Social Simulation and Explaining Religion

Joanna J. Bryson
Artificial models of natural Intelligence
University of Bath
Institute of Cognitive and Evolutionary Anthropology
University of Oxford
Outline

• Modelling and Simulation in Scientific Explanation

• Examples of Evidence from ABM Pertaining to Religion
Outline

• Modelling and Simulation in Scientific Explanation

• Examples of Evidence from ABM Pertaining to Religion
Explanation in Science

• Science never gives perfect certainty.

• Approach the truth by showing which explanations (theories) are more likely.
Explanation in Science

• Science never gives perfect certainty.
 • Approach the truth by showing which explanations (theories) are more likely.

• Biology: all explanation rooted in evolution.
 • Ultimate: why nature selects a trait.
 • Proximate: how a trait works.
Simulations as Scientific Explanation

Simulations as Scientific Explanation

• A simulation is a hypothesis like any other.
• Thesis specified so completely it can be run on a computer.

Simulations as Scientific Explanation

- A simulation is a hypothesis like any other.
- Thesis specified so completely it can be run on a computer.
- Consequences of model assessed by sampling.
- Model behaviour compared to target system’s using standard hypothesis testing.

Simulations as Good Science

• The output of a model is not data about the world!

• Data about the hypothesis.

• Predictions of the hypothesis.

Modelling as Science

• Simulations are one form of modelling.

• Other forms of modelling have been around longer, e.g. differential equations.

• Excellent text on this: Kokko (2007), Modelling for Field Biologists, CUP.

• “We use models because our brains aren’t big enough to understand all the consequences of our theories.”
Agent-Based Modelling

• Describe essential features of the environment.
Agent-Based Modelling

• Describe essential features of the environment.

• Specify the behavior of individuals.
Agent-Based Modelling

- Describe essential features of the environment.
- Specify the behavior of individuals.
- See if the consequences of individuals acting in an environment are what you predicted.
Agent-Based Modelling

• Describe essential features of the environment.
• Specify the behavior of individuals.
• See if the consequences of individuals acting in an environment are what you predicted.
• (Examples later.)
Science with ABM

• As with any theory, be as general as you can be and still get the behavior you are trying to explain.

• If two models both predict data equally well, the simplest model wins.
Science Is Never That Easy!
Science Is Never That Easy!

• “Be as general as you can be and still get the behavior you are trying to explain.”

• In fact, may start at level of intuition, then simplify.
Science Is Never That Easy!

- “Be as general as you can be and still get the behavior you are trying to explain.”
 - In fact, may start at level of intuition, then simplify.
- “If two models both predict data equally well, the simplest model wins.”
 - Simplicity/accuracy tradeoff can be tricky.
“Be as general as you can be and still get the behavior you are trying to explain.”

In fact, may start at level of intuition, then simplify.

“If two models both predict data equally well, the simplest model wins.”

Simplicity/accuracy tradeoff can be tricky.
• If you match the world in more ways than you predicted, then this is convergent evidence for your theory.

• Just trying to build the model may make you realise there were things you didn’t know about your target system.

Outline

• Modelling and Simulation in Scientific Explanation

• Examples of Evidence from ABM Pertaining to Religion
Outline

• Modelling and Simulation in Scientific Explanation

• Examples of Evidence from ABM Pertaining to Religion
The altruistic communication of knowledge is adaptive...

- Altruistic behaviour can evolve without religion so long as lives are finite and moving around takes time (Hamilton 1964).

- The propensity to give away knowledge helps others like you (kin selection), selected for if it makes it easier to live.

The altruistic communication of knowledge is adaptive...

- Altruistic behaviour can evolve without religion so long as lives are finite and moving around takes time (Hamilton 1964).

- The propensity to give away knowledge helps others like you (kin selection), selected for if it makes it easier to live.

but it is hard to both retain culture and accept innovation.

- Difficult to find a uniform learning system that both preserves culture between generations and accepts even useful innovation.

...but it is hard to both retain culture and accept innovation.

- Difficult to find a uniform learning system that both preserves culture between generations and accepts even useful innovation.

- Some prevalent traits of religion may address this problem, e.g. oscillations.

The importance of demographics...

- Powell, Shennan & Thomas (2008) explain the archaeological record for the appearance of rich culture associated with imagistic religion by population density.

The importance of demographics...

- Powell, Shennan & Thomas (2008) explain the archaeological record for the appearance of rich culture associated with imagistic religion by population density.

- Population density may be a proximate explanation for religion.

• Future rewards are less certain so we tend to discount them, even if they would be great.

• If future generations share our evolved traits, we should discount social rewards less (Sozou 2009).

• Ancestor worship may facilitate a concern for successful descendants.

...and of considering future generations.

- Future rewards are less certain so we tend to discount them, even if they would be great.
- If future generations share our evolved traits, we should discount social rewards less (Sozou 2009).
- Ancestor worship may facilitate a concern for successful descendants.

Ultimate explanation for ancestor worship: it’s a proximate mechanism for increasing inclusive fitness.

Summary

• Science is about finding the most likely explanation.

• Simulations check the logical consequences of explanations; they provide data about theories (not the world).

• Simulations support a theory by demonstrating its mechanisms, and provide predictions that can be tested against data.
• Data about patterns of variation in religious ritual across cultures.

• Experimental evidence for explaining some of these patterns.

• More detailed descriptions of simulations accounting for the evolution of these patterns.