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Chapter 1

Introduction

The aim of this dissertation is to investigate the amalgam method and its
uses in modern group theory. First, some historical background will be
provided, followed by the main aims of this dissertation.

1.1 Motivation

Group Theory was changed forever with the completion of the proof of the
classification of finite simple groups in 1981. After over 10,000 pages of
proof it was shown that any finite simple group is isomorphic to one of the
following [5, p. 60]:

• Cp – A cyclic group of prime order;

• An – An alternating group of degree n ≥ 5;

• A finite simple group of Lie type (classical, twisted and exceptional);
and

• One of the 26 sporadic groups.

Since then, much work has gone into understanding and simplifying the
proof and also into methods of identifying some of these groups. Two con-
cepts that have been used are amalgams and the coset graph.

An amalgam is a collection of three groups with injections from one
of the groups into the other two. The coset graph is a way of describing
how the cosets of a group interact with respect to three subgroups. Both
of these structures, which can be used to identify special properties of the
group, will be discussed in detail: an extensive example will be given and
important results proven.

The idea behind the amalgam method is to use graph-theoretic results
about the coset graph to infer results about the structure of the amalgam
and classify the possible amalgams satisfying certain conditions.
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1: Introduction

The amalgam method was introduced by Goldschmidt in his paper Au-
tomorphisms of trivalent graphs [3] where he classified all finite primitive
amalgams of index (3, 3) in the following theorem:

Theorem 1.1 ( [3, Theorem A]). If G, P1, P2 are groups such that:

• G is finite and G = 〈P1, P2〉,

• |Pi : P1 ∩ P2| = 3 for i = 1, 2, and

• no non-trivial normal subgroup of G is contained in P1 ∩ P2.

Then the pair (P1, P2) is isomorphic to exactly one of the following fifteen
pairs of groups:

Amalgam (P1, P2)

G1 (Z3, Z3)

G1
1 (Σ3,Σ3)

G2
1 (Σ3,Σ6)

G3
1 (D12, D12)

G2 (D12, A4)

G1
2 (D24,Σ4)

G2
2 (D8λΣ3,Σ4)

G3
2 (D12 × Z2, A4 × Z2)

G4
2 (D8 × Σ3, Z2 × Σ4)

G3 (Σ4,Σ4)

G1
3 (Z2 × Σ4, Z2 × Σ4)

G4 ((Q8 o Z4)Σ3, (Z4 × Z4)Σ3)

G1
4 ((Q8 oQ8)1Σ3, (Z4 × Z4)D12)

G5 ((Q8 oQ8)2Σ3, (Z4 × Z4)D12)

G1
5 ((Q8 oQ8)2D12, (Z4 × Z4)Σ3λD8)

Where (Q8 o Q8)nΣ3 is a semi-direct product with n non-central 2-chief
factors (n = 1, 2) and (Q8 oQ8)nD12 is a non-split extension.

Since then, there have been many papers about identifying amalgams
using the amalgam method. In [2] Delgado and Stellmacher classified P1

and P2 for rank 2 amalgams where

• G = 〈P1, P2〉,

• B is the normalizer of a Sylow p-subgroup in Pi,

• No nontrivial normal subgroup of B is normal in G, and
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1: Introduction

• Op′(Pi/Op(Pi)) is a rank 1 Lie-type group in char p (including soluble
ones).

This work was then continued in [12] where Stellmacher and Timmesfeld
partially classified P1, P2 and P3 for rank 3 amalgams where

G = 〈P1, P2, P3〉

and the other 3 hypotheses above are also satisfied.

1.2 Prerequisites

It will be assumed that the reader has a background knowledge of group
theory (a level appropriate to a third year undergraduate student). For
those readers without this knowledge of group theory it is recommended
that they read Topics in Group Theory, by Smith and Tabachnikova [11].

1.3 Aims

A treatment of the general amalgam method is beyond the scope of this
dissertation, however, the aim will be to demonstrate the method in action
by working through an example with constraints to simplify proceedings.

First some preliminary group theory will be given, before the definitions
of an amalgam and a coset graph are given along with some key proper-
ties. Then some key results, interesting in their own right, will be proven
about these objects. The group-theoretic properties of the amalgam and
graph-theoretic properties of the coset graph will become inextricably linked
through some pivotal theorems.

We are then in a position to work through an example of the amalgam
method, taken from [7]. There will be comparisons to the general amal-
gam method as well as two concrete examples demonstrating the properties
proven.

Finally, there will be a brief overview of how amalgams and the coset
graph generalize. This includes amalgams based on n subgroups, defining
amalgams, the coset geometry and coset complex. One of the most inter-
esting results is that the link between amalgams and geometry extends to
the simplicial coset complex where group-theoretic properties are related to
topological properties of the simplicial complex.
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Chapter 2

Preliminaries and Definitions

We first recall some basic group theory definitions, then give definitions of
an amalgam, coset graph and their properties. Definitions in this section
are from [1] and [7].

2.1 Basic Group Theory

Definition 2.1. For a group G we let G# denote the set

G# := {g ∈ G | g 6= e}.

