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ABSTRACT
This paper presents a novel user-aided method for texture-
preserving shadow removal from single images which only
requires simple user input. We show better uneven shadow
boundary processing and umbra recovery over the state-of-
art. We first detect an initial shadow boundary by growing
a user specified shadow outline on an illumination-sensitive
image. Interval-variable intensity sampling is introduced to
avoid artefacts raised from uneven boundaries. We then get
the initial scale field by applying local group intensity spline
fittings around the shadow boundary. Bad intensity sam-
ples are replaced by their nearest alternatives based on a log-
normal probability distribution of fitting errors. Finally, we
use a gradual colour transfer to correct post-processing arte-
facts such as gamma correction and lossy compression. Com-
pared with the state-of-art methods, we offer highly user-
friendly interaction, produce improved umbra recovery and
improved processing given uneven shadow boundaries.

Index Terms— shadow removal, single image, user-
aided

1. INTRODUCTION

Shadows are ubiquitous in natural scenes, and their removal
is an interesting and important area of research. As well as
attempting to solve this problem for image editing by e.g.
artists, shadows affect many computer vision algorithms, e.g.,
unwanted shadow boundary’s causing artefacts in image seg-
mentation and contributing to drift issues when tracking given
moving scenes.

There are several automatic methods for shadow detec-
tion and removal. For example, intrinsic image based meth-
ods [1, 2] and features, e.g. intensity and texture, learning
based methods [3]. However, automatic shadow detection is
ill-posed and currently unreliable to the point that even hu-
mans can have difficulty in recognising shadowed areas [4].

This paper focuses on user-aided single image shadow re-
moval. User-aided methods generally achieve better shadow
detection and removal at the cost of user input. Many of
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them [4, 5, 6, 7] are texture-preserving. Most of the past work
require precise input defining the shadow boundary and have
issues in properly relighting the umbra.

According to past work [1], shadow effects can be rep-
resented as an additive scale field Sc in the log domain. In
the log domain, an image Ĩc with shadow effects added to an
original image Ic can be represented as follows:

Ĩc(x, y) = Ic(x, y) + Sc(x, y) (1)

where c ∈ {R,G,B} indicates each RGB colour space chan-
nel, x and y are the coordinates of pixels. The scales of lit area
pixels are 0 and the other pixel scales are negative numbers.

The umbra is the darkest part of the shadow while the
penumbra is the wide outer boundary with a nonlinear inten-
sity change between the umbra and lit area [8]. The penumbra
scale is non-uniform and shadowed surface textures gener-
ally become weaker [6]. Contrast artefacts can also appear in
shadow areas due to image post-processing [7, 6, 8]. Arbel
et al. [7, 8] developed curved surface shadow removal by for-
mulating scale field estimation as thin-plate surface fitting that
requires given shadow feature points. Wu et al. [4] proposed
a shadow removal method that requires a given quadmap
and applied a Bayesian optimisation framework. Mohan et
al. [5] apply a curve-fitting model and remove shadows in
the gradient domain. Given precise shadow boundaries, Liu
et al. [6] apply spline-fitting and texture transfer to remove
shadow. Shor et al. [9] proposed a shadow removal method
that requires one shadow pixel but does not preserve texture
shadows. Although some past work preserves penumbra tex-
ture, umbra removal and uneven boundary processing are still
problematic. Assuming a uniform umbra, Liu et al [6] can of-
ten introduce over-saturation artefacts in some cases. Uneven
shadow boundaries may affect penumbra detection and scale
estimation. Most user-aided methods to assist boundary de-
tection [4, 6, 8] require careful highlighting of the boundary.
We propose a method that requires one rough stroke to mark
an umbra sample. It can process uneven shadow boundaries
and achieves better umbra removal compared with past work.
Our major contributions are as follows:

Easy user input. Past work, e.g. [4, 6, 7, 8], requires pre-
cise user-inputs defining the shadow boundary. Our
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Fig. 1. An overview of our approach. (a): user input indicated
by a purple curve, (b): initial shadow boundary detection in-
dicated by the purple mask (§2.1), (c): interval-variable sam-
pling lines indicated by the white lines (§2.2.1), (d): shadow
removal by estimating the scale field of the shadow area
(§2.2.2). Note that the area’s contrast still appears different
from its surroundings. (e): image correction by our gradual
colour transfer (§2.3). The input image is taken from [8].

method only requires an umbra segment highlighted
by one rough stroke and grows it on an illumination-
sensitive image to obtain initial shadow boundaries.

