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Abstract

In this paper we present a novel non-rigid optical flow
algorithm for dense image correspondence and non-rigid
image registration. The algorithm introduces a smooth-
ness term based on laplacian cotangent mesh deformation.
Such deformation approaches are popular in graphics re-
search, particularly for preserving local detail. In our work
we introduce the concept for optical flow smoothness with
the similar motivation of imposing local detail preservation.
The algorithm applies a mesh to the image with a resolution
up to one vertex per pixel. This uses edge angles defined
by the mesh faces to ensure sensible local deformations be-
tween image pairs . The formulation is contained wholly
inside the optical flow optimisation, and can be applied in
a straightforward manner to a wide range of image track-
ing and registration problems. We evaluate our approach
on several data sets against several popular optical flow al-
gorithms. We show our approach to provide improved local
detail preservation when registering image sequences con-
taining non-rigidly deforming objects.

1. Introduction

Many important problems in computer vision require the
tracking of non-rigid objects, calculation of dense image
correspondences and the registration of image sequences
containing highly non-rigid deformation. Existing algo-
rithms to achieve this include model based tracking [10],
dense patch identification and matching [8], group-wise im-
age registration [5], space-time tracking [15] and optical
flow [13, 4, 7].

Optical flow is an attractive formulation since it pro-
vides a dense displacement field between image pairs. In
most standard approaches, assumptions regarding bright-
ness constancy between images and smoothness in motion
between neighboring pixels are adopted [4, 13]. Sun et
al [14] adopt a different approach and introduce a method
to overcome these constraints by learning a probabilistic
model for flow estimation. However, their approach re-
quires training pre-calculated flow ground truths, which are

difficult to obtain.

In the general optical flow model, it is common to adopt
a data term consisting of color and gradient constraints (e.g.
Brox and Malik [4]) and an additional smoothness term.
However, most previous optical flow formulations only con-
sider global smoothness and ignore formulations that pre-
serve local image detail.

Many optical flow techniques concentrate on problems
where the scene movement is largely rigid in nature. How-
ever, there are many problem cases where we would like to
calculate flow given highly non-rigid global and local image
displacements over long image sequences. One recent prob-
lem highlighting this particular case is the alignment of 3D
dynamic facial sequences containing highly non-rigid de-
formations [6, 3]. The problem requires non-rigidly align-
ing a set of images to a reference - e.g. a neutral facial
expression. Each image - referred to as a UV map1 is ac-
companied by a corresponding 3D mesh, and each mesh has
a difference vertex topology. Once the UV maps are regis-
tered to a reference image (e.g. a neutral expression), vertex
correspondence can be imposed. The technique is popular
in 3D Morphable Model construction [6, 2].

Beeler et al [1]] and Bradley et al [3] adopt a slightly dif-
ferent approach to mesh correspondence. In their solutions,
image displacement is calculated from camera views and
then used to deform a reference mesh from an initial frame
through a 3D sequence. The optical flow provides guides
for adjusting pixel positions, and the mesh reduces artefacts
by imposing a constraint to precent faces on the mesh from
becoming inverted or flipped.

Mesh and image deformation research in graphics is an
active area of research [9]. Such techniques provide flexi-
ble methods to invoke deformation while preserving some
desired properties such as local geometric detail. As such,
it is interesting to also consider such solutions as smooth-
ness constraints in optical flow calculation, and this forms
the central basis of our presented work.

1UV refers to the XY location of a pixel in the image. UV map is the
graphical term for thetexturefor a 3D model. Each UV location maps to a
3D vertex on a corresponding mesh

1
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1.1. Contributions

In this paper we present a novel non-rigid optical flow
algorithm for dense image correspondence and non-rigid
image registration. The algorithm introduces a smooth-
ness term based on laplacian cotangent mesh deformation.
Such deformation approaches are popular in graphics re-
search, particularly for preserving local detail. In our work
we introduce the concept for optical flow smoothness with
the similar motivation of imposing local detail preservation.
The algorithm applies a mesh to the image with a resolution
up to one vertex per pixel. This uses edge angles defined
by the mesh faces to ensure sensible local deformations be-
tween image pairs . The formulation is contained wholly
inside the optical flow optimisation, and can be applied in
a straightforward manner to a wide range of image track-
ing and registration problems. We evaluate our approach on
several data sets against several popular optical flow algo-
rithms. We show our approach to provide improved local
detail preservation when registering image sequences con-
taining non-rigidly deforming objects.