Definition 2.2. For a group G, a subgroup H is maximal if whenever
U ≤ G such that H ≤ U then U = G. That is, H is not contained in a
proper subgroup of G.

Definition 2.3. Let G be a group. Define the Frattini subgroup, Φ(G),
to be the intersection of all maximal subgroups of G.

Definition 2.4. We say that an Abelian p-group, G, is elementary Abelian
if xp = 1 for all x ∈ G.

Lemma 2.5 ( [7, 2.1.8]). Let G be an elementary Abelian p-group and let
the order of G be pn. Then

G ∼= Cp × Cp × · · · × Cp︸ ︷︷ ︸
n copies of Cp

∼= (Cp)
n.

Proof. This follows immediately from the classification of finitely generated
abelian groups (see [11] page 81).

Corollary 2.6 ( [7, 5.2.6]). Let G be an elementary Abelian p-group. Then
its Frattini subgroup is trivial, that is

Φ(G) = 1.

4



2: Preliminaries and Definitions

Proof. This follows from Lemma 2.5.

Lemma 2.7 ( [7, 5.2.7]). Let P be a p-group. Then

(a) P/Φ(P ) is elementary Abelian.

(b) If |P/Φ(P )| = pn, then there exist x1, x2, . . . , xn ∈ P so that

P = 〈x1, x2, . . . , xn〉.

Proof. (a) In a nilpotent group every maximal subgroup is normal of index
p. The result therefore follows from the fact

P/Φ(P ) ∼= P/P1 × P/P2 × · · · × P/Pm

where Pi are maximal subgroups.

(b) We use (a) and Lemma 2.5 to see that P/Φ(P ) is generated by n
elements x1Φ(P ), x2Φ(P ), . . ., xnΦ(P ) with all xi in P . Therefore

P = 〈x1, x2, . . . , xn〉Φ(P ).

We now use the fact that if a subgroup H of G is such that G = HΦ(G)
then G = H, to see that P = 〈x1, x2, . . . , xn〉.

Definition 2.8. Let G be a group. A non-identity element g of G is said
to be an involution if g has order 2; that is

g2 = e and g 6= e.

Definition 2.9. For G a group and H ≤ G we define the normalizer,
NG(H), of H in G to be

NG(H) := {g ∈ G | gH = Hg}.

So by definition H E NG(H) and NG(H) is the largest subgroup of G having
H as a normal subgroup. Note also, that if H E G then NG(H) = G.

Definition 2.10. For a group G we define an automorphism of G to be
an isomorphism ϕ : G −→ G.

We define Aut(G) to be the group of all automorphisms of G.

Definition 2.11. For a subgroup H ≤ G we say H is characteristic in G,
written H char G, if H is Aut(G)-invariant; that is, for all ϕ ∈ Aut(G) and
all h ∈ H we have ϕ(h) ∈ H.

Lemma 2.12 ( [7, 1.3.2]). If H E G and K char H, then K E G.

5



2: Preliminaries and Definitions

Proof. For all g ∈ G, define the automorphism ψg : G −→ G sending x to
xg. As H is a normal subgroup of G, for all g ∈ G we have Hg = H, so
ψg|H is an automorphism of H for all g ∈ G.

Now K char H, so is invariant under automorphisms of H. Therefore
K is invariant under ψg|H for all g ∈ G, so for all k ∈ K and g ∈ G,
ψg|H(k) = kg ∈ K and so K E G.

Definition 2.13. Let G be a p-group and denote

Ω(G) := 〈x ∈ G | xp = 1〉.

Then it is clear that Ω(G) is a characteristic subgroup of G and if G is
Abelian then

G is elementary Abelian ⇐⇒ G = Ω(G).

Definition 2.14. For G a finite group and p a prime we define the p-radical
of G, Op(G), to be the largest normal p-subgroup of G. This can be shown
to be equal to

Op(G) :=
∏
AEG
A∈P

A

where P is the set of all p-groups.

Definition 2.15. For G a finite group and p a prime we define the p-
residue of G, Op(G), to be

Op(G) :=
⋂
AEG
G/A∈P

A

where P is the set of all p-groups.

Definition 2.16. We define a linear representation of a group G on a
vector space V over a field F to be a homomorphism

ϕ : G −→ GL(V ).

We define the degree of ϕ to be the degree of V over F .

Definition 2.17. We define a permutation representation of a group
G on a set Ω to be a homomorphism

ϕ : G −→ Sym(Ω).

We define the degree of ϕ to be |Ω|.

6



2: Preliminaries and Definitions

Definition 2.18. For a group G acting (on the right) on a set Ω, we define
the stabilizer of an element ω ∈ Ω, stabG(ω), to be

stabG(ω) = Gω = {g ∈ G | ω · g = ω}.

Definition 2.19. For a group G acting (on the right) on a set Ω we define
a set of imprimitivity to be a non-empty, proper subset ∆ ⊂ Ω such that
for every g ∈ G either:

∆ · g = ∆ or (∆ · g) ∩∆ = ∅.

It is clear that if ∆ is a set of imprimitivity, then so is ∆g.