Interval-variable sampling. Past work, e.g. [6, 8], applies
interval-fixed sampling around penumbra that causes
artefacts near uneven shadow boundaries. To address
this, we develop interval-variable sampling according
to shadow boundary curvature.

Local group optimisation for picked samples. Inspired by
Arbel’s [7, 8] and Liu’s [6] spline-fitting idea, we pro-
pose a local group optimisation that balances curve fit-
ness and local group similarity. Unlike all past work,
we filter inferior samples that are replaced with their
closest alternatives according to a log-normal probabil-
ity distribution. This reduces shadow removal artefacts.

Gradual colour transfer. Post-processing effects cause in-
consistent shadow removal compared with the lit areas
both in tone and in contrast. We make use of statistics
in thin penumbra boundaries and the shadow scale field
to correct these issues.

2. PROPOSED METHOD

Given an input image and a user specified umbra segment
(Fig. 1(a)), we detect the initial shadow boundaries by ex-
panding the given umbra segment on an illumination image
using an active contour (Fig. 1(b), §2.1). To keep bound-
ary details, we sample pixel intensities along the sampling
lines perpendicular to the shadow boundary (Fig. 1(c), §2.2.1)
at variable intervals. We perform a local group optimisa-
tion to estimate the illumination change which refines shadow
boundary detection and provides an initial scale field. Ac-
cording to an adaptive sample quality threshold, sampling
lines with bad samples are replaced by their nearest neigh-
bours and a later local group optimisation is applied for them.
Finally, we relight the shadow area using our scale field

(a) src (b) input (c) C1 (d) C2 (e) C3 (f) C4 (g) F

Fig. 2. An illumination-sensitive image F is fused from the
four colour channels of the image (a) (taken from [6]) using
the intensity statistics of the given umbra region (b) inside
the purple boundary. We grow the region using the image
F to the entire shadow area as indicated in (g) by the purple
mask. Sub-figures (c-f) are the region growing results on the
corresponding four single channels.

(Fig. 1(d), §2.2.2) and correct post-processing artefacts using
our gradual colour transfer (Fig. 1(e), §2.3).

2.1. Initial Shadow Boundary Detection

Determining the initial shadow boundary is the first step of
penumbra detection and is required in many previous meth-
ods including [7, 8, 6]. In this subsection, we explain how to
derive an initial shadow boundary from a given rough umbra
sample segment.

Inspired by [10], we fuse four normalised candidate
illumination-sensitive channels from different colour spaces
into an illumination image. The chosen channels are: the V
channel (C1) of HSV space, the V channel (C4) of LUV space,
and the Y channel (C2) and Cb channel (C3) of YCbCr space.
We measure the confidence values of each candidate chan-
nel using an exponential incentive function ϕ representing the
textureness of each of their umbra sample segments:

ϕ(x) = x−λ(λ > 0) (2)

where x is the pixel intensity, λ (default value 5) determines
the steepness of the incentive function. Lower textureness
is preferred as it means higher intensity uniformity of umbra
segment. The textureness is measured by standard derivation
of intensities. The fused image F is computed as a weighted
sum of each normalised candidate channel Cl as follows:

F = (

4∑
l=1

Clϕ(σl))/(
4∑
l=1

ϕ(σl)) (3)

where l is the channel index, σl is the standard derivation of
the umbra sample intensities of Cl. To avoid texture noise, we
apply a bilateral filter [11] to F first. We grow a sparse-field
active contour [12] on the fused image to detect the initial
shadow boundary. As shown in Fig. 2, region-growing using
the fused image is more robust than relying on one channel.

