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Abstract

In this paper a technique is presented for learning audio-visual cor-
relations in non-speech related articulations such as laughs, cries,
sneezes and yawns, such that accurate new visual motions may be
created given just audio. Our underlying model is data-driven and
provides reliable performance given voices the system is familiar
with as well as new voices. We demonstrate how performance
accuracy in voice driven animation can be related to maximizing
the models likelihood, and that new voices with similar temporal
and spatial audio distributions to that of the model will consistently
provide animation results with the lowest ground truth error. By ex-
ploiting this fact we significantly improve performance given voices
unfamiliar to the system.

Introduction

Facial animation has a wide range of applications, including video
game and movie characters, medical visualisation, psychological
stimuli, online avatars and virtual guides. Highly realistic charac-
ters, such as those seen in movies, require teams of expert artists
and animators and involve months of manual effort. Perhaps the
most popular technique employed to generate facial animations for
movies and video games is blend-shape animation [Fordham 2003].
This allows an animator fine control over a facial model in order to
add subtle nuances or correct some unwanted motion. Performance
driven animation is also a popular animation technique [Pighin and
Lewis 2006]. This involves tracking a performers facial movements
(e.g. using motion-capture) and then mapping them onto a facial
model. However, it is very uncommon for such a method to not
be followed up with some manual intervention, e.g. by adjusting
blendshape weights on a model. High quality animation, such as
that seen in movies, is always the result of several techniques and
a large proportion of manual effort. There is therefore always an
interest in the development of new techniques that can increase pro-
ductivity and reduce development time.

The idea of being able to automatically generate a facial animation
from speech is therefore a highly attractive proposition. Given such
a technique, an actors voice track could be used to automatically
animate a facial model, including lip-synching and facial expres-
sion. This has advantages over e.g. performance driven animation
which additionally involves physically recording an actors perfor-
mance using a capture system.

Speech driven animation also has great potential in online video
games, such as World of Warcraft [Entertainment ]. In this case,
the voice of a person speaking to their friend may be translated onto
their virtual avatar. This would far improve current online games
where the avatars of two people conversing by voice do not show
any sign of motion or interaction, and instead are quite wooden.

Another important aspect to consider in voice driven animation is
the many auditory gestures that are not related to speech, but may
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be considered as non-verbal or non-linguistic articulations. These
include e.g. laughing, crying, sneezing and yawning. Consider
again the example of an online game, where now the two people
share a joke and begin to laugh into their head-sets. In this case, it
would add a new dimension of interaction if the virtual avatar where
also to laugh, or perform whatever non-speech related articulation
the player is currently exhibiting.

An important aspect of any such system is also that it should be
robust to the sound of different peoples articulations, such that it
should be able to generate appropriate actions given voices it has
not heard before. This is a difficult problem in automatic audio
driven synthesis.

In this paper, the subject of automatically animating virtual char-
acters using non-speech related articulations is considered. A tech-
nique is presented for learning audio-visual correlations in example
laughs, cries, sneezes and yawns, such that accurate new visual mo-
tions may be created given just audio. The technique is data-driven
in that the underlying model is trained from captured motions and
audio segments from performers as opposed to a simulated model.
We also address the generation of appropriate visual actions using
voices the system is not familiar with. We show how our approach
inherently allows a degree of speaker independence, and that an
added classification step can further improve robustness given new
voices used for animation.

Prior Work

Automatic animation from speech has been an area of much ac-
tivity. Two general approaches are usually considered: phoneme
driven animation or animation from raw audio recordings. Co-
hen and Massaro [Cohen and Massaro 1993] described an approach
whereby an audio track is first transcribed using phonemes and then
the phonemes are translated to corresponding visemes (visual coun-
terpart to a phoneme) using a rule based mapping. Viseme domi-
nance functions then control the extent to which a viseme is ar-
ticulated. More recently, Ezzat et al [Ezzat et al. 2002] presented
video-realistic phoneme driven animations that are almost percep-
tually indistinguishable from real speakers. This result demon-
strates the potential accuracy of phoneme driven methods. Bre-
gler et al [Bregler et al. 1997] also produced highly video-realistic
results using triplets of phonemes (triphones) as the input to a pre-
labelled video-triphone database. Sumedha et al [Kshirsagar and
Magnentat-Thalmann 2003] achieve realistic results by employing
vi-syllables as the input to their system. Cao et al [Cao et al. 2005],
while using standard phonemes as an input for lip-synching, also
use a classifier to determine the emotional state of the voice, thus
accompanying mouth animation with a suitable facial expression.
The advantage of phoneme and phoneme variant based approaches
is that phoneme to visual mappings can be pre-defined as a set of
rules, making a high degree of reliability possible. Phoneme labels
are also speaker-independent, meaning that any persons voice can
be labelled and used as the input to a system. The drawback of
course is that any audio input needs to be annotated with phonemes
before an animation can be produced, and although research ac-
tivity exists in producing automatic phoneme transcription tools,