Definition 2.20. We say the action of the group A on G is coprime if

• (|A|, |G|) = 1, and

• A or G is soluble.

Note. By Feit–Thompson one of A or G must be soluble if their orders are
coprime.

Definition 2.21. Let G be a group. We say that G is of even type if the
connected component of a Sylow 2-subgroup is unipotent and non-trivial.

2.2 Amalgams

We now give a formal definition of an amalgam and some basic properties
associated with amalgams.

Definition 2.22. An amalgam is a quintuple of three groups A, B and
C and two injective homomorphisms ϕ1 : C −→ A and ϕ2 : C −→ B. We
denote the amalgam as A = (A,B,C, ϕ1, ϕ2).

A C B�ϕ1 -ϕ2

Figure 2.1: Amalgam

Definition 2.23. The index of an amalgam A = (A,B,C, ϕ1, ϕ2) is the
ordered pair (|A : ϕ1(C)|, |B : ϕ2(C)|).

Definition 2.24. We say an amalgam, A = (A,B,C, ϕ1, ϕ2), is simple if
for every 1 6= K ≤ C one, or both, of the following holds:

ϕ1(K) 5 A;
ϕ2(K) 5 B.

7



2: Preliminaries and Definitions

Definition 2.25. A completion, denoted (G,ψ1, ψ2), of an amalgam A =
(A,B,C, ϕ1, ϕ2) is a group G and homomorphisms ψ1 : A −→ G and ψ2 :
B −→ G such that G = 〈ψ1(A), ψ2(B)〉 and ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2. This is
equivalent to saying that Figure 2.2 commutes.

G

A B

C

�
��

ψ1

@
@I

ψ2

@
@I
ϕ1 �

��
ϕ2

Figure 2.2: Completion of an Amalgam

We say a completion is faithful if and only if both ψ1 and ψ2 are injec-
tive.

Definition 2.26. Let G be a group. The canonical presentation is

〈G | R(G)〉

where R(G) is the kernel of the homomorphism from the free group on G,
F (G), to G, sending each generator of F (G) to the corresponding element
of G.

Definition 2.27. Let A = (A,B,C, ϕ1, ϕ2) be an amalgam. Let 〈X1 | R1〉
and 〈X2 | R2〉 be the canonical presentations of A and B, where X1∩X2 = ∅.
Then the amalgamated free product, denoted A∗CB, also known as the
universal completion, is the group

〈X1 ∪X2 | R1 ∪R2 ∪ {ϕ1(g) = ϕ2(g) | g ∈ C}〉.

Every completion of A can be obtained by a group homomorphism from
the universal completion.
Note. This notation is ambiguous, as the definition of A ∗C B depends on
ϕ1 and ϕ2; however, the notation has become standard so we will follow
convention.

Definition 2.28. For an amalgam A = (A,B,C, ϕ1, ϕ2) we can identify A,
B and C with their images in A ∗C B, so ϕ1 and ϕ2 are seen as inclusion
maps. We say that A is primitive if:

• For all 1 6= K E A with K ⊆ C, C = NB(K); and

• For all 1 6= L E B with L ⊆ C, C = NA(L).

Note. If C is a maximal subgroup of A and B then primitivity is equivalent
to A and B having no common normal subgroups.

8



2: Preliminaries and Definitions

2.3 The Coset Graph

We now give definitions of the coset graph and some of its graph theoretic
properties.

Definition 2.29. Let Γ be a graph with vertex set V (Γ) and edge set E(Γ).
Then we say Γ is bipartite if V (Γ) can be partitioned into two sets V1 and
V2 such that edges in E(Γ) only connect vertices in different vertex classes
(so there are no edges between two vertices in the same class).

Definition 2.30. The (right) coset graph, Γ = Γ(G,P1, P2, C), of sub-
groups P1 and P2 of G with C ≤ P1 ∩ P2 is the graph with vertex set

V (Γ) = {Pig | g ∈ G, i = 1, 2}

and edges between vertices representing cosets that share a coset of C in G,
so

E(Γ) = {Ck | g ∈ G}.

Therefore two vertices P1g and P2h are joined by the edge Ck if and
only if Ck ⊆ P1g ∩ P2h. It is clear that Γ is a bipartite graph with disjoint
vertex classes {P1g | g ∈ G} and {P2g | g ∈ G}.

Note. Γ(G,P1, P2, C) is never the empty graph (that is, the graph with no
edges). By setting k, g and h as the identity we see P1 and P2 are connected
by the edge C since, by definition, C ≤ P1 ∩ P2 so certainly C ⊆ P1 ∩ P2.

Definition 2.31. Let Γ be a graph (or subgraph) with vertex set V (Γ) and
edge set E(Γ). We say that two vertices α and β are connected if and only
if there is a path of edges in E(Γ) from α to β. We say that the graph Γ is
connected if every pair of vertices α and β in V (Γ) are connected.

Definition 2.32. The distance, d(α, β), of two vertices α, β ∈ V (Γ) is
defined to be the length of the shortest path between them. We define
d(α, α) to be zero for all vertices α; and if α and β are not connected we let
d(α, β) =∞.

