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Speech-driven facial animation using a hierarchical
model
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Abstract: A system capable of producing near video-realistic animation of a speaker given only
speech inputs is presented. The audio input is a continuous speech signal, requires no phonetic
labelling and is speaker-independent. The system requires only a short video training corpus of
a subject speaking a list of viseme-targeted words in order to achieve convincing realistic facial
synthesis. The system learns the natural mouth and face dynamics of a speaker to allow new facial
poses, unseen in the training video, to be synthesised. To achieve this the authors have developed a
novel approach which utilises a hierarchical and nonlinear principal components analysis (PCA)
model which couples speech and appearance. Animation of different facial areas, defined by the
hierarchy, is performed separately and merged in post-processing using an algorithm which
combines texture and shape PCA data. It is shown that the model is capable of synthesising videos
of a speaker using new audio segments from both previously heard and unheard speakers.

1 Introduction

Since the pioneering work of Parke [1] in the 1970s, the
development of realistic computer-generated facial
animation has received a vast amount of attention, crossing
over into fields such as movies, video games, mobile and
video communications and psychology. The problem not
only encompasses the design of a mechanism capable of
representing a face realistically, but also its control. Most
computer-generated facial systems are based on 3-D models
[2, 3] or image-based models [4, 5], and are parametric.
Using these representations we may animate a face using
only a speech signal. This is desirable for many appli-
cations, such as low-bandwidth network communications
and broadcasts, movie lip resynching and lip synching for
animated movies.

Traditional methods for producing automatic facial
animation from speech include the input of phonemes
(derived from text or speech) [2–7] or spectral speech
features [8] into a model which in turn produces parameters
used to drive the animation of the facial model. In previous
work facial parameters have been obtained from suitable
inputs using several techniques, including phoneme-
to-viseme based mappings [2, 5, 6], rule-based methods
[9] and nonlinear models (such as hidden Markov models
(HMM) or neural networks) [8, 10, 11].

Perhaps the most popular means of automatically
animating faces from speech is using models based on
phoneme-to-viseme mappings, where the model controls
the animation of the mouth, and the motion of the mouth
during animation influences surrounding vertices represent-
ing the lower part of the face. Phonemes are discrete units of

speech sound born from the study of phonetics. In modern
literature, the visual counterpart of the phoneme has come to
be known as the viseme. The desirable property of
performing animation using phonemes=visemes is
that once the phonetic labelling has been performed the
audio-to-visual mapping becomes more constrained,
i.e. given a phoneme we are then confident that an
appropriate corresponding output mouth would belong to
a known class of viseme. The performance of the resulting
facial animation is then dependent on two remaining
problems. These problems may be defined as follows:

(i) Sophistication of the facial model being utilised. This is
perhaps one of the most important issues to address if the
aim is to produce video or near-video realistic facial
animation irrespective of the facial display method (image-
based or 3-D based). The characteristics of a realistic 3-D
facial model will invariably be a high polygon count with a
sufficiently high number of control points (or feature points)
in the model as to provide intricate and lifelike facial
motions, and a realistic texture map [12]. A successfully
realistic image-based model, however, relies on high-
quality training images which are adequately normalised
with respect to each other. The latter issue is perhaps more
important than the former since without good image
normalisation the visual output shows artefacts, such
as jerkiness and texture flicker. While we are used
to low-quality video in our everyday lives (e.g. low
resolution=blocky) this differs from poor normalisation,
which provides a psychological cue for us to categorise an
animation immediately as being ‘unrealistic’.
(ii) Phonetic-to-visual mapping. While the first problem
addressed is that of building a realistic output tool, the
second problem is then of choosing visemes to correspond
with phonemes and defining a scheme where coarticulation
is addressed.