2.2. Scale Field Estimation

This subsection describes our scale field estimation from ini-
tial shadow detection. Shadow affects are represented by
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Fig. 3. (a) is the original patch. (b) is the result of sam-
pling every shadow boundary pixel, which results in shadow
removal noise near the boundary. (c) is the noise-free result
with a larger sampling interval.

varying (or different scale) intensity values. Using a scale
field better represents the penumbra and umbra variations,
and is used to relight the shadow area using Eq. 1. In § 2.2.1,
we first sample the log domain pixel intensity along the sam-
pling lines perpendicular to the shadow boundary. In § 2.2.2,
we adopt a local group spline fitting optimisation through the
measured sampling line pixel intensities to estimate sparse
scales from the initial intensity samples. We replace bad in-
tensity samples with their nearest alternatives and re-optimise
for them. We spread the sparse scales to dense scales followed
by a gradual colour transfer in § 2.3 that adjusts the colour and
texture of initial shadow removal.

2.2.1. Interval-variable Sampling

According to Eq. 1, the logarithms of the original image is
supplied for sampling. We sample pixel intensities along the
lines perpendicular to the initial shadow boundary as shown
in Fig. 4(c). Uneven boundaries can result in non-smooth
vector normal estimations along the shadow boundary. To
overcome this, we apply cubic spline smoothing to the initial
boundary points before we compute their normals and cur-
vatures. Under-sampling along the boundary neglects sharp
details and causes artefacts as shown in Fig. 4 while over-
sampling incurs penumbra removal noise due to texture as
shown in Fig. 3. More sparse pixel scales are computed for
curvy boundary parts for precise in-painting. To avoid texture
artefacts, we apply a bilateral filter [11] to the input image
before sampling. Unlike past work [5, 6, 8, 7], we do not
adopt a fixed sampling line interval, e.g., one sampling line
per boundary pixel. Our method adjusts the sampling inter-
val according to the curvature of the smoothed boundary. The
interval is the same for all RGB channels. We set a curva-
ture accumulator for shadow boundary points and accumulate
along the boundary. We place sampling marks and reset the
accumulator when the curvature sum reaches a threshold ξ
(default value 0.05). We achieve this by adopting Eq. 4. We
limit the absolute curvature of each boundary point with an
upper limit ξ and compute a cumulative sum array Q of the
saturated absolute curvature array. To determine the sampling
interval, we choose boundary points where the sampling lines
pass through as follows:{

Q̃m = bQm/ξc (m 6 N,m ∈ N)
Dn = Q̃n+1 − Q̃n (n 6 N − 1, n ∈ N)

(4)

(a) fixed interval 1 (b) fixed interval 2 [6] (c) variable interval

(d) original (e) fixed 1 (f) fixed 2 [6] (g) variable

Fig. 4. The white lines in (a), (b), and (c) are the sampling
lines of the fixed interval using boundary-perpendicular sam-
pling, the fixed interval using horizontal/vertical sampling in
[6], and our boundary-perpendicular variable interval sam-
pling respectively. (d) is the original image. (e), (f), and
(g) are the corresponding shadow removal results of the three
sampling methods respectively.

where N is the number of boundary points, m and n spec-
ify the index of boundary points, Q̃ is the array of the quan-
tized and normalised cumulative sum Q, D is the adjacent
element differences array of Q̃. To get the interval of sam-
pling marks, we set the marks for the first and last boundary
points and all the points in D with non-zero values. If the
boundary is a straight line, the initial interval is fixed up to
a maxima (five boundary points). As shown in Fig. 4, our
variable sampling interval avoids penumbra removal artefacts
around sharp boundary parts.