Definition 2.33. For a connected component Γ̂ ⊆ Γ we let the diameter
of Γ̂ be the least integer n such that the distance between any pair of vertices
is at most n.

We also denote for any vertex α ∈ V (Γ), and any j ∈ N

∆j(α) = {β ∈ Γ | d(α, β) = j}.

For the case j = 1 we simplify the notation so that the set of adjacent
vertices to α is written simply as

∆(α) = {β ∈ Γ | d(α, β) = 1}.

9



2: Preliminaries and Definitions

Definition 2.34. For a pair of vertices α, β ∈ V (Γ) we define the edge set,
E(α, β), to be the set of all edges between α and β, that is:

E(α, β) := {Ck | Ck ⊆ α ∩ β}.

Definition 2.35. For a vertex α ∈ V (Γ) and for i a natural number we
denote

G[i]
α :=

⋂
δ∈V (Γ)
d(α,δ)≤i

Gδ.

2.4 Examples

Example 2.36. We give an easy example of an amalgam as follows: let

• A = S3;

• B = S4;

• C = A3; and

• ϕ1 : C ↪→ A and ϕ2 : C ↪→ B the obvious inclusion maps.

Then A = (A,B,C, ϕ1, ϕ2) is an amalgam of index (2, 8). We have a com-
pletion (G,ψ1, ψ2), where G = S4 and ψ1 : A ↪→ G and ψ2 : B ↪→ G are the
obvious inclusion maps, and it is faithful.

Example 2.37. We will now construct the coset graph of the following
quadruple of groups:

• G = S4;

• P1 = A4;

• P2 = V4; and

• C = 〈(1 2)(3 4)〉.

Now there are only two right cosets of A4 in S4, namely A4 and A4(12).
On the other hand, V4 has 6 distinct left cosets: V4, V4(12), V4(23), V4(13),
V4(123) and V4(132). We know, therefore, that Γ(S4, A4, V4, 〈(12)(34)〉) is a
bipartite graph with vertex classes of size 2 and 6. It is a simple calcula-
tion to see that A4 and A4(12) both have three neighbouring vertices, each
connected by 4 edges. This results in the coset graph shown in Figure 2.3,
where u1 = A4, u2 = A4(12) and v1 = V4, v2 = V4(123), v3 = V4(132),
v4 = V4(12), v5 = V4(23) and v6 = V4(13). The number of edges has been
written above each edge for simplicity.

In this case we have, for example:

10



2: Preliminaries and Definitions

u1 u2

v1 v2 v3 v4 v5 v6

�
�
�4

4

@
@
@ 4

�
�
�4

4

@
@
@ 4

Figure 2.3: Example coset graph

• d(v1, v3) = 2, d(u1, v1) = 1 and d(u1, u2) =∞;

• ∆(u2) = {v4, v5, v6}; and

• the diameter of each connected component of Γ is 2.
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Chapter 3

Important Results
Concerning Amalgams and
the Coset Graph

We now prove some key results: that every amalgam A has a faithful com-
pletion; that the coset graph Γ is connected if and only if the group is gen-
erated by the specified subgroups P1 and P2; and various results concerning
the stabilizers of Γ and the action of G on Γ.

3.1 Amalgams

One of the key results in amalgam theory is that every amalgam has a faith-
ful completion. We can see that every amalgam has a completion by simply
taking G to be the trivial group and letting ϕ1, and ϕ2, map all elements
of A, and B respectively, to the identity element. However, although com-
pletions always exist it is not obvious why there should exist a completion
that is faithful. We prove this result now, following [1].

Theorem 3.1 ( [1, 4.1]). Given an amalgam A = (A,B,C, ϕ1, ϕ2) there
exists a faithful completion. Also, if A and B are finite there exists a finite
completion.

Proof. Let S be a left transversal of ϕ1(C) in A and T a left transversal of
ϕ2(C) in B. Then any element a in A can be written in a unique way as
sϕ1(c) for some s in S and some c in C. Similarly, any b in B can be written
as tϕ2(c) for a unique element t in T and c in C.

Now denote:

Ω := A× T = {(a, t) | a ∈ A, t ∈ T },

and
Ω′ := S ×B = {(s, b) | s ∈ S, b ∈ B}.

12



3: Important Results

We define an action of A on Ω, denoted •:

(a, t) • a1 := (aa1, t),

and define a similar action of B on Ω′, denoted ◦:

(s, b) ◦ b1 := (s, bb1).

Now define Θ : Ω −→ Ω′ by

Θ(sϕ1(c), t) = (s, tϕ2(c)).

We aim to show that Θ is a bijection and then construct permutation repre-
sentations into Ω. First we will see that Θ is onto. Let (s, b) be any element
of Ω′. Then there exists t in T and c in C such that b = tϕ2(c) and so
(s, b) = (s, tϕ2(c)). Now sϕ1(c) is in A, so (sϕ1(c), t) is in Ω and so

Θ : (sϕ1(c), t) 7→ (s, tϕ2(c)) = (s, b).

Hence Θ is onto.
Now we show that Θ is injective. To see this, suppose Θ(a, t) = Θ(a′, t′).