By examining the success of phonetic input automatic facial
animation systems a question arises: ‘Is this then, in fact, the
way to proceed in automatically animating faces from
speech?’. The alternative method to phonetic inputs is to use

q IEE, 2004

IEE Proceedings online no. 20040752

doi: 10.1049/ip-vis:20040752

The authors are with the School of Computer Science, Cardiff University,
Cardiff, CF24 3AX, UK

Paper first received 30th October 2003 and in revised form 5th May 2004.
Originally published online 29th July 2004

IEE Proc.-Vis. Image Signal Process., Vol. 151, No. 4, August 2004314



continuous speech signals. To date there is yet to be
published a system using continuous speech which provides
true video-realistic facial animation. It could be argued that
this is what phonetic systems use; they simply process the
continuous signal first to produce robust features. However,
used on their own phonetic inputs are only capable of
providing mouth animation and the problem of animation
for the rest of the face is typically addressed ad hoc
by stitching synthesised video onto real background footage
[4, 6]. There is also the school of thought which observes
that phonemes were introduced to help distinguish pronun-
ciation and are not entirely suited for animation purposes, in
which case there might exist a better method still with the
phoneme replaced with a new unit optimally chosen for the
purpose of mouth animation [8].

This makes continuous methods more appealing since it
points to a more back-to-basics approach where information
within the speech can be examined more closely. Research
using continuous signals has also yielded several (often
unexpected) advantages over phonetically driven systems,
namely the animation of parts of the face other than the
mouth associated with expression, sometimes correlated
with perceived emotion in the speech. This leads to the
intriguing proposition that by analysing continuous speech
we may be able to not only animate the mouth realistically,
but the whole face, directly and automatically from the
continuous speech signal.

In this paper we present a system for producing facial
animation based on a hierarchical facial model. To build the
model we analyse speech as a continuous signal without
making assumptions about phonetic content. The effect of
this is that, as well as providing mouth animation, the model
can also produce facial animations which exhibit
expression. The system learns the facial dynamics of a
speaker during a training phase and uses this as a foundation
to synthesise novel facial animations. For training, a small
corpus of audio and video is collected of a speaker uttering
a list of words that target visually distinct mouth postures.
After training, new speech can be supplied, by the original
speaker or a new speaker, and synchronised video-realistic
facial animation is produced. The final video is of the person
used in the training phase.

To model mappings between input speech and output
parameters we introduce a hierarchical nonlinear speech-
appearance model built from data extracted from the
training set. We decompose the face hierarchically where
the root corresponds to a nonlinear model of the whole face
and sub-nodes nonlinearly model smaller, more specific
facial areas. Modelling hierarchically allows us to concen-
trate on learning the variation exhibited in sub-facial areas

during speech independently from any variation in the rest
of the face. The alternative, to model the face as a whole,
would require an unrealistically large training set which
contains every combination of facial movement due to
emotion, head pose and speech. This approach has also been
taken by Cosatto and Graf [13]. Modelling in this way
also improves the specificity of statistical models, such
as point distribution models (PDM) (which we employ), as
demonstrated in [14] with a tracking algorithm. Figure 1
gives an example of a hierarchical facial model.

2 Overview

Our system has four main stages: training, model learning,
facial synthesis and video production. In the training phase a
25 frames=s video is captured of a speaker uttering a list of
words targeting different visemes. Images extracted from
the video are then annotated by placing landmarks at the
boundaries of facial features. This may be done manually or
semi-automatically [15–17]. The system then extracts the
landmarks from the training set and builds a hierarchical
model of the face. For the purpose of this article we only
build a hierarchy which includes the face (as the root node)
and the mouth. This reduced hierarchy is intended to
primarily demonstrate lip-synch (performed by the mouth
node).

Given our training set, we next extract the data required to
build each node in the hierarchy. For the representation of a
node we introduce a nonlinear speech-appearance model.
This is an extension of an appearance model introduced by
Cootes et al. [16] encoding relations between appearance
parameters and speech vectors allowing the synthesis of
facial configurations given new audio. The root node of the
model is built using the full facial landmark and image data.
For nodes such as the mouth we simply extract landmarks
and texture associated with the area of interest. For
representation of speech signals we process our training
audio using mel-cepstral analysis [18] with 40 ms hamming
windows, yielding 12 mel-cepstral coefficients per video
training frame. To reduce the dimensionality of the speech
we perform principal component analysis (PCA) on the
feature set.