reliable results can still only be obtained using semi-automatic or
manual means.

A second approach to voice driven animation is to attempt to gen-
erate the animation automatically from the raw audio. Gutierrez-
Osuna et al [Gutierrez-Osuna et al. 2005] used a K-Nearest Neigh-
bour (KNN) classifier to relate short audio speech segments with
corresponding visual ones, while Brand et al [Brand 1999] in-
troduced a Hidden Markov Model (HMM) approach to learn
time-dependent correlations between speech and visual segments.
Cosker et al [Cosker et al. 2004] produced near-video realistic ani-
mation by applying appearance model [Cootes et al. 2001]parame-
ters as visually rich features in a HMM synthesis framework.

The main challenge in attempting to automatically generate visual
parameters from speech is to learn the complex many-to-many map-
pings between the signals. Another challenge is then to make such
a system speaker independent, such that it can generate new an-
imations from voice identities it has not heard before. Brand et
al [Brand 1999] and Cosker et al [Cosker et al. 2004] both suggest
building separate models for each identity. However, these models
typically require several minutes of training footage where facial
features in each frame are accurately tracked – and this can be a
difficult process. The challenge of encoding speaker independence
into a more feasible framework is therefore still an open one.

The large body of previous audio-driven facial animation research
is mostly concerned with generating lip-synching from speech.
Work on detecting emotion in the voice may also be applied to fa-
cial animation. Cao et al [Cao et al. 2005] achieve this using clas-
sification based approaches that relate underlying audio features –
such as voice-pitch – with speaker mood. The resulting correspond-
ing facial expression then accompanies head movement and/or lip-
synching.

A separate but equally important animation problem from gener-
ating lip-synching or mood is that of creating non-speech related
articulations – such as laughing, crying, sneezing and yawning –
automatically from speech. Given the importance of such artic-
ulations in adding life to an animation, it is surprising how little
research has been carried out in this area. The growth of online
video-games where people converse with their voice also opens the
door to some important new applications of this research – as in the
avatar interaction examples described in the introduction. This is in
addition to the potential increase in animator productivity given a
system for producing full lip-synching and non-speech related ar-
ticulations from a performers voice.

In an early study, Cosker et al [Cosker et al. 2008] began to ex-
plore approaches to learn person specific mappings between some
common non-speech related actions and facial motion. More re-
cently, DiLorenzo et al [DiLorenzo et al. 2008] proposed a para-
metric physical chest model that could automatically be animated
from recorded laughs. To date, these studies are among the only
ones to begin addressing audio driven animation of non-speech re-
lated motions such as laughing and crying, and there is still much
research to be carried out in this area.

In this paper we propose a data-driven HMM based method for
learning correlations between non-speech related audio signals and
visual facial parameters. Unlike the work of DiLorenzo et al these
signals are observed from recorded motions of real performers as
opposed to a pre-defined physical model. We concentrate on sev-
eral common non-speech related actions – laughing, crying, sneez-
ing and yawning. As previously described, a major challenge when
using automatic audio driven systems is that of achieving reliable
performance given a variety of voices from new people. We demon-
strate our approach in a number of speaker-independent synthesis
experiments, and show how animation error in voice driven anima-

tion has a relation to the proximity of audio distributions for dif-
ferent people and well as similarities between their temporal be-
haviour. By exploiting these facts we consistently improve syn-
thesis given voices from new people. We implement this improve-
ment using a pre-synthesis classification step. In sum, our approach
potentially increases the reusability of such a model for new ap-
plications (e.g. online games), and can reduces the need to re-
train the model for new identities. Our study is the first to explore
voice driven synthesis of non-speech actions using a data-driven
approach, as well as the first to examine speaker independent ani-
mation using such models.