Then there exist c and c′ in C and s and s′ in S such that

(a, t) = (sϕ1(c), t),

and
(a′, t′) = (s′ϕ1(c′), t′).

Now,

Θ(sϕ1(c), t) = Θ(s′ϕ1(c′), t′) ⇔ (s, tϕ2(c)) = (s′, t′ϕ2(c′))
⇔ s = s′, tϕ2(c) = t′ϕ2(c′).

Since any b in B is written uniquely as tϕ2(c) we must have t = t′ and
ϕ2(c) = ϕ2(c′). Hence we have c = c′, as ϕ2 is injective, and then we must
have ϕ1(c) = ϕ1(c′). Hence

(a, t) = (sϕ1(c), t) = (s′ϕ1(c′), t′) = (a′, t′),

and so Θ is injective and hence a bijection.
With this bijection we can define the following action of B on Ω, denoted

∗:
(a, t) ∗ b = Θ−1((Θ(a, t)) ◦ b).

Notice that given any d ∈ C, ϕ1(d), as an element of A, acts on Ω by

(sϕ1(c), t) • ϕ1(d) = (sϕ1(c)ϕ1(d), t) = (sϕ1(cd), t)

13



3: Important Results

and ϕ2(d), as an element of B, acts on Ω by

(sϕ1(c), t) ∗ ϕ2(d) = Θ−1((Θ(sϕ1(c), t)) ◦ ϕ2(d))
= Θ−1((s, tϕ2(c)) ◦ ϕ2(d))
= Θ−1(s, tϕ2(c)ϕ2(d))
= Θ−1(s, tϕ2(cd))
= (sϕ1(cd), t).

Hence ϕ1(c) acts on Ω in the same way as ϕ2(c) acts on Ω. Notice also
that both these actions on Ω are faithful and so there exist permutation
representations

Ψ1 : A −→ Sym(Ω), and

Ψ2 : B −→ Sym(Ω)

which are injective.
So G := 〈Ψ1(A),Ψ2(B)〉 is a faithful completion of A. Moreover if A

and B are finite then it is clear that G is a finite faithful completion.

3.2 The Coset Graph

We now prove some important results about the coset graph to facilitate its
application to the amalgam method.

Lemma 3.2. Let Γ = Γ(G,P1, P2, C) be a coset graph. If |P1 ∩ P2 : C| is
n ∈ N then for any pair of adjacent vertices {Pig, Pjh} ∈ E(Γ) there are
exactly n edges between Pig and Pjh.

Proof. As |P1 ∩ P2 : C| = n, there are exactly n cosets of C in P1 ∩ P2. Let

C = {ti | ti ∈ P1 ∩ P2, i = 1, . . . , n}

be a left transversal of C in P1 ∩ P2.
As Pig and Pjh are adjacent there exists k in G such that

Ck ⊆ Pig ∩ Pjh.

It is also clear that Ck ⊆ Pig ∩ Pjh if and only if Pig = Pik and Pjh = Pjk
as cosets are disjoint. We therefore only need to consider cosets of C in
Pik ∩ Pjk. There must be at least n such cosets: Ct1k,Ct2k, . . . , Ctnk.

Now if Ct ⊆ Pig ∩ Pjh = (Pi ∩ Pj)k, then we have Ctk−1 ⊆ Pi ∩ Pj so
Ct = Ctik for some ti ∈ C. Hence there cannot be any other cosets and so
the number of edges between Pig and Pjh is exactly n.

14
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3.2.1 The Action of a Group on its Coset Graph

The group G acts on the coset graph Γ(G,P1, P2, C) by acting on the cosets
with right multiplication, so for a vertex α = Pih and g ∈ G

α · g := Pi(hg).

This action clearly preserves the graph structure: if Ck is an edge of Γ
between vertices P1h1 and P2h2, then for any g in G we automatically have

Ckg ⊆ P1h1g ∩ P2h2g,

and so the image of the Ck is an edge between the images of the vertices
P1h1 and P2h2.

The action of G on Γ has two orbits, namely the set of cosets of P1 and
the set of cosets of P2. G also acts transitively on cosets of C and so is
transitive on the edges of Γ.

Lemma 3.3 ( [7, 10.3.1]). (a) For α = Pih ∈ V (Γ), the stabilizer Gα is
conjugate to Pi, specifically Gα = P hi .

(b) For an edge e = Ck ∈ E(Γ), the stabilizer Ge is conjugate to C.

(c) The kernel of the action of G on Γ is (P1 ∩ P2)G.

Proof. (a) For a vertex α = Pih and g ∈ G acting on α it is clear

α · g = Pihg = Pih⇔ g ∈ h−1Pih = P hi ,

and so Gα = P hi .

(b) Let e = Ck be an edge. Then the stabilizer of the edge e is the set

{g ∈ G | Ck · g = Ck}

which contains those elements such that kgk−1 ∈ C. So Ge = Ck.

(c) By part (a) any normal subgroup of G contained in P1 ∩ P2 fixes all
vertices in Γ.