To achieve facial synthesis given new audio we first
process the incoming audio using mel-cepstral analysis.
After dimensional reduction of the speech the nonlinear
speech-appearance model at each hierarchy node is used to
synthesise a facial area. In the final stage, synthesised facial
information from sub-nodes is then combined to construct
an entire face. This is achieved using a novel algorithm for
adding together shape and texture parameters in the image
domain. The algorithm uses information in a node’s parent
to synthesise its own appearance in a parents-corresponding
facial area. For example, a mouth parameter may use a facial
model to produce a facial image which contains the
appearance of the desired mouth. This is repeated until
the root of the hierarchy is reached, which results in the
synthesis of a full facial output frame.

3 Data acquisition

The training process requires a video of a speaker uttering a
set of viseme-rich phrases with which to build our
hierarchical model. We capture audio at 33 kHz mono
using the on-camera microphone and video at 25 frames=s.
Each image in our training set is then transformed into the
YIQ colour space before being labelled with 82 landmarks
between the top of the eyebrows and the jaw. We use the
YIQ colour space since it separates grey-level informationFig. 1 Hierarchical facial model overview
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(luminance) from colour information (hue and saturation)
allowing us to build our synthesis model in grey-level and
add the two colour channels during output. This essentially
reduces the complexity of our synthesis model. The
alternative would be to build a synthesis node using
concatenated image colour channel information. Given the
three colour channels for each image we store luminance
vectors with the intention of building our synthesis model
and hue and saturation vectors for adding colour later on.
Figure 2 gives examples of labelled training images.

4 Hierarchical modelling

Facial area synthesis for each node in our hierarchical model
is based on an appearance model [16]. The appearance
model has become the most widely used image-based model
in computer vision research today. Originally presented as
a tool for image segmentation and classification, it also
provides an ideal output for a facial animation system. This
is due to its parametric nature where variation of elements
in the appearance parameter relate to different facial
variations. When attempting to animate the whole face by
varying elements of the appearance parameter we initially
see a drawback. We notice that variations are not isolated,
i.e. variation in the mouth is accompanied by variation in
another part of the face, e.g. the eyebrows or the eyes. The
advantage of modelling the face hierarchically using an
appearance model is that variation in different facial parts is
analysed and modelled separately. We are far more likely to
generalise and specify the training data better than if we
were to use a single flat model of the face.

In order to avoid variations in different parts of the face
interfering with the modelling process, the data collection
phase used for building facial animation systems employing
flat facial models requires a subject to maintain a neutral
expression [4, 5]. This ensures that mouth animations are
not accompanied by idiosyncratic behaviour in other parts
of the face which may reappear during synthesis. For mouth
animation alone, this is a sensible approach. However, it
restricts animation to this end alone and does not allow
modelling of facial expression, unless an unrealistically
large training set is obtained where every combination of
facial action is accounted for [13]. This is a second
advantage to modelling hierarchically since it allows
mixtures of variations in different facial areas to be present
in the training set without interfering with the modelling
stage.

Modelling hierarchically using eigenspaces has also been
applied to other applications such as tracking [14] with
similar benefits to those described above. The concept
of a hierarchical model of the face was also hinted at in [8]
as a means of providing a greater degree of freedom for
animation.

4.1 Initial facial area modelling

Using data gathered during the training phase, we begin
building our model by extracting landmark shape data, and
shape-free texture data, for each facial area. The process for

achieving this follows a similar approach to that described
by Cootes et al. [16]. To build a synthesis node, we take
landmark data belonging to the appropriate facial area and
perform Procrustes alignment. When performing alignment
we only align with respect to translation and rotation since
we regard scale as extra shape information. We are able to
do this since our training subject maintains a constant
distance from the camera when recorded, and minimises
out-of-plane head movements.

Taking the mean of the aligned shape data we warp each
luminance colour channel image in the training set to this
mean from the landmarks in the image plane to yield
a training set of shape-free luminance patches.