Our paper is organized as follows. In the section 2 we
outline our strategy for calculating optical flow displace-
ments between image pairs. In Section 3 we then describe
how we adopt this algorithm in a coarse-to-fine framework.
Section 4 presents an evaluation of our approach on 12 se-
quences of non-rigidly deforming objects. Section 5 then
draws conclusions and discusses future directions.

2. Laplacian Mesh Based Optical Flow

In this section we present our mesh based optical flow
approach. In our formulation we consider a pair of con-
secutive frames in an image sequence. We denote the cur-
rent frame byIi(X) and its successor byIi+1(X), where
X = (x, y)T is a pixel location in the image domainΩ.
We define the optical flow displacement betweenIi(X) and
Ii+1(X) aswi(X) = (u(X), v(X))T .

In our proposed optical flow approach we use the follow-
ing general formulation:

E(w) =
∑

Ω

(EData(w) + λEGlobal(w) + ǫELap(w)) (1)

whereEData(w) denotes a data term that contains both
color and gradient constancy assumptions (see section 2.1)
on pixel values betweenIi(X) andIi+1(X). This first term
is similar to those derived in Brox and Malik [4] and our
motivation for including these terms is also the same.

We also introduce two smoothness terms into our for-
mulation. Similar to Brox and Malik [4] and Horn and
Schunk [13], our first termEGlobal(w) controls global flow
smoothness. Our second term represents the core contribu-
tion of our work, i.e. a Laplacian Cotangent mesh constraint
ELap(w)). We now outline all three terms in detail.

2.1. Data Term Definition

Following the standard optical flow assumption regard-
ing brightness constancy, we assume that the color value of
a pixel is not changed by its displacement through an image
sequence. In addition, we also assume a gradient constancy
assumption. This is added to provide additional stability
where the first assumption (brightness constancy) is vio-
lated by changes in illumination. Our data term encoding
these assumptions is therefore formulated as:

EData(w) =
∑

Ω

Ψ(Ii+1(X + w)− Ii(X))2 + . . . (2)

Ψ(∇Ii+1(X + w)−∇Ii(X))2

We use the increasing concave functionΨ(s2) =√
s2 + ǫ2 with ǫ = 0.001 similar to Brox and Malik [4]

to solve this formation. This results in allowingL1 mini-
mization. The remaining term∇ = (δx, δy)

T is a spatial
gradient.

2.2. Global Smoothness Constraint

Our first smoothness term is a dense pixel based regu-
larizer that penalizes global variation. The objective is to
produce a globally smooth optical flow field, and it is de-
fined as:

EGlobal(w) =
∑

Ω

Ψ(| ∇u |2 + | ∇v |2) (3)

We again use the robust functionΨ to solve this as in the
data term.

2.3. Laplacian Mesh Smoothness Constraint

We now introduce our proposed Laplacian cotangent
mesh constraint. The aim of this constraint is to account
for non-rigid motion in scene deformation. Our term is in-
spired by mesh deformation research in graphics, and we
introduce its use in optical flow estimation for this first time
in our work.

Although non-rigid motion is highly nonlinear, the
movement of pixels in such deformations still often has
strong correlations in local regions. To represent this, we
propose a novel sparse smoothness constraint based on a
Laplacian framework and differential representation.

We assume that the frame is initially covered by a trian-
gular mesh denoted byM = (V,E, F ). We definen as the
number of vertices,V as the set of vertex coordinates,E as
the set of edges, andF as the set of faces. The location of
each vertex is represented using absolute cartesian coordi-
nates. Thek-th vertex is denoted byvkǫV . In this paper we
set the distance between adjacent vertices to be 10 pixels as

2
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Figure 1. 1-ring neighbourhood of vertex.

we found this to give the most stable tracking results in our
experiments (see Section 4).