Lemma 3.4 ( [1, 4.4]). For any vertex α, Gα is transitive on ∆(α) and the
sets E(α, β) form sets of imprimitivity.

Proof. Let α and β be adjacent and without loss of generality let α = P1g
and β = P2h. We saw in Lemma 3.2 that α = P1k, β = P2k and

E(α, β) = {Ct1k,Ct2k, . . . , Ctnk}

where the ti are elements of P1∩P2. By 3.3(a) we know Gα = P k1 . Consider
two edges, Ctik and Ctjk. Then the element t := k−1t−1

i tjk sends Ctik to

15
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Ctjk and t is in Gα. It is clear that in fact t is in Gαβ which is equal to the
stabilizer of any edge between α and β, and so is equal to Ck. Therefore
Gαβ acts transitively on E(α, β).

Now consider β and γ in ∆(α) with β 6= γ. Let Ck1 ⊆ α ∩ β and
Ck2 ⊆ α ∩ γ. Then, from 3.2, we have β = P2k1, γ = P2k2 and

α = P1k1 = P1k2.

We therefore have k2k
−1
1 in P1 and so

x := k−1
1 k2 = k−1

1 k2k
−1
1 k1 ∈ P k11 = Gα.

It is clear x takes β to γ and the other cosets between α and β are of the
form Ctik1 with ti in P1 ∩ P2. Hence Ctik1 · x = Ctik2, an edge between α
and γ. Therefore x takes β to γ, and Gα is transitive on ∆(α).

We saw before that Gα acts transitively on each E(α, β). Now any
element of Gα has the form y := k−1zk with z ∈ P1. Now

Ctik · y = Ctizk ∈ E(α, γ)

for some γ ∈ ∆(α). This holds for all 1 ≤ i ≤ n and so ∆(α) · g = ∆(α) for
all g in Gα and so ∆(α) is a set of imprimitivity.

Lemma 3.5 ( [1, 4.7]). The kernel of the action of G on Γ is the largest
normal subgroup of G which is contained in C.

Proof. Denote by N the largest normal subgroup of G contained in C.
If K is the kernel of the action of G on Γ then every element of K fixes

every vertex and edge of Γ. So in particular it fixes the edge C and so
K ≤ C. As K E G and N is maximal, we have K ≤ N .

As N E G for every n in N and g in G we have ng
−1 ∈ N ≤ C ≤ Pi so

Pign = Pig for i = 1, 2 and Pig is in V (Γ), so N fixes all vertices in Γ. It is
clear that we also have Cgn = Cg for all edges of Γ, so N ≤ K. Equality
therefore holds.

3.2.2 Connectedness of the Coset Graph

We now relate the connectedness of the coset graph to a group-theoretic
property; that is, whether G is generated by P1 and P2.

Theorem 3.6 ( [1, 4.6]). The coset graph Γ = Γ(G,P1, P2, C) is connected
if and only if G = 〈P1, P2〉.
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Proof. Firstly, assume G = 〈P1, P2〉. We know that C is an edge between P1

and P2. Let Γ∗ be the connected component containing the edge C. P1 and
P2 are both in Γ∗ and because disconnected components of Γ are disjoint
we find that

Γ∗ = Γ〈P1,P2〉
∗ .

Hence as G = 〈P1, P2〉 we have Γ∗ invariant under right conjugation by G.
By Lemma 3.3(a) this means that Γ∗ is invariant under the stabilizers of all
the vertices in V (Γ). However, we then see that all the vertices must be in
Γ∗, so Γ∗ = Γ, and Γ is connected.

Now assume Γ is connected. Let G0 = 〈P1, P2〉 and assume G0 < G. Let
α = P1 and choose a β = Pix such that β is not in G0 and n = d(α, β) is
minimal. We will show that in fact β is in G0 thus deriving a contradiction.

Γ is connected so there exists a path from α to β. Choose a shortest
such path, and denote the vertices γi (i = 0, . . . , n), where γ0 = α and
γn = β. We have chosen n minimal, so γn−1 = Pig and γn−2 = Pjh for some
g, h ∈ G0. By the result in Lemma 3.4 we know Gγn−1 = P gi is transtive on
∆(γn−2) so there exists a k ∈ P gi ≤ G0 with γn−2 · k = β. However, then β
would be in G0, the desired contradiction, and so G = G0 = 〈P1, P2〉.

We now use Theorem 3.6 to prove a result about how subgroups of the
vertex stabilizers act on the graph.

Theorem 3.7 ( [7, 10.3.3]). Let G = 〈P1, P2〉. Suppose that {α, β} is an
edge of Γ, U ≤ Gα ∩Gβ and one of the following holds:

(a) NGα(U) acts transitively on ∆(δ) for δ ∈ {α, β}; or

(b) U E Gα and U E Gβ.

Then U acts trivially on Γ.

Proof. It is clear that assuming (b) with 3.4 implies (a) and so we can assume
that (a) holds. Now let

Γ0 := (α)NG(U) ∪ (β)NG(U).

Then U fixes every vertex in Γ0. Let γ be in Γ, so there exists x in NG(U)
and δ in {α, β} such that γ = δx.