Using this luminance data, and the captured audio data,
we can then proceed to build a nonlinear speech-appearance
model for that node. We first build an appearance model for
each node defined using

x ¼ �xx þ PsW
�1
s Qsc ð1Þ

g ¼ �gg þ PgQgc ð2Þ
where x and g are examples of shape and texture, �xx and �gg are
the mean normalised shape and texture vectors, Ps and Pg

are the eigenvectors of each training sample distribution, bs

and bg are shape and texture parameters, Ws is the scale
matrix and Qs and Qg are the shape and texture parts of the
eigenvectors Q. Using this model we then project each
shape and texture vector associated with a node into
appearance parameter space using

c ¼ Qb ð3Þ
giving us n appearance parameters c for a given node. More
details are available in [16]. An example of the distribution
of the two highest modes of appearance variation for a
mouth node training set is shown in Fig. 3. Representation
of these parameters in the image domain at �2 standard
deviations from the mean is shown in Fig. 4.

Fig. 2 Example annotated training images

Fig. 3 Distribution of mouth appearance parameters represented
by the two highest modes of variation
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4.2 Nonlinear appearance modelling

By examining Fig. 3 we see that our appearance parameter
distribution is nonlinear. It is well documented that fitting
single linear models to nonlinear distributions reduces
specificity and generalisation [19, 20]. We therefore model
appearance parameter distributions relating to sub-facial
areas with local-linear models. We perform k-means
clustering on the appearance distribution yielding
k appearance parameter clusters. In the following Section
we describe how appearance parameters are related to
speech parameters.

A note on our k-means clustering approach; in order to
decide k we performed a series of experiments with varying
values for k and randomly chosen initial centre positions.
The final value for k and the starting positions for the
k-means search were then chosen to be those yielding the
lowest error value. We found that for best performance
a relatively high number of centres is desirable; in our case
we used no fewer than 60. However, this number is largely
dependent on the size of the training set; a too small training
set (less than 400 appearance parameters in our case) yields
an unstable synthesis model which is highly sensitive to
changes in k and starting centres. Generally, with enough
data, we found that the importance of starting centre
positions becomes irrelevant (we discovered this phenom-
ena with distributions of over 700 appearance parameters).

4.3 Cluster modelling for associating
appearance with speech

To reiterate our overall aim so far, we wish to encode
relationships between our appearance model and our speech
training set so that given speech we may estimate an
appearance parameter c for a node’s facial area. After
clustering our appearance parameters we find that each
cluster represents a specific kind of sub-facial variation.
The problem now is to relate the sub-facial variation of each
cluster with corresponding variation in speech.

To achieve this mapping we first reduce the dimension-
ality of our speech training set using principal component
analysis yielding the model

a ¼ �aa þ Pas ð4Þ
where a is a speech vector, �aa is the mean speech vector in
our training set, Pa are the eigenvectors of our speech
distribution and s is a speech parameter. Recall that our
initial speech training set consists of a set of mel-cepstral
coefficients calculated with a 40 ms window over the
training speech, each vector of coefficients corresponding
to an appearance parameter. We next reduce the dimension-
ality of each speech vector using

s ¼ PT
a ða � �aaÞ ð5Þ

Speech parameters s are then concatenated with scaled
appearance parameters c giving n vectors Mj defined as

Mj ¼ WccT
j ; sT

j

� �T
j ¼ 1; . . . ; n ð6Þ

where Wc is a diagonal matrix where each element is a ratio
of the eigenvariances of the speech and appearance models.
This process has essentially converted our clusters of
appearance parameters c into new concatenated scaled
speech and appearance parameters M.

To linearly define these new vectors we perform PCA on
each new cluster to give us k joint models of appearance and
speech

M ¼ �MMi þ Rid i ¼ 1; . . . ; k ð7Þ
where �MMi is the mean of cluster i, Ri are the eigenvectors of
cluster i and d is a speech-appearance parameter constrained
to be within �3 standard deviations from the mean of
cluster i.

This new linear cluster model is essentially the heart of
our synthesis model. Using statistical relationships encoded
by this model we are able to estimate an appearance
parameter from a speech parameter in a cluster. In the
following Section we begin by describing how cluster
models are chosen for synthesis before describing how
appearance is estimated from speech in that cluster.