Overview

Our approach initially requires example audio-visual performances
of the action of interest for training: e.g. several laughs, cries,
sneezes or yawns. A HMM framework then encodes this audio-
visual information. The framework may be trained using any num-
ber of desired non-speech action types. Training the framework on
a single persons voice limits it in the number of new vocal iden-
tities it can reliably synthesise new animations for. However, we
show that by increasing this basis by just a small number of new
identities we can significantly improve animation for new peoples
voices. This is because given new identities the known audio dis-
tribution of the framework increases, and speaker independence is
related to this distributions ability to approximate input distribu-
tions. We propose a classification based scheme to improve system
robustness to new voices. Figure 1 provides a high level overview
of this procedure, including a potential application.

Audio-Visual Data Acquisition

Our entire experimental data set consists of four participants (2
male and 2 female) captured performing approximately 6-10 dif-
ferent laughs, cries, sneezes and yawns using a Qualysis opti-
cal motion-capture system. We captured audio simultaneously at
48KHz. We placed 30 retro-reflective markers on each person in or-
der to capture the visual motion of their face while performing the
different actions (see Figure 2). The system captured the movement
of the markers at 60 frames-per-second. The motion-capture there-
fore provides our visual input for training and initial output for ani-
mation. During training, our model learns correlations between the
recorded audio and the visual motion-capture data. The algorithms
output is a new set of 3D motion vectors – 30 in total corresponding
to the positions of the motion-capture markers used in training. We
then use an Radial Basis Function (RBF) mapping [Lorenzo et al.
2003] to animate a 3D facial model using these 3Dmotion vectors –
this provides the output of the system. Note that any 3D head model
may be animated during this last step depending on the application.

The motion capture movements of each person contain head mo-
tion as well as the facial changes caused by e.g. a laughing ac-
tion. It is important to model these variations separately so that
any model does not confuse a head motion with a facial expression
change [Cootes et al. 2001]. The motion capture data set was there-
fore aligned to a common coordinate system using a least-squares
alignment procedure [Umeyama 1991]. This eliminates variations
in translation, rotation and scale caused by changes in head pose.

This provided us with a data set X = {!x1, . . . !xN} containing the
different actions of all four people , where N is the total number
of motion-capture vectors, and !x is a vector of 3D points relating
to the positions of each of the 30 retro-refelctive facial markers, i.e.
!xi = [x1, y1, z1, . . . , x30, y30, z30]. Note that in our notation we
refer to !xi as a column vector.

The physical structure of each persons face is very different. There-



Figure 1: Given non-speech related inputs for a person (e.g. laughing), these may be transformed into corresponding 3D facial animations.
A pre-trained model may sit on a system and given existing knowledge of just a small set of people voices can show remarkable robustness to
a wide range of new voice inputs.

fore, when two different people laugh the shape of the face at the
neutral, in-between, and peak positions may vary greatly. Since it
is the basic facial movement performed during e.g. a laugh that we
are interested in – and not comparative differences in facial identity
during different laughs – then it is necessary to attempt to elimi-
nate differences due to facial identity from our training set. We do
this normalisation as follows: we first pick one of the performers
to serve as the common facial identity, and then calculate the mean
3D motion vector !xnorm

o for this person. We now wish to make the
identities of the motion-capture data for the other performers the
same as for this chosen person. To do this, we take the entire mo-
tion capture for a performer, calculate its mean 3D motion vector
!xnew

o , and then calculate the offset !xdiff
o = !xnorm

o − !xnew
o . We

wish to make the mean vector !xnew
o as close to !xnorm

o as possible.
If !xnorm

o = !xnew
o then we declare the identity for the new per-

former as being the same as the one chosen as the common facial
identity. To do this we apply !xdiff

o to each 3D motion vector for
the new performer and recalculate !xnew

o . At each iteration, !xdiff
o

should decrease and !xnew
o should converge with !xnorm

o . We termi-
nate once !xdiff

o is below a sufficiently small threshold. This pro-
cedure is then repeated for the remaining performer motion-capture
data such that all motion-capture data for all performers is aligned
with the performer chosen to have the common facial identity. Af-
ter this procedure, the data set X = {!x1, . . . !xN} – which consists
of all the laugh, cry, sneeze and yawn data for all four performers –
is now aligned to a common coordinate frame, and has a normalised
identity.