Considering a small mesh region, each vertexvk has a 1-
ring neighbourhood, denotedAring, as shown in Figure1.
The relationship betweenvk andvj on thei-th frame can be
represented as follows:

δk =
1

| Ak
V oronoi |

∑

jǫN(k)

1

2
(cotαkj + cotβkj)(vk − vj) (4)

whereN(i) = {j | (k, j)ǫE}, αkj andβkj are the two
angles opposite the edgeekj = vk − vj . | AV oronoi | is
the Voronoi region area ofvk which provides error bounds
and robustness against different dimensions ofAring. The
| AV oronoi | for theAring atvk can be calculated using

| Ak
V oronoi |=

1

8

∑

jǫN(k)

(cotαkj + cotβkj) | vk − vj |2 (5)

In a planar region, the vectorδk represents the motion
trend of vk towards a new position. We assume that the
flow motionwk andwj will behave in a similar way to the
vertex displacements at positionsvk andvj . We define the
displacement asδ = (δx, δy)

T , whereδx is movement in the
horizontal direction andδy movement in the vertical direc-
tion. We therefore describe displacement in terms of flow
vectors as follows:

δ =
∑

kǫV

(
1

| AV oronoi |
∑

jǫN(k)

1

2
(cotαkj + cotβkj) . . . (6)

(wk − wj))

Based on this formulation, we define out Laplacian
smoothness constraint as:

ELap(w) =
∑

n

Ψ(| ∇δx |2 + | ∇δy |2) (7)

In our formulation, the mesh constraint helps preserve
local detail by minimising the angle differences in local

Input: two images and a triangle mesh

1. n-levels Gaussian pyramids are constructed for both the
images and the mesh. Parametersl = 0
(pyramid level) andw = 0 (empty flow field) are set
2. The flow field is propagated to levell + 1
3. The energy function (1) is minimized
4. If l 6= n− 1 thenl = l + 1 and go to step 2.

Output: optical flow field

Table 1. The overall framework of our method.

neighborhoods. The main reason for this is that by con-
straining local edge angles – embedded in the cotangent
formulation – the term penalizes local displacements which
may cause overlap with other pixels. Our experiments
in Section 4 have shown that this constraint leads to the
better preservation of image detail given non-rigid motion
changes.

3. Optical Flow Framework

In the previous section we outlined our optical flow strat-
egy given a pair of frames. In this section we describe our
overall framework in relation to a coarse-to-fine optimiza-
tion strategy.

Table 1 gives an overview of our framework. In order
handle large-displacement flow between images, we use a
coarse-to-fine framework. Our algorithm takes two frames
and a triangle mesh as input. In this paper our mesh is over-
layed over the entire image surface. Each vertex in the mesh
has 6 adjacent neighbors in its 1-ring surroundings. Every
vertex has a distance of 10 pixels from its horizontal and
vertical adjacent neighbors. As previously mentioned, we
found this value to provide the most satisfactory results in
our evaluation (see Section 4).

In order to minimize the energy function (1), we follow
the coarse-to-fine strategy outlined in [4]. We construct an
n-level image pyramid for both input images, and perform
the same step for the mesh. We use a down sampling factor
0.75 and perform 12 warping steps on each pyramid level
using bicubic interpolation. We apply the global smooth-
ness constraintEGlobal to each level of the pyramid setting
λ to 0.85. The laplacian constraintELap is only applied
on the bottom two (highest resolution) levels of the pyra-
mid, settingǫ to a value of 0.9. This is because the mesh
is defined on the highest level image, and since the ver-
tex number is fixed, down-sampling the mesh can result in
more vertices than pixels. This pyramid is equivalent to the
Euler-Lagrange equations and we solve these using Conju-
gate gradients in a similar manner to Brox and Malik [4].