4.4 Facial area synthesis

Given an input speech signal for animating our face model
we first process it using mel-cepstral analysis and perform
dimensional reduction using (5). Video output for a sub-
facial area is then performed on a per-frame basis. Given the
speech vector for our current frame we choose which cluster
in our speech-appearance model can best synthesise the
facial area by finding the smallest Mahalanobis distance to
the speech part of the centres of each cluster using

D ¼ ðsinput � �ssiÞTS�1ðsinput � �ssiÞ ð8Þ

where �ssi is the mean speech parameter in cluster i, sinput is
our input speech parameter and S is the covariance matrix
of the speech parameter training set.

Given an appropriate cluster model, we may now
estimate c using sinput: To estimate c utilise the linear
description of the information in our chosen cluster. Each
eigenvector in the cluster model represents a linear
relationship between parameters. Projection onto this linear
axis through the distribution then allows us to estimate one
parameter from another. To illustrate this consider
the example in Fig. 5 where we have modelled a cluster

Fig. 4 Highest mode of face appearance variation at þ (left) and
� (right) 2 standard deviations from the mean

Fig. 5 Estimation of a single-valued parameter from another
using a PCA model
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of appearance and speech parameters. In this example,
speech and appearance parameters are represented by single
values, although the technique scales to higher-dimensional
parameters. The line through the distribution shows the
eigenvector associated with the largest variation. Given
a speech parameter we can project onto the eigenvector
and estimate an appearance parameter. To achieve this
estimation-via-projection method with a linear PCA model
we split the eigenvectors of a distribution into two new
matrices, where each matrix contains eigenvector infor-
mation for speech and appearance, respectively.

Therefore, given a cluster i, chosen using (8), we split its
matrix of eigenvectors Ri into two parts, where the top part
corresponds to appearance and the bottom part to speech.
We then denote the linear relationship between speech and
appearance in each cluster as

Wcc ¼ �cci þ Rc;id ð9Þ

s ¼ �ssi þ Rs;id ð10Þ

where �cci and �ssi are the mean appearance and speech
parameters of cluster i and Rc;i and Rs;i are those parts of the
eigenvectors of Ri associated with appearance and speech,
respectively. The vector d may be thought of as the
distance along the direction of an eigenvector through
a distribution (see Fig. 5). If an eigenvector approximates
the distribution well enough then by calculating d we may
accurately estimate values of the vectors in the distribution.
Given sinput we calculate d using

d ¼ RT
s;iðsinput � �ssiÞ ð11Þ

and use d in (9) to calculate c. We then constrain c to be
within �3 standard deviations from the mean of
its respective cluster and calculate shape x and texture
g using (1) and (2). As a final step we perform a local
smoothing of the constructed x and g vectors. This
smoothing achieves two things: it removes noise carried
into the synthesis model from the training set which would
degrade reconstruction quality, and compensates for any
badly chosen cluster synthesis models. This last point is
important and is discussed further in Section 7.

5 Adding sub-facial areas for output

Reconstruction for output requires synthesised texture and
shape information be generated for each node in the
hierarchy. The important issue when adding together the
different facial areas is seamless blending between them.
The obvious approach is to warp the textures onto one
another. However, since each facial area is driven by
a separate appearance model, in which all training vectors
textures are normalised with respect to each other, we
discover a problem with denormalising these different
textures while still maintaining a convincing blend, e.g. a
mouth image may be brighter than the face image it is being
added to.

The approach we use for adding the images is to estimate
facial texture and shape information (i.e. information at
the root of the model) which contains all of the detail in the
sub-facial images (or lower nodes of the hierarchy). We have
therefore redefined the problem from that of adding
images to estimating a face image to match all of the sub-
facial parts.

The problem is solved in two stages, one for shape and
one for texture. The procedure for shape is as follows: given
a shape vector for a synthesised node, we first subtract the
mean shape for that node, yielding shape offsets. We then

take these offsets and apply them to the mean shape of its
parent node. This process is repeated from leaf nodes
upwards until the root node is reached. Shape information
for lower level nodes also has precedent over shape
information in its parent. For example, mouth shape
information synthesised for a jaw node would be replaced
with information from the mouth node.