2.2.2. Illumination Variance Estimation

Having obtained sparse intensity samples at different posi-
tions along the boundary, our goal is to find illumination scal-
ing values inside the umbra, penumbra and lit area. We model
the illumination scale change Si for each ith intensity sample
of each RGB channel as follows (see also Fig. 5):

Si(x) =


K x ≤ x1
f(x) x1 < x ≤ x2
0 x > x2

(5)
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Fig. 5. Scale model

where x is a pixel location
within the sampling line, x1
and x2 determine the start and
end of the penumbra area re-
spectively, and K is a negative
scale constant for sample points
within the umbra area (x < x1).
The constant 0 is assumed for
the lit area piece (x > x2) as
this falls inside a lit area of the image and does not require
re-scaling. In order to solve x1, x2, K, and f , we solve a
piece-wise function Gi parameterised by v1, v2, v3, and v4



(recall that our intensity samples are in the log domain):

Gi(x) = Si(x) + v4

f(x) = v1B(v2(x− v3))
B(y) = −0.25y3 + 0.75y − 0.5[
x1 x2

]
= v3 + v−1

2

[
−1 1

]
K = −v1

(6)

where B is a cubic shape function (a sinusoidal function here
also produces adequate results) and y is the input. Our solu-
tion is thus reduced to solving v1, v2, v3, and v4 for each RGB
channel (twelve in total). Illumination of each channel may
vary differently while penumbra boundaries of three channels
are usually the same. We thus assume a common penumbra
width and position for each channel, determined by v2 and
v3 respectively. We formulate solving the eight remaining
parameters as an optimisation problem which balances curve
fitness and local group fitting similarity. We minimise the en-
ergy function Ei for the ith sampling line as follows:

Ei = α1Efit(Vi, Zi) + α2Egs(Vi, Vi−1, . . . , Vi−r−1) (7)

where r is the number of members in a local sampling line
group (default value 5), α1 and α2 are two balancing weights
(default values 1 and 0.2 respectively), Efit measures the
sum-of-square fitting error between the three piece-wise func-
tions Gi (defined by parameter vector Vi) and the original
three-channel intensity sample matrix Zi, Egs measures the
parameter similarity between the neighbouring members of a
local group. In practice, penumbra width affects the removal
quality most significantly. We thus only compare the similar-
ity of the shared v2 in Eq. 6. Egs is defined as follows:
Vi = [vR1, vG1, vB1, vRGB2, vRGB3, vR4, vG4, vB4]

Egs(Vi, Vi−1, . . . , Vi−r−1) =

 1
bi
−

r∑
k=1

ϕ(ėi−k)

r∑
j=1

ϕ(ėi−j)bi−j

2

(8)
where vR1, vG1 and vB1 are the v1 for each channel, vR4, vG4

and vB4 are the v4 for each channel, vRGB2 and vRGB3 are
the shared v2 and v3 for all channels, bi is the vRGB2 of the
parameter vector Vi, ėu indicates the fitting error of the pre-
vious uth fittings, ϕ is the function defined in Eq. 2. We solve
this using a sequential quadratic programming algorithm [13].

However, interval-variable sampling can not always guar-
antee good sample quality. Strong surface textures introduce
more significant intensity change than illumination change.
Unlike past work[5, 6, 8, 7], we ignore sampling lines with
higher fitting errors and pick their most suitable neighbours.
Based on our empirical tests on various images, we model
the initial fitting error distribution as a log-normal probabil-
ity distribution. As the initial fitting error is distributed log-
normally, we can convert it to its corresponding normal distri-
bution by taking the exponential of it. According to the empir-
ical 3-sigma rule of normal distribution, we ignore sampling

(a) original (b) removal (c) correction

Fig. 6. (b) is the initial shadow removal of (a) and is corrected
by our gradual colour transfer as shown in (c).

lines with fitting errors higher than a threshold µ + σ which
accounts for 15.8% of all samples where µ and σ are the mean
and standard deviation of errors. For each sampling line with
bad samples, we only attempt to pick its nearest sampling
lines within a short distance, i.e. no further than its neigh-
bouring chosen sampling lines. To evaluate the replacements’
quality and compute their sparse scales, we apply the same
optimisation method described previously.