Now
∆(δx) = ∆(γ) and NGγ (U) = NGδ(U)x,

and by (a), NGγ (U) is transitive on ∆(δx) = ∆(γ). Moreover, one of the
vertices in {(α)x, (β)x} is adjacent to γ and

{(α)x, (β)x} ⊆ Γ0.

It follows that ∆(γ) ⊆ Γ0. Since, by Theorem 3.6, Γ is connected we con-
clude that Γ = Γ0. Thus U stabilizes every vertex in Γ.
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Chapter 4

The Amalgam Method

In this chapter we will follow [7, 10.3] to demonstrate the amalgam method
in action, and we will compare the example to the general amalgam method
given in [4]. We will also see how the amalgam method can be used to help
identify groups.

4.1 Motivation

The amalgam method has been used to aid the proof of the classification
of finite simple groups [4, pp. 161–169]. It is used by considering Sylow
2-subgroups of G and their normalizers.

Let G be a group of even type (see Definition 2.21) and T a Sylow
2-subgroup of G. When considering NT , the normalizer of T , we have a
dichotomy: NT is either contained in a unique maximal 2-local subgroup of
G, or this subgroup is not unique.

The first case is tackled using a technique called near components which
is beyond the scope of this dissertation but is discussed in [4].

In the second case there exists at least two maximal 2-local subgroups
and we can form an amalgam from two or more of these M1, M2, . . . , Mn,
as in Figure 4.1. In this context the amalgam method, with a few additional
assumptions, can be applied to assist in the identification of the groups
involved.

4.2 Assumptions

In our example we will assume the following conditions to restrict our con-
clusion to only two cases:

Assumption (G). Let G be a group generated by two finite subgroups P1

and P2, and let T := P1 ∩ P2. Suppose for i = 1, 2:

G1 CPi(O2(Pi)) ≤ O2(Pi);
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Figure 4.1: Amalgam formed from n maximal 2-local subgroups

G2 T ∈ Syl2Pi;

G3 TG = 1;

G4 Pi/O2(Pi) ∼= S3; and

G5 [Ω(Z(T )), Pi] 6= 1.

(O2(Pi) is the p-radical as defined in Definition 2.14 and Ω(Z(T )) is
defined in Definition 2.13)

The aim will be to use the amalgam method to prove that assuming G
implies:

Conclusion (H). G, P1 and P2 are such that either:

H1 P1
∼= P2

∼= S4; or

H2 P1
∼= P2

∼= C2 × S4.

So our aim is to prove the following theorem:

Theorem 4.1. Let G be a group generated by two finite subgroups P1 and
P2. If G, P1 and P2 satisfy G then H follows.

4.3 Comparisons to the General Method

We can see how this example compares with the general case as given in [4,
Chapter 28].

4.3.1 Amalgam Hypothesis

In the general case the Amalgam Hypothesis is assumed:

Assumption (G∗). Let X be a group with non-identity subgroups P , B,
X1 and X2 and such that
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G∗1 X = 〈X1, X2〉;

G∗2 B = X1 ∩X2;

G∗3 No nonidentity subgroup of B is normal in both X1 and X2;

G∗4 P is a Sylow p-subgroup of both X1 and X2 for some prime p; and

G∗5 F ∗(Xi) = Op(Xi) for i = 1, 2.

Where F ∗(Xi) is the generalized Fitting subgroup of Xi as defined below.

Definition 4.2. Let G be a finite group. We define the Fitting subgroup,
F (G) to be the unique largest normal nilpotent subgroup of G.

We define the generalized Fitting subgroup, F ∗(G) to be

〈F (G), X | X a component of G〉

where the components of G are the quasisimple subnormal subgroups of G.

Although G∗ is a weaker set of assumptions than G a lot can still be
inferred and generally the structure of X would be pinned down using extra
assumptions, often involving Xi/Op(Xi) (such as G4).

In the general case, it is the structure of X1 and X2 that we are concerned
with so X is defined to be the universal completion gp〈D〉 (see Definition
5.9) to simplify matters. We therefore have an extra assumption

G∗6 D = {B,X1, X2} is a defining amalgam (see Definition 5.10).

We have analogues of results such as Lemma 3.3 and Lemma 3.4 as well
as properties such as Γ being a tree (a graph without any circuits).

Often p is taken to be 2 which simplifies matters (for example, any group
consisting only of elements of order 1 and 2 is Abelian).

4.4 Preliminaries

We now assume G at all times, and let Γ denote the coset graph of G with
respect to G, P1, P2 and T .

Note that, by Lemma 3.2, Γ has only single edges between vertices and,
by Theorem 3.6, Γ is connected. By Lemma 3.3(c) we have the kernel of the
action of G on Γ being TG and, by G3, we see that TG = 1 and so G acts
faithfully on Γ.

If we have an edge, {α, β}, then it is conjugate to the edge {P1, P2} and
so the statements G1, . . . ,G5 hold for Gα and Gβ instead of P1 and P2.

Lemma 4.3 ( [7, 10.3.4]). Let {α, β} ∈ E(Γ).

