Cognition
(and Robots)

Joanna J. Bryson
Artificial models of natural Intelligence, University of Bath
In most situations, thinking is not a win.

- Too slow; Sometimes wrong.
- So why do it?
Outline

• Intelligence
• Cognition
• Cognitive Architectures
• Robots
Outline

- Intelligence
- Cognition
- Cognitive Architectures
- Robots
Intelligence

• What matters is expressing the right behavior at the right time: action selection.

• Conventional AI planning searches for an action sequence, requires set of primitives.

• Learning searches for the right parameter values, requires primitives and parameters.

• parameter: variable state.

• Evolution and development are learning.
Combinatorics

• If ...
 – an agent knows 100 actions (e.g. eat, drink, sleep, step, turn, lift, grasp, poke, flip...), and
 – it has a goal (e.g. go to Madagascar)

• Then ...
 – Finding a one-step plan may take 100 acts.
 – A two-step plan may take 100^2 (10,000).
 – For unknown number of steps, may search forever, missing critical steps or sequence.
Intelligence & Design

• **Combinatorics** is the problem, **search** is the only solution.

• The task of intelligence is to **focus** search.

 • Called **bias** (learning) or **constraint** (planning).

 • Most behavior has no or little **real-time** search.

• For **artificial** intelligence, most **focus** comes from **design** (including physical affordances).
Outline

• Intelligence
• Cognition
• Cognitive Architectures
• Robots
Cognition

Definition:

Cognition is on-line (real-time) search.

Consequences:

Cognition is bad (slow, uncertain).

Unpopular in many species (plants, bacteria).
When & How is Cognition Useful?

• **When**: deeply dynamic environments
 - Change faster than learning or evolution can adapt.

• **How**: Baldwin Effect

• *Cognition and individual learning* similar?
Outline

- Intelligence
- Cognition
- Cognitive Architectures
- Robots
• Where do you put the cognition?

• Really: How do you bias / constrain / focus cognition so that it works?
Productions

• From sensing to action (c.f. Skinner; conditioning; Witkowski 2007.)

• These work -- basic component of intelligence.

• The problem is choice (search).

• Requires focus, an arbitration mechanism.
Production-Based Architectures

- **Expert Systems**: variety of arbitration policies, e.g. recency, utility, random.
- **SOAR**: problem spaces (from GPS), impasses, chunk learning.
- **ACT-R**: (Bayesian) utility, problem spaces (from Soar).
Subsumption (Brooks 1986)

- Emphasis on sensing to action (via Augmented FSM).
- Very complicated, distributed arbitration.
- No learning.
- Also worked.
Lessons from Subsumption

• Action from perception can provide focus -- modules (behaviors).

• Modules also support iterative development / continuous integration.

• Real time should be a core organizing principle -- start in the real world.

• Good ideas can carry bad ideas a long way (no learning, hard action selection).
Spreading Activation Networks

• "Maes Nets" (Adaptive Neural Arch.; Maes 1989)

• Activation spreads from senses and from goals through net of actions.

• Highest activated
Spreading Activation Networks

- Sound good:
 - brain-like (priming, action potential).
 - Influential (Franklin 2000, Shanahan 2006).

- Are not a full solution to action selection:
 - Don’t scale; don’t converge on consumatory actions (Tyrrell 1993).
Behavior Oriented Design

• All search (learning, planning) is done within modules with specialized representations.

• Specialized representations promote reliability of search; also determine decomposition.

• Modules provide perception, action, memory. Arbitration via hierarchical dynamic plans.

• Iterative / agile test & development cycle.

(Bryson 2001, 2003)
Statistical Testing of BOD Action Selection

Tests performed in Tyrell’s “Simulated Environment”

(Bryson SAB 2000)
POSH plan in ABODE (for UT: Capture the Flag)

- Advanced BOD Environment.
- Directly addressing development, not just intelligence.
More Details

Outline

• Intelligence
• Cognition
• Cognitive Architectures
• Robots
Cognitive Robots

Bad News:

Cognition doesn’t require robots (only rich, dynamic, real-time environments).

Robots don’t require cognition.

Good News:

Cognitive robots are still pretty interesting.
What I Learned from Robots

1. Perception is hard -- which explains the brain.
 • Lead to specialized representations encapsulated in modules; my method of behavior-module decomposition.

2. Discrete action selection is compatible with continuous acting, provided the primitive `acts' alter ongoing behaviour supported by modules.
 • e.g. motor act sends target velocity, not vector;
 • multiple || devices/modules e.g. speech, motion.
More About the Brain

Higher mammals separate sense & action (Central Sulcus).