After optimisation, we obtain sparsely distributed scales,
defined in Eq. 1, of all sampled pixels inside and around the
penumbra area. We interpolate the scales within the penum-
bra area using linear interpolation and extrapolate the other
scales in the lit and umbra area using in-painting [14].

2.3. Gradual Colour Transfer

In practice, the theoretical shadow affect formulation does not
often hold. Image acquisition devices usually apply postpro-
cessing, e.g. Gamma correction. Lossy compressions, e.g.
JPEG, are also common in images such that compression arte-
facts (e.g. affecting contrast) in the shadow area become no-
ticeable when removal is applied. To address this, we extend
the colour transfer in [15] with scale field Sm. We compute
the normalised scale increase hi of the ith sampling line ac-
cording to Eq. 5 as follows:

hi(x) = (exp(fi(x))− exp(Ki))/(1− exp(Ki)) (9)

where x is the location of pixel of a sampling line, Ki and
fi are respectively the lit constant K and the cubic function
piece of the ith sampling line. We apply the same method de-
scribed in § 2.2.2 to interpolate and extrapolate sparse scale
increase values computed by Eq. 9 to form a dense scale in-
crease field Sm. We convert the initial shadow removal im-
age from RGB space to LAB space. For each LAB channel,
we compute the mean µu and deviation σu of the umbra side
pixel intensities near penumbra as the source and we compute
the mean µt and deviation σt of the lit side pixels near penum-
bra as the target. We adjust the initial removal image channel
L to the final image channel L̃ as follows:

µs(x, y) = µu + Sm(x, y)(µt − µu)
σs(x, y) = σu + Sm(x, y)(σt − σu)
L̃(x, y) = µt + (L(x, y)− µs(x, y))σt/σs(x, y)

(10)

where x and y are the coordinates of pixels, µs and σs are
the fields of gradual source mean and deviation. We show an
example of colour transfer in Fig. 6.



(a) original from [6] (b) result from [6] (c) our result

(d) original from [6] (e) result from [6] (f) our result

(g) original from [5] (h) result from [5] (i) our result

Fig. 7. From (a), the red light component that passes through
semi-transparent object is still in (b) and is reduced by our
method in (c). Ours also removes shadow residuals near the
highly uneven boundary in (b). The shadow removal result
of (d) shown in (e) results in over-saturation of the umbra.
Also, the texture and colour variations across the shadow
boundary are not smooth and consistent. We overcome this
issue as shown in (f). Our removal result of (g), as shown in
(i), is improved over [5] as shown in (h).

3. RESULTS

Due to the lack of definitive ground truth from past work,
we visually compare our shadow removal results with state-
of-art methods using the same input images and some other
representative images. Our method has been tested on vari-
ous photos from existing work and additional representative
photos. Our method is highly user-friendly as shown in Fig. 1
and produces state-of-art quality shadow removal as shown in
Fig. 1, 3, 4, 7, 6, 8, and 9. For each shadow area, we require
one stroke, shown as red curves in figures, marking an char-
acteristic umbra segment. The stroke can be very rough and
does not necessarily need to follow the shadow boundary. We
also overcome some cases that past work fail to handle.

In our comparisons, we focus primarily on more re-
cently studied texture-preserving methods as opposed to
older texture-lossy ones such as in-painting [2] and zero-
gradient [16]. Our previous figure (Fig. 4) has already high-
lighted the issues caused by uneven boundary processing.
This compares our variable sampling interval – which is
boundary-perpendicular – against our own test of fixed inter-
val boundary-perpendicular sampling and the fixed interval
vertical and horizontal sampling method in [6].