Figure 2: Motion Capture Set-Up: 30 retro-reflective markers are
placed on a performer.

Audio-Visual Parameterisation and Visualisa-
tion

It is widely accepted that the space of facial expressions can be
approximated by a low dimensional expression manifold [Chuang
et al. 2002]. This is convenient, since it means that we can model
and animate faces in a more efficient low dimensional space without
a significant loss in generality. The motion capture data currently
lies in a 30 dimensional space, and in terms of efficiency both in
terms of modeling and processing it would be convenient to map
this space to a lower dimensional one. Given an appropriate map-
ping, this lower dimensional space would then efficiently represent
all the important variation in our facial data set.

Principle Component Analysis (PCA) provides a convenient way
to reduce the dimensionality of a data set without loss of general-
isation. Perhaps the most popular examples of the use of PCA for
dimensional reduction of facial data are Active Appearance Mod-
els [Cootes et al. 2001] and 3D Morphable Models [Blanz and Vet-
ter 1999]. In both cases, facial data is shown to be well approxi-
mated by a lower dimensional parameter space. In a similar way
we use PCA to reduce the dimensionality of our data set. We first
calculate the covariance matrix for X, and then perform a Singu-
lar Value Decomposition (SVD) of the covariance matrix to find
its eigenvectors U and eigenvalues !u. We may now represent !x as
follows:

!x = !xo + U!v (1)

where !xo is the mean of X. The eigenvectors U are ordered in terms
of how much of the total variation in X they represent. In order to
reduce the dimensionality of our data set, we remove the eigenvec-
tors from U representing the smallest amounts of variation. This
can be done without harm to generalisation since the lower energy
eigenvectors typically represent noise or visibly insignificant facial
variations 1. The reduced dimensional vector !v may then be calcu-
lated by projecting !x onto the reduced basis U

!v = UT (!x − !xo) (2)

We retain enough eigenvectors to approximate 95% of the total
original variation in the motion capture training set. Projecting the

1Of course, one must still be careful to observe how much variation is
taken from the model since removal of eigenvectors will eventually lead to
a degraded overall model



Figure 3: Audio signals are represented using Spectrograms, and visual parameters using elements of !v relating to the three eigenvectors
encoding the most visual variation. Red, Green and Blue trajectories represent temporal changes in the first, second and third elements of !v
respectively .

entire set of motion capture vectors X onto U in equation [2] gives
V = {!v1, . . . ,!vN}.

As well as efficiently parameterising the visual features, it is equally
important to select a set of suitable audio features. Several types of
feature extraction techniques are employed in speech processing,
and most are based on representing the audio signal as a combina-
tion of different frequency components. We do not go into depth
about the extraction of such features here, and instead refer the
reader to [Deller et al. 1999]. Given the array of different audio pro-
cessing techniques available it is important to select the most appro-
priate. A Canonical Correlation Analysis (CCA) can be performed
to measure the correlation between different types of signal, and
we used this to compare different types of audio features to corre-
sponding visual features. We compared the correlation between our
visual parameters and audio features produced using Linear Predic-
tive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCC)
and Relative Spectral Transform - Perceptual Linear Prediction Co-
efficients (RASTA-PLP). We found that the strongest overall cor-
relation was between MFCC audio features and our visual parame-
ters.