Chance for Cognition? (images: Carlson)
Outline

• Intelligence
• Cognition
• Cognitive Architectures
• Robots
Outline

- Intelligence
- Cognition
- Cognitive Architectures
- Robots
- **Summary of Recommendations**
When Your Robot Must Think...

- **Modularity**: problem spaces, combat combinatorics, allow locally-optimal representations.

- **Hierarchical action selection** for real-time arbitration.

- **Dedicated, high-frequency goal / attention switching**, compensates for hierarchical AS.

- **Agile development, refactoring** (Beck 2000).
Cognition
(and Robots)

Joanna J. Bryson
Artificial models of natural Intelligence, University of Bath
Modularity is not Enough

Get Fuzzy (Conley 2006)
BOD Development Cycle

1. Initial decomposition \Rightarrow specification.

2. Scale the system.
 i. Code one behavior and/or plan.
 ii. Test and debug code (test earlier plans).
 iii. Simplify the design.

3. Revise the specification.
BOD Development Cycle

1. Initial decomposition ⇒ specification.

2. Scale the system.
 i. Code one behavior and/or plan.
 ii. Test and debug code (test earlier plans).
 iii. Simplify the design.

3. Revise the specification.
1. Specify (high-level) what the agent will do.

2. Describe activities as sequences of actions.
 competences and action patterns

3. Identify sensory and action primitives from
 these sequences.

4. Identify the state necessary to enable the
 primitives, cluster primitives by shared
 state. behavior modules

5. Identify and prioritize goals / drives. drive
 collection

6. Select a first (next) behavior to implement.
BOD Development Cycle

1. Initial decomposition ⇒ specification.

2. Scale the system.
 i. Code one behavior and/or plan.
 ii. Test and debug code (test earlier plans).
 iii. Simplify the design.

3. Revise the specification.
BOD Development Cycle

1. Initial decomposition ⇒ specification.

2. Scale the system.
 i. Code one behavior and/or plan.
 ii. Test and debug code (test earlier plans).
 iii. Simplify the design.

3. Revise the specification.
Simplify the Design

Use the simplest representations.

- Plans:
 - primitives, action patterns, competences.
 - drives only if need to always check.
- Behavior modules / memory:
 - none, deictic, specialized, general.

(Bryson, AgeS 2003)
Simplify the Design

Trade off representations: plans vs. behaviors

• Use simplest plan structure unless redundancy (split primitives for sequence, add variable state in modules).

• If competences too complicated, introduce primitives or create more hierarchy.

• Split large behaviors, use plans to unify.

• All variable state in modules (deictic).

(Bryson, AgeS 2003)
<table>
<thead>
<tr>
<th>Life (D)</th>
<th>Untangle (tangled?)</th>
<th>Unravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groom (C) (want-to-groom?)</td>
<td>(partner-chosen?) (aligned?)</td>
<td>Notify Groom</td>
</tr>
<tr>
<td>(being-groomed?)</td>
<td></td>
<td>Choose Groomer as Partner</td>
</tr>
<tr>
<td>(partner-chosen?) (touching?)</td>
<td></td>
<td>Notify Align</td>
</tr>
<tr>
<td>(partner-chosen?)</td>
<td></td>
<td>Notify Approach</td>
</tr>
<tr>
<td>(⊤)</td>
<td></td>
<td>Choose Partner</td>
</tr>
<tr>
<td>Receive (being-groomed?)</td>
<td>Tolerate Grooming</td>
<td></td>
</tr>
<tr>
<td>Explore (C) (want-novel-loc?)</td>
<td>(place-chosen?) (there-yet?)</td>
<td>Lose Target</td>
</tr>
<tr>
<td>(place-chosen?)</td>
<td></td>
<td>Explore That a Way</td>
</tr>
<tr>
<td>(⊤)</td>
<td></td>
<td>Choose Explore Target</td>
</tr>
<tr>
<td>Wait (⊤)</td>
<td>Wait</td>
<td></td>
</tr>
</tbody>
</table>
Cognition Intro

- Do Cognition as Search -- do search stuff from this talk, then do the provided, required, open slide.

- Then talk about search at different time steps: Baldwin effect -> cultural / bio evolution, semantic / episodic memory.

- Mention Dennett’s free-floating rationale, Tinburgen’s ultimate vs. proximate cause.