Compared with [6], our method reduces the red light com-
ponent that passes through the semi-transparent leaf as illus-
trated in Fig. 7. The redness of different parts of the leaf is

(a) rocky river beach (b) curved book page

Fig. 9. Failures. Left: original images; Right: our results.

different and thus the amount of passed red light is not uni-
form. To handle this, we assume non-uniform scales in the
umbra, i.e. different umbra scale constants as mentioned in
§ 2.2.2, and process the RGB channels separately based on
a shared penumbra area. Our interval-variable sampling (see
Fig. 7(c)) removes some minor residual shadow fragments
near the shadow boundary (noticeable in Fig. 7(b)). In Fig.
7(d), the shadowed sandy surface is consistently recovered.
As the surface in the lit area is not saturated, the same surface
beneath the shadow should also not be saturated in Fig. 7(e).
Fig. 7(f) shows our method avoids over-saturation artefacts
and achieves more consistent texture and smoother colour
variance across the shadow boundary. In Fig. 7(h), the result
from [5] appears darker in both the shadow and lit areas. Our
result shows a consistently coloured texture between the lit
area and shadowed area. Figs. 8 and 9 demonstrate our results
on images with various textures, reflectances, and shadow
boundaries. Fig. 8(a) shows the removal of soft shadow cast
on the curved surface and the texture consistency. Fig. 8(b) re-
veals our smooth and texture-consistent shadow removal ap-
plied to the earlier example illustrated in Fig. 4. The colour of
the tree bottom of the hill is consistent with the trees at the hill
top. The smoothness of the hill-side’s colour and texture are
also recovered. In Fig. 8(d), Fig. 8(e), Fig. 8(c), and Fig. 8(f),
the texture and self-shadows are kept after removal.

However, our method still shows minor limitations in
highly complex cases (still unsolved in state of the art work).
In Fig. 9(a), the river bed is recovered but the ripple highlights
in the shadow area are missing. These highlights are mainly
produced by light reflection on the wavy water surface and
the light refraction from the river bed. As the directed light is
blocked in the shadow area, these complex affects cannot be
recovered by simple relighting. In another challenging case
in Fig. 9(b) with non-white light, the book texture in the wide
penumbra area is retained with minor over-saturation arte-
facts. This is due to the strong broken-shadow-like text tex-
ture which affects the spline fitting.

4. CONCLUSION

We present a user-friendly texture-preserving shadow re-
moval method that overcomes some common limitations from
the past work. Specifically, our method retains shadowed tex-
ture and preforms well on highly-uneven shadow boundaries,
non-uniform umbra illumination, and non-white lighting. Our
main technical contributions are (1) highly user-friendly in-



(a) curved wooden surface (b) steep hill (c) blanket

(d) sandy beach (e) road (f) pyramid wall

Fig. 8. Demonstrations. Left: original images; Right: our results. The original images in (a) and (c) are from [8] and the
original image in (b) and (f) are from [6] and [5] respectively.

put design; (2) interval-variable sampling; (3) local group op-
timisation; (4) gradual colour transfer. In future work, we
would like to focus on more complex cases, such as highly
broken shadows, shadowed surfaces with very strong shadow-
like textures, and complex reflections in transparent scenes.
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[11] Sylvain Paris and Frédo Durand, “A fast approxima-
tion of the bilateral filter using a signal processing ap-
proach,” International Journal of Computer Vision, vol.
81, no. 1, pp. 24–52, 2009.

[12] Ross T. Whitaker, “A level-set approach to 3d recon-
struction from range data,” International Journal of
Computer Vision, vol. 29, no. 3, pp. 203–231, 1998.

[13] J. Nocedal and S.J. Wright, “Numerical optimiza-
tion,” Springer series in operations research, chapter 18.
Springer, second edition, 2006.

[14] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles,
and Coloma Ballester, “Image inpainting,” in Proceed-
ings of the 27th annual conference on Computer graph-
ics and interactive techniques, 2000, SIGGRAPH ’00,
pp. 417–424.

[15] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and
Peter Shirley, “Color transfer between images,” IEEE
Computer Graphics and Applications, vol. 21, no. 5, pp.
34–41, 2001.

[16] Graham D. Finlayson, Steven D. Hordley, and Mark S.
Drew, “Removing shadows from images using retinex,”
in Color Imaging Conference, 2002, pp. 73–79.