We wished to have a corresponding set of MFCCs for each visual
parameter. Since audio was sampled at 48KHz, and video at 60FPS,
this meant that each set of MFCCs corresponded to a 800Hz audio
window approximately 16 milliseconds in width. This audio sam-
pling window and feature set compares favourably with those used
in studies exploring recognition of crying [Green et al. 1998] and
laugh structure analysis [Szameitat et al. 2007]. Our rates also com-
pare with those used in speech recognition tasks, i.e. between 10
and 20 millisecond windows [Deller et al. 1999]. To represent our
audio feature set we use the notation A = {!a1, . . . ,!aN}, where !a
is a column of MFCCs. Spectrograms offer a useful way of visu-
alising example vocal sounds [Deller et al. 1999]. A spectrogram
represents how audio frequency density varies with time. Figure 3
shows example spectrograms for a laugh, cry, sneeze and yawn. By
observing these spectrograms we can distinguish some regular pat-
terns and structure in the sounds. This is consistent with literature
on laugh and cry analysis [Szameitat et al. 2007; Green et al. 1998].

Having structural consistencies across different non-speech sounds
is important when attempting to learn relationships with the corre-
sponding visual signal. Figure 3 shows visual parameters with cor-
responding audio features for some different articulations. Clear
structural consistencies are evident when examining such corre-
spondences – suggesting that the relationship between the audio
and visual signals for non-speech related articulations is one that
can be reliably modelled.

Modelling Audio-Visual Relationships

Observing audio-visual signals for different non-speech related ar-
ticulations reveals evidence of a temporal structure. Speech litera-
ture also provides structural evidence for these articulations – e.g.
laughs are commonly based on fricative-vowel template [Szameitat
et al. 2007], where the fricative often consists of an aspirated ‘h’
sound and the vowel an ’ah’ sound. Work on cry analysis also re-
veals common acoustic behaviours [Green et al. 1998], while com-
puter based sneeze and yawn classification has also been proved
possible with temporal models [Temko et al. 2006].

Given the evidence of temporal patterns inherent in our data we
therefore decided to model this behaviour using HMMs [Rabiner
1989]. A HMM consists of a hidden Markov state process and an
observable sequence of events resulting from this process. The term
Markov describes the fact that the future state of the system is de-
pendent on the present system state. With an audio signal we may
state that the future sound of the audio will depend on the current
sound, i.e. the ’h’ of a laugh may be succeeded by a ’ah’ sound.
This may be described as a Markov process, and a HMM will tell
us the probability of the ’h’ preceding the ’ah’ based on observa-
tions from the training data.

The hidden process in the HMM is that which ultimately generates
the observable sequence. In the analogy of speech production, if
the observable sequence is sound then the hidden sequence may be
thought of as the mouth that generated it. However, by default a
HMM is trained solely on one type of data, and this data represents
its hidden process and observable sequence. It is therefore neces-



sary to modify the basic HMM to model this.

We first consider a traditional HMM trained using visual data. Let
us consider this data to be a set of example non-speech sounds
from V. For details on HMM training using the Expectation-
Maximisation algorithm the reader is referred to [Rabiner 1989].
After training, the HMM may be represented using the tuple λv =
(Q,B, π), where Q is the state transition probability distribution, B
is the observation probability distribution, and π is the initial state
distribution. In our model, each of theK states in a HMM are rep-
resented as a Gaussian mixture Gv = (µv, σv), where µv and σv
are the mean and covariance. Each state therefore represents the
probability of observing a visual vector.

A HMM may be used for three general problems: (1) determin-
ing the probability that a specific HMM generated an observation,
(2) determining the hidden state sequence responsible for an ob-
servation, and (3) determining the HMM parameters given an ob-
servation. The second problem may be solved using the Viterbi
algorithm [Rabiner 1989]. The Viterbi algorithm uses dynamic pro-
gramming to find an optimal path (e.g. a state sequence) through a
temporal state space given an observation sequence. The observa-
tion sequence is considered as being generated by the direct result
of moving through the state space, so the Viterbi algorithm attempts
to infer the state sequence most likely to have generated the obser-
vation. It is not feasible to consider every possible state sequence
that could have generated the observation, so therefore dynamic
programming is employed.