3
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4. Results

In this section we describe experiments evaluation our
Laplacian based optical flow algorithm against existing ap-
proaches. We use three data sets consisting of 12 image
sequences obtained from Salzmann et al [11] and Garg et
al [7]. Data from Salzmann et al consists of 6 video se-
quences between 68 and 271 frames, and 2 motion capture
sequences of 54 and 103 frames respectively. The motion
capture sequences contain non-rigid objects with reflective
markers captured using a Vicon optical motion capture sys-
tem. In order to use this data, we added a synthetic tex-
ture to the 3D marker positions and rendered the deforming
image sequence in 2D. Data from Garg et al consists of 4
sequences each 60 frames long, also containing non-rigidly
deforming objects.

Optical flow evaluation on non-rigid sequences is an
area which has received little attention, unlike evaluation
on rigid scenes using e.g. the Middlebury dataset [12]. We
therefore derive what we believe to be a fair comparison of
the performance of our method using a data set of non-rigid
movement compiled from several recent papers investigat-
ing non-rigid motion. In order to evaluate the performance
of our algorithm we use a concatenative alignment strategy
overviewed in Figure2. We calculate the forward flow be-
tween pairs of image frames, and then use this flow to align
an image back to the first frame in the sequence. Images
from frameIi are therefore aligned to the first frame by con-
catenating the consecutive flow fields. We perform this for
each sequence using our Laplacian flow and also the opti-
cal flow algorithms of Brox and Malik [4] and Horn and
Schunk [13]. After alignment, we then calculate the Mu-
tual Information (MI) between the first frame in the image
sequence and the aligned image.

Figures3, 4, 5 and 6 give visual comparisons of the
alignment methods. Figure7 shows the mutual information
between a registered image and the image in the first frame
of the sequence. The accompanying video also shows reg-
istration examples for all of the 12 video sequences.

Figure7 clearly shows improved mutual information for
our method between registered images and the first image in
the sequence. This is supported by the visual comparisons
in Figures3, 4, 5 and6. The results show improved detail
preservation in all sequences, as well as improved bound-
ary preservation particularly in the more highly deforming
scenes (e.g. Figure3). Figures4 and6 show reasonable
global registration for both our method and Brox and Ma-
lik. However, a close examination shows improved detail
preservation in our approach. This is also supported (and is
visually clearer) by results in our supporting video.

As would be expected, mutual information reduces for
frames further from the reference. This is due to accumu-
lating optical flow error as well as occlusions that appear as
the sequence progresses. One rationale for the improvement

in detail preservation for our proposed approach is that our
Laplacian smoothness term is providing a more robust con-
straint on the movement of local pixel regions. In Brox and
Malik [4] and Horn and Shunk [13] the smoothness term is
global, and does not directly consider local pixel deforma-
tions.

Figure 2. For evaluation the optical flow field is computed foreach
adjacent pair of frames. A frame is then warped back to the refer-
ence by concatenating flow fields.

5. Conclusions

In this paper we have presented a novel optical flow for-
mulation that imposes a Laplacian mesh based smoothness
constraint. The additional term focuses on preserving lo-
cal image deformations and performs particularly well on
image sequences containing non-rigidly deforming objects.
We have compared our approach to several popular optical
flow formulations and demonstrated its ability to better pre-
serve local image detail.

In our evaluations we have identified some remaining is-
sues relating to improving flow accuracy over long periods.
This forms our direction for future work. The problem is
partially due to occlusions forming in the sequences. This
leaves large scope for investigating the application of addi-
tional robustness terms in flow formulations, or some other
feature based stability measure for long sequences.
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Figure 3. Registration results on Salzmann et al’sEPFLclothsequence.

Figure 4. Registration results on Salzmann et al’sPaperCreasesequence.
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Figure 5. Registration results on Garg et al’sGN sequence.

Figure 6. Registration results on Salzmann et al’sPaperBendsequence.
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Figure 7. Mutual Information comparisons on each non-rigidimage sequence for multiple algorithms: our approach, Broxet al, and Horn
and Schunk.
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