks or
MCTS in the context of BOD behaviours which might bene-
fit from providing the high level POSH control with a greater
level of flexibility. This new gained flexibility is essential for
future work on modelling interesting artificial players up to
a human-like level in behaviour [15].

6. ACKNOWLEDGEMENTS
We would like to thank the University of Bath Department
of Computer Science for supporting the ABODE project.

7. REFERENCES
[1] R. C. Arkin. An Behavior-based Robotics. MIT Press,

Cambridge, MA, USA, 1st edition, 1998.
[2] D. Bourg and G. Seemann. AI for Game Developers.

O’ Reilly. O’Reilly, first edition edition, 2004.
[3] S. R. K. Branavan, D. Silver, and R. Barzilay.

Non-linear monte-carlo search in civilization ii. In
T. Walsh, editor, IJCAI, pages 2404–2410.
IJCAI/AAAI, 2011.

[4] C. Brom, J. Gemrot, M. B́ıda, O. Burkert,
S. Partington, and J. Bryson. Posh tools for game

5
http://code.google.com/p/abode-star

6
http://www.cs.bath.ac.uk/ai/AmonI.html

agent development by students and non-programmers.
In 9th International Conference on Computer Games:
AI, Animation, Mobile, Educational & Serious
Games, pages 126–135, 2006.

[5] R. Brooks. A robust layered control system for a
mobile robot. Robotics and Automation, IEEE Journal
of, 2(1):14–23, 1986.

[6] C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte
carlo tree search methods. IEEE Trans. Comput.
Intellig. and AI in Games, 4(1):1–43, 2012.

[7] J. Bryson. Intelligence by design: principles of
modularity and coordination for engineering complex
adaptive agents. PhD thesis, Citeseer, 2001.

[8] J. Bryson, S. Gray, J. Nugent, and J. Gemrot.
Advanced behavior oriented design environment.
http://www.cs.bath.ac.uk/˜jjb/web/BOD/abode.html,
2006. [Accessed 27th Apr 2012].

[9] J. Bryson and L. Stein. Modularity and design in
reactive intelligence. In International Joint Conference
on Artificial Intelligence, volume 17, pages 1115–1120,
2001.

[10] J. J. Bryson. The Behavior-Oriented Design of
modular agent intelligence. In R. Kowalszyk, J. P.
Müller, H. Tianfield, and R. Unland, editors, Agent
Technologies, Infrastructures, Tools, and Applications
for e-Services, pages 61–76. Springer, Berlin, 2003.

[11] BWAPI Development Team. bwapi — an API for
interacting with starcraft: Broodwar (1.16.1) - google
project hosting. website:
http://code.google.com/p/bwapi/, 2010. [Accessed 4th
Nov 2011].

[12] A. Champandard. Behavior trees for Next-Gen game
AI. website: http:

//aigamedev.com/open/article/behavior-trees-part1/,
2007. [Accessed 4th Apr 2012].

[13] A. J. Champandard. Ai Game Development. New
Riders Publishing, 2003.

[14] A. J. Champandard. Getting started with decision
making and control systems. In S. Rabin, editor, Ai
Game Programming Wisdom 4, volume 4 of Cengage
Learning, chapter 3 Architecture, pages 257–264.
Charles River Media, Inc., 2008.

[15] S. E. Gaudl, K. P. Jantke, and R. Knauf. In search for
the human factor in rule based game ai: The grintu
evaluation and refinement approach. In H. C. Lane
and H. W. Guesgen, editors, FLAIRS Conference.
AAAI Press, 2009.

[16] J. Gemrot, C. Brom, J. J. Bryson, and M. B́ıda. How
to compare usability of techniques for the specification
of virtual agents behavior? An experimental pilot
study with human subjects. In M. Beer, C. Brom,
V.-W. Soo, and F. Dignum, editors, Proceedings of the
AAMAS 2011 Workshop on the uses of Agents for
Education, Games and Simulations, Taipei, May 2011.

[17] J. Gemrot, R. Kadlec, M. B́ıda, O. Burkert, R. Ṕıbil,
J. Havĺıček, L. Zemčák, J. Šimlovič, R. Vansa,
M. Štolba, T. Plch, and B. C. Pogamut 3 can assist
developers in building ai (not only) for their
videogame agents. In Agents for Games and
Simulations, number 5920 in LNCS, pages 1–15.

Springer, 2009.
[18] S. Grand, D. Cli↵, and A. Malhotra. Creatures:

Artificial life autonomous software agents for home
entertainment. In W. L. Johnson, editor, Proceedings
of the First International Conference on Autonomous
Agents, pages 22–29. ACM press, February 1997.

[19] J. Grey and J. J. Bryson. Procedural quests: A focus
for agent interaction in role-playing-games. In
D. Romano and D. Mo↵at, editors, Proceedings of the
AISB 2011 Symposium: AI & Games, pages 3–10,
York, April 2011. SSAISB.

[20] H. Huang. Skynet meets the swarm: how the berkeley
overmind won the 2010 StarCraft AI competition.
website:
http://arstechnica.com/gaming/news/2�11/�1/skynet-

meets-the-swarm-how-the-berkeley-overmind-won-the-

2�1�-starcraft-ai-competition.ars, 2011. [Accessed
11th Nov 2011].

[21] D. Isla. GDC 2005 proceeding: Handling complexity
in the halo 2 AI. website: http://www.gamasutra.com/

view/feature/225�/gdc_2��5_proceeding_handling, 2005.
[Accessed 4th Apr 2012].

[22] K. Konolige and K. Myers. The Saphira architecture
for autonomous mobile robots. In D. Kortenkamp,
R. P. Bonasso, and R. Murphy, editors, Artificial
Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems, chapter 9, pages 211–242.
MIT Press, Cambridge, MA, 1998.

[23] J. E. Laird and M. van Lent. Human-level ai’s killer
application: Interactive computer games. In H. A.
Kautz and B. W. Porter, editors, AAAI/IAAI, pages
1171–1178. AAAI Press / The MIT Press, 2000.

[24] A. Micić, D. Arnarsson, and V. Jónsson. Developing
Game AI for the Real-Time Strategy Game StarCraft.
Technical report, Reykjavik University, 2011.

[25] I. Millington and J. Funge. Artificial Intelligence for
Games, chapter 5 Decision Making, pages 401–425.
Morgan Kaufmann, second edition edition, 2009.

[26] J. M. Olsen. Attractors and repulsors. In Game
Programming Gems 4. Charles River Media, Inc.,
Rockland, MA, USA, 2002.

[27] S. J. Partington and J. J. Bryson. The behavior
oriented design of an unreal tournament character. In
Intelligent Virtual Agents, pages 466–477, 2005.

[28] T. Sandberg and J. Togelius. Evolutionary
Multi-Agent potential field based AI approach for SSC
scenarios in RTS games. Master’s thesis, IT University
Copenhagen, February 2011.

[29] T. L. Taylor. Raising the Stakes: E-Sports and the
Professionalization of Computer Gaming. The MIT
Press, 2012.

[30] C. D. Ward and P. I. Cowling. Monte carlo search
applied to card selection in magic: The gathering. In
P. L. Lanzi, editor, CIG, pages 9–16. IEEE, 2009.

[31] B. Weber, M. Mateas, and A. Jhala. Applying
Goal-Driven autonomy to StarCraft. In Proceedings of
the Sixth Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2010.

[32] B. Weber, P. Mawhorter, M. Mateas, and A. Jhala.
Reactive planning idioms for multi-scale game ai. In
Computational Intelligence and Games (CIG), 2010
IEEE Symposium on, pages 115–122, 2010.