Therefore, given a set of visual parameters (i.e. observation), we
may estimate the underlying state sequence. However, we wish to
slightly modify the problem such that we may estimate the visual
state sequence given an audio observation instead. This is our an-
imation goal, i.e. automatic animation of visual parameters given
speech. We can do this by remapping the visual observations to au-
dio ones using the learned HMM parameters, i.e. for each Gv we
wish to calculate the distribution Ga = (µa, σa) based on the au-
dio A corresponding to the visual vectors V used in HMM training.
Thus, we calculate

µj
a =

∑N

t=1
γt(j).!at

∑N

t=1
γt(j)

(3)

σj
a =

∑N

t=1
γt(j).(!at − µ̄j

M )(!at − µ̄j
M )T

∑T

t=1
γt(j)

(4)

where 1 ≤ j ≤ K. The term γt(j) is the probability of being in
state j at time t, and may be found by recalculating the Expectation-
step of the EM algorithm. Details on how to calculate γt(j)may be
found in [Rabiner 1989].

Creating Visual Parameters from Audio

Using the Viterbi algorithm, we may now estimate the most prob-
able visual state sequence using an audio observation. More for-
mally, we can estimate via the HMM the post probable hidden se-
quence of Gaussian distribution parameters µv and σv correspond-
ing to the observation sequence of MFCC vectors AP1,L. One way
of displaying an animation at this stage is to simply render the se-
quence of Gaussian means µv . However, this will result in an in-
accurate animation. Instead, we consider what visual parameters
!vt may be displayed at each state, and then attempt to select the
best one by again considering how probable that visual parameter
is given the observation sequence.

We therefore first partition the visual parameter distribution used
to train the HMM into distinct regions based on the proximity of a
visual parameter to each gaussian. Using µv and σv , we calculate
the Mahalanobis distance between each observation !vi and each
of the K states and assign a visual parameter to its closest state.
This results inK partitions of the parameter training set, and given
an audio observation we may now state that the visual parameter
to display at time t given !at is taken from the visual parameter
partition associated with the state at time t.

We now define some new notation. We term the audio sequence be-
ing used to create the new animation as Anew = {!anew

1 . . .!anew
T },

and define the sequence of states it generates as S = {s1 . . . sT },
where T is the length of the input audio sequence Anew . Using
Anew = {!anew

1 . . .!anew
T } and S = {s1 . . . sT }, our aim is now to

calculate the new animation parameters Vout = {!vout
1 . . .!vout

T }

In order to do this we adapt the Viterbi algorithm such that it
provides us with the visual sequence Vout = {!vout

1 . . .!vout
T }

most likely to have generated the audio sequence Anew =
{!anew

1 . . .!anew
T }. We also have the added constraint that the vi-

sual parameter displayed at time t must be chosen from the parti-
tion of visual parameters associated with state st. Figure 4 gives an
overview of visual synthesis, and defines it in terms of two lev-
els: High-Level Re-synthesis, and Low-Level Resynthesis. The
High-Level stage is concerned with initially selecting the visual
state sequence through the HMM given the audio input Anew =
{!anew

1 . . .!anew
T }. This results in a sequence of visual parameter

partitions – one for each time t. The Low-Level stage then finds
the most probable path through these partitions given the observed
audio. In order to use the Viterbi algorithm to solve this low-level
stage, we must define two measures: the probability of transition-
ing between two neighbouring visual vectors, and the probability of
observing the audio feature !anew

t given a possible visual parameter
!vout

t . The transition probability is defined using the Mahalanobis
distance between two neighbouring visual parameters. The second
measure takes advantage of the fact that each visual parameter vec-
tor in the current partition also has a corresponding audio vector
observed in training, i.e. visual parameter !vi in partition st also has
a corresponding audio vector!ai. The probability of observing!anew

t

is therefore the Mahalanobis distance between this audio parameter
and !ai.

Once Vout has been calculated this can be converted into an ani-
mation sequence of 3D vectors Xout by projecting onto the visual
eigenvectors as in [1]. Animations at this point consist of a se-
quence of 3D points moving in space. Given a set of vectors of this
type, there is a multitude of research on methods to use their mo-
tion to animate a a vast range of detailed 3D facial models [Lorenzo
et al. 2003] – either of human looking characters or of more fantas-
tic ones (e.g. Yoda). Thus, animation vectors of this type have
potentially a wide use in video-games (online and offline). We use
the method of Edge et al [Lorenzo et al. 2003] to animate a variety
of different facial models using the vectors Xout, and the reader is
directed to this paper for implementation details.