To add texture vectors we do the following: we warp each
texture to the corresponding mean shape in its parent node,
providing a rough estimate output texture. We next convert
our estimate into reduced dimensional form using the
texture PCA model of the parent facial area, e.g. when
adding a mouth image to a jaw image we create a rough
estimate and then project this through the jaw PCA model.
By projecting back out of the PCA model we then synthesise
a texture which contains the appearance of both sub-facial
areas seamlessly integrated onto one another. Figure 6 gives
an example of the reconstruction process applied to adding
a mouth image to a facial image. Owing to the fact that the
parent node approximates the child node we call this process
‘parent-approximation’.

To finish processing of an output frame we add colour
information. Recall that so far we have only modelled
luminance (or grey-level) information in our animations and
that hue and saturation information for each training image
has been stored. To add colour we simply find the
appearance parameter in the training set which best matches
our output appearance parameter and use the corresponding
hue and saturation information. The luminance, hue and
saturation face images are then finally warped from their
mean shape to the new synthesised shape co-ordinates.

6 Evaluation

To build our synthesis model we recorded video and audio
data of a subject speaking a list of words chosen to target
specific visemes listed in Table 1 [21]. We labelled each of
the frames with the aid of a bootstrapped active shape model
(ASM). The bootstrapping approach involves manually
labelling an initial set of frames to initialise the ASM and
using the ASM to automatically label consecutive frames.
Automatically labelled frames are then added to the ASM,
increasing its robustness as the number of landmarked
frames increases. Using these methods resulted in approxi-
mately 700 video frames for building our model. We next
constructed a hierarchical model with a root node for the
whole face and a sub-node for the mouth.

For evaluation we recorded the training subject along
with five new subjects, three male and two female, speaking
a list of new words targeting visemes, different numbers and
the alphabet. Using this new audio, we then synthesised
video-realistic reconstructions using our hierarchical model.

Fig. 6 Facial texture construction (applied to adding a mouth
image to a facial image)

Given a parent image (left) we warp a child image over it into its correct
position - giving a rough estimate output image (middle). After projection
in and out of a parents texture PCA model a composite image is constructed
(right) with no visible blends or normalisation artefacts
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Figures 7 and 8 show a selection of frames from
reconstructions using speech from the training subject
and speech from a new subject. Both reconstructions are
for words not included in the original training set.
Figures 9 and 10 show trajectories of synthesised output
shape and texture parameters against ground truth par-
ameters. The synthetic trajectories are calculated using new
input audio recorded from the training speaker reciting a list
of viseme-targeted words not present in the original training
set. The Figures show how the synthetic trajectories for new
audio follow the same general pattern as the ground truth
trajectories. Differences which do occur between the two
signals appear in terms of signal amplitude and ‘noise’. We
found that differences in amplitude tended not to directly
affect the perceived accuracy of the lip-synch, or the textural
quality of the output images. This is because all parameter
values are within a stable bound of �2 standard deviations
from the mean. Similarly noise in the parameter trajectories
did not appear to be visible as an artifact in the animations.
This noise may be attributed to occasional incorrect cluster
choices, which in turn are due to our lack of coarticulation
modelling. We discuss this further in the following Section,
and propose solutions.

For the training subject and three of the new speakers we
found that the animations were of a high quality, yielding
strong lip-synch with the new audio irrespective of whether

Table 1: Training vocabulary

Word spoken Mouth posture name

‘we’ narrow

‘fit’, ‘heavy’ lip to teeth

‘mock’, ‘bin’, ‘spark’, ‘pin’ lips shut

‘moon’ puckered lips

‘we’, ‘wharf’, ‘good’ small oval

‘farm’ widely open

‘up’, ‘upon’, ‘fur’ elliptical

‘free’ elliptical puckered

‘pit’, ‘believe’, ‘youth’ relaxed narrow

‘thin’, ‘then’ front tongue

‘time’, ‘dime’, ‘nine’ tongue to gum

‘leaf’ tip to gum

‘all’, ‘form’ spherical triangle

‘see’, ‘zebra’ tightened narrow

‘mat’ large oval

‘ship’, ‘measure’, ‘chip’, ‘jam’, ‘gentle’ protrusion

‘let’, ‘care’ medium oval

‘keep’, ‘go’, ‘rank’, ‘rang’ undefined open

Fig. 7 Frames from a reconstruction of a viseme-targeted word
using the training subject speaker