Person and Action Identification using HMMs

In a situations such as an online video game, any voice driven ani-
mation system should give robust performance for a wide range of
potential players voices. The alternative is to train a speaker depen-
dent system for each player, and while this is indeed possible – and
may even be practical as long as a player is willing to invest the
necessary time – it is more desirable to mimimise the level of per-
son specific training necessary to give person independent robust
animation.

Consider the case where a voice driven system contains knowledge



Figure 4: Animation production may be visualised as a high-level state based process followed by a low-level animation frame generation
process.

of several identities, and this is represented by a set (or basis) of
several HMMs – one for each identity. A player will make a non-
speech sound – which must first be detected by the system – and
then this will be used to synthesise an animation. If the system has
not heard the persons voice before then we must synthesise the an-
imation using either (1) a single HMM trained with the knowledge
of multiple people, or (2) one of several HMMs where each contains
audio-visual data for a specific person. We concentrate on the latter
case for now, so our problem is therefore to select one of several
HMMs where each encodes information from a specific identity. It
turns out that this is equivalent to the general HMM problem num-
ber 1 previously described, i.e. determining the probability that a
specific HMM generated the observation. Determining this proba-
bility may be achieved by estimating the log-likelihood that a HMM
could have generated the persons input audio. Calculating the log-
likelihood is a simple procedure, but for the sake of space the reader
will have to be referred to [Rabiner 1989] for technical details. The
log-likelihood calculation takes into account (1)the temporal nature
of the input vocal sound, and (2) the overall proximity of the input
sound to the distribution used to train the HMM. We show in our
results how selecting a HMM with a higher log-likelihood consis-
tently leads to a lower overall animation error.

Experimental Results

Here we perform several experiments to investigate the perfor-
mance of our approach. The video accompanying this paper pro-
vides multiple animation results – including difficult cases of ani-
mating a model given a persons voice that the system has not been
trained on. However, here we first consider animation using known
voices.

Animating with Known Voices

Wefirst consider person and action specific synthesis of animations.
We trained audio-visual HMMs for a range of specific non-speech
actions – laughing, crying, sneezing and yawning – for each of our
four performers. Each HMM was trained using approximately 4
different actions, and approximately 4 more were left out for the

test cases. Audio corresponding to the test cases was then used to
synthesise new 3D animation vectors which were compared to the
motion-capture ground truth. Example animations may be found
in the video, and RMS errors in millimeters may be found in Ta-
ble 1. We trained each HMM using K = 10 states, we determined
this value by observing the overall average RMS value for different
values of K and selected in the best. The overall animation errors
are very low, the worst average marker error being 4.55 millime-
tres. Perceptually, animations are synched to the audio and closely
match the ground truth motion.

We next tested combining data from multiple people performing
a specific non-speech action inside the same HMM. This assesses
the models ability to generalise data for different people within the
same model. Again, we left out part of the data for each performer
to use as a test-set and calculated RMS errors as shown in Table 2.
This time we used a value of K = 20. Errors are comparable to
those in Table 1, demonstrating that the HMM is capable of com-
bining non-speech data for specific actions across multiple people
while still allowing accurate animations to be produced.

Animating with Unknown Voices

We now test the case where the model has no prior knowledge of a
persons voice. This is perhaps the most challenging task in audio
driven speech synthesis, and is key for applications such as online
video games.

For each performer we trained four separate HMMs – one for each
action. Given input audio for an action, the HMM with the best
log-likelihood was selected for synthesis – thus taking into account
match between input audio distribution and those of the trained
HMMs. Table 3 shows the results, and Figure 5 gives side-by-side
comparisons between ground truth video data of a performer, recon-
structed 3D vectors, and an animated 3D facial model. Our results
clearly show that a HMMwith a higher log-likelihood always gives
a lower average error reconstructions error. This shows that a high
log-likelihood appears correlated with a low animation error. The
RMS errors are in fact comparable with the person and action spe-
cific HMM results in Table 1, which is an extremely favorable result



Person Laugh Cry Sneeze Yawn
Min Max Mean Min Max Mean Min Max Mean Min Max Mean

P1 0.7 1.42 0.95 0.89 2.3 1.36 0.6 1.5 1.99 1.8 5.1 2.49
P2 2.68 4.7 3.68 1.96 2.42 2.12 3.8 5.6 4.56 1.99 4.13 2.8
P3 0.93 1.49 1.19 1.57 2.25 1.96 0.6 0.92 0.92 ND ND ND
P4 1.75 2.16 1.92 1.11 1.4 1.24 1.57 2.52 2 3.74 5.8 4.55

Table 1: Action Specific HMM animation: Min, Max and Mean RMS errors (millimetres) for average synthesised 3D coordinates versus
ground truth 3D coordinates.

Person Laugh Cry Sneeze Yawn
Min Max Mean Min Max Mean Min Max Mean Min Max Mean

P1+P2+P3+P4 1.15 2.76 1.75 1.29 3.61 2.01 1.6 5.96 3.52 1.77 6.15 3.52

Table 2: Animation with HMMs encoding multiple actions: Min, Max and Mean RMS errors (millimetres) for average synthesised 3D
coordinates versus ground truth 3D coordinates.

since person and action specific modelling should always provide
the baseline of best possible performance. Table 3 also shows re-
sults given a HMM with the lowest log-likelihood, and in general
these show that even the worst matching HMM can provide a rea-
sonable error and good animation results. However, most cases do
indeed show that using the wrong HMM for synthesis (i.e. one with
the lowest log-likelihood) can lead to substantially higher recon-
struction error, e.g. P1 yawn results. The results therefore indicate
that using a selection process offering a range of different possible
HMM models for synthesis can markedly improve performance.
Overall the results show that for the actions selected, a system for
non-speech action synthesis can be made quite robust to different
voices, and that a multiple HMM selection scheme can further im-
prove robustness and reliability. Another interesting result is how
robust the system is to voices from different sexes. We found that
given a male voice as an input, 44% of the time the best selected
HMM (one with the highest log-likelihood) was one also trained on
a male voice, while 70% of the time the worst selected HMM was
one trained on a female voice. This appears to show that for male
input voices the best synthesis result may equally come from a prior
male or female voice trained synthesis model. Results for female
input voices are far more clear cut. Given a female input voice, the
best selected HMM was one trained on a female voice 83% of the
time, and the worst selected HMM was one trained on a male voice
100% of the time. This shows strong evidence that a voice driven
animation system for non-speech actions should always have some
training using female voices.

Conclusions and Future Directions

In this paper we have presented a data-driven model for automati-
cally generating facial animation using non-speech sounds such as
laughing, crying, sneezing and yawning. Animation of these artic-
ulations is important in many potential applications, such as online
video games where players communicate online via headsets. We
have demonstrated our method to naturally encode a strong degree
of speaker independence, and have also shown how a ’best-HMM’
classification technique can further improve robustness. Using this
technique, the overall animation error is comparable to that ob-
tained in person and action specific animation. We find that ani-
mations created using female voices will typically rely on HMMs
trained specifically using female audio-visual data, whereas male
voices will use male or female prior information with an almost
equal chance. The implication of this is that any pre-trained sys-
tem used in a real application should contain both prior male and
female audio-visual information. There is a range of future work
to be done in voice-based synthesis of non-speech actions, this in-
cludes broadening the general type of action that can be animated,

incorporating head motion into synthesis, and combining these ac-
tions with speech.
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Laugh Cry Sneeze Yawn
B / W Err B/W Log B / W Err B / W Log B / W Err B / W Log B / W Err B / W Log

P1 2 / 3.3 -1033 / -1126 2.08 / 2.45 -704 / -851 2.4 / 2.46 -749 / -1105 2.8 / 6.6 -607 / -1239
P2 2.3 / 2.5 -422 / -777 1.3 / 2.2 -662 / -1130 3.4 / 3.66 -748 / -1006 3.5 / 5.4 -1081 / -1281
P3 1.6 / 2.8 -763 / -2558 1.1 / 2.1 -857 / -3519 2.4 / 2.9 -1050 / -2352 ND ND
P4 1.7 / 3 -1085 / -2039 0.8 / 2.1 -770 / -1804 1.5 / 2.7 -902 / -1627 1.8 / 2.8 1073 / 1215

Table 3: Average 3D vector animation error (millimeters) given best and worst matching (log-likelihood) HMMs. (B/W Err = best/worst
error, B/W Log = best/worst log-likelihood)