View from left to right, top to bottom

Fig. 8 Frames from a reconstruction of letters from the alphabet using a new speaker

View from left to right, top to bottom

Fig. 9 Synthetic (solid line) against ground truth (dashed line)
texture PCA parameter trajectories for new audio of the training
subject speaking a list of viseme-targeted words

The texture parameter associated with the highest mode of variation is
shown

IEE Proc.-Vis. Image Signal Process., Vol. 151, No. 4, August 2004 319



the speaker was male or female. However, animations with
the two other new speakers proved less convincing. We
believe that the reason for this is due to the distribution of
the input speech parameters. For animations showing strong
lip-synch to the audio the distributions were quite similar to
that of the training subject’s distribution. The distributions
for the less convincing animations appeared to be different
in terms of shape and scale. Figure 11 shows two speaker

distributions compared to the training subject distribution.
The top plot yields a poor animation while the bottom plot
produces an animation with a strong lip-synch. Note how
the new speaker distribution on the bottom plot is
offset from the training subject’s distribution, while both
distributions on the top plot are more closely matched.

7 Discussion

We found that the major factor in contributing to the quality
of lip-synch in our animations was accent. Given a similar
accent to the one in the training set the animations show
strong lip-synch to the input audio. We believe that the
reason for the effect of accent appears to lie in the shape of
the input speech distribution, which is offset from the
training speakers in reduced quality animations. We intend
to examine this further with the aim of transforming input
speech distributions to better match the training distribution.

One animation characteristic which is not accounted for
in our model is that of coarticulation. Although this does
not affect short animations with normally paced speech, we
have discovered that with fast speech our animations
degrade. The reason for this artifact is due to inappropriate
cluster choices often made during synthesis. This in turn is
an artifact of the short-term speech analysis performed for
synthesis, i.e. construction of an output frame independently
from previous or next frames. This is essentially the
coarticulation problem manifest within the system.
The need for a coarticulation model is caused by the
many-to-many relationship between speech and appearance
(or speech and the mouth). Systems which employ phonetic
inputs inherently provide a greater constraint to this problem
since we are aware of which phoneme will occur next, and
may guide a coarticulation algorithm towards preparation
for output. With continuous speech systems such as ours, we
consider the solution to the coarticulation problem as being
correct cluster choice at time t. It is our intention in future
work to model cluster choice directly using a time-series
model such as a HMM. We have already discovered with
some initial testing that given a correct cluster choice we
can produce animations which are perceptually indistin-
guishable from real animations given speech of any tempo.

As well as mouth animation in our output videos we also
notice some non-verbal animations, such as facial
expression. This is exhibited as different facial mannerisms
appearing in the animations associated with the unique style
of the subject modelled in training. We attribute this effect
to the modelling of speech continuously and is an advantage
often seen in facial animation systems of this type [8].
In future work we would like to model this phenomenon
more specifically in order to fully exploit facial behaviour.

8 Conclusions

We have introduced a nonlinear hierarchical speech-
appearance model of the face capable of producing
high-quality realistic animation given a speech input. The
model is capable of synthesising convincing animation
given new audio from either the training speaker or a new
speaker. The system is also purely data driven (using
continuous speech signals) requiring no phonetic alignment
of speech before video synthesis. In future work we hope to
extend the model by encoding relations between sub-facial
areas and emotional content derived from speech. We also
plan to improve certain areas of synthesised coarticulation
with the inclusion of a time-series-based model.

Fig. 10 Synthetic (solid line) against ground truth (dashed line)
texture PCA parameter trajectories for new audio of the training
subject speaking a list of viseme-targeted words

The texture parameter associated with the second highest mode of variation
is shown

Fig. 11 Training subject speech distribution against new speaker
distributions

a Good animation
b Poor animation
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