(a) Gα ∩ Gβ has index 3 in Gβ and is a Sylow 2-subgroup of Gβ. In
particular Gα = 〈Gα ∩Gβ, t〉 for all t ∈ Gα \Gβ.
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(b) |∆(α)| = 3 and

O2(Gα) =
⋂

β∈∆(α)

(Gα ∩Gβ), (= G[1]
α )

where G[1]
α is the group defined in Definition 2.35.

(c) Gα acts 2-transitively on ∆(α).

Proof. (a) follows from G5 and G4; (b) from Lemma 3.4; and (c) from Lemma
3.3(a).

We now denote two groups associated with each vertex α ∈ Γ,

Qα := O2(Gα); and

Zα := 〈Ω(Z(T )) | T ∈ Syl2(Gα)〉.;

where Ω(Z(T )) is as defined in Definition 2.13.
In the general methodQα and Zα are defined slightly differently (however

under G these definitions coincide). We have Qα defined to be the kernel of
the action of Xα on ∆(α) and for Pα a Sylow p-subgroup of Xα we have

Zα := 〈Ω(Z(Pα))Xα〉.

Before we prove some elementary facts about Qα and Zα we need some
precursory results.

Theorem 4.4 (Schur–Zassenhaus [7, 6.2.1]). Let G be a group and K a
normal subgroup of G such that (|K|, |G/K|) = 1. Then K has a complement
in G. If in addition K or G/K is soluble, then all such such complements
are conjugate in G.

Proof. The proof is given in Appendix A under Theorem A.4.

Lemma 4.5 ( [7, 8.4.2]). Let the action of a group A on a group G be
coprime. Then

G = CG(A)× [G,A]

Proof. The proof is given in Appendix B under Lemma B.3.

We can now prove some facts about Qα and Zα.

Lemma 4.6 ( [7, 10.3.5]). Let α be in V (Γ), V E Gα and T in Syl2(Gα).
Suppose that

• Ω(Z(T )) ≤ V ≤ Ω(Z(Qα)); and
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• |V : Ω(Z(T ))| = 2.

Then
V = CV (Gα)×W, where W := [V,Gα].

Moreover W ∼= C2 × C2 and CGα(W ) = Qα, i.e. Gα/CGα(W ) ∼= S3.

Proof. Let D be in Syl3(Gα). By Lemma 4.5 we have the decomposition

V = CV (D)×W, where W := [V,D].

Then G5 and the fact that Gα = DT imply that W 6= 1 and thus |W | ≥ 4.
Let d be in D#. By our hypothesis,

|V/Ω(Z(T ))| = 2 = |V/Ω(Z(T d))|.

Now Gα = 〈T, T d〉 shows that |V/CV (Gα)| ≤ 4. It follows that

CV (Gα) = CV (D)

and |W | = 4. The other statements follow from G4.

Lemma 4.7 ( [7, 10.3.6]). Let α, β be incident in Γ. Then

(a) Zα ≤ Ω(Z(Qα));

(b) QαQβ = Gα ∩Gβ ∈ Syl2(Gα);

(c) CGα(Zα) = Qα; in particular, the Sylow 2-subgroups of Gα are non-
Abelian; and

(d) ZαZβ is normal in Gα if and only if there exists γ in ∆(α) \ {β} such
that ZαZβ = ZαZγ.

Proof. (a) Let T be in Syl2(Gα). Then Qα is a 2-subgroup and so is
contained in T , and G1 implies that Ω(Z(T )) ≤ Z(Qα), so because Zα
is generated by the Ω(Z(T )) it is a subgroup of Z(Qα) and the result
immediately follows.

(b) By G4 and Lemma 4.3 Qα and Qβ have index 2 in Gα ∩ Gβ. It is
therefore enough to show that Qα and Qβ are unequal.

For a contradiction, assume Qα = Qβ. Then as G acts faithfully on Γ
we can apply Theorem 3.7 and Lemma 4.3 to see that Qα = 1. This
contradicts G1 and so Qα and Qβ are unequal and the result follows.
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(c) By G5 the normal subgroup Zα is not central in Gα. So Zα is also not
central in T a Sylow 2-subgroup of Gα since this would contradict G5

as Gα = 〈T | T ∈ Syl2(Gα)〉.
By part (a) we have Qα ≤ CGα(Zα). If Qα and CGα(Zα) were unequal
then CGα(Zα) would contain a subgroup D of order 3, and Gα = DT ,
with T a Sylow 2-subgroup of Gα, by G4. But then we would have
Ω(Z(T )) being central in Gα, which contradicts G5.

(d) If ZαZβ E Gα, then ZαZβ = ZαZγ for all γ in ∆(α) since Gα is tran-
sitive on ∆(α) so the forward implication is proven.

Assume now that ZαZβ = ZαZγ for some γ in ∆(α) not equal to β.
Then ZαZβ is normalized by Gα ∩ Gβ and thus, by G4, it is also
normalized by Gα and so the equivalence holds.

4.5 The Main Concept

We now start to create the links between the coset graph Γ and our preferred
conclusion H.

Lemma 4.8. Let α and β be adjacent in Γ and let δ be in {α, β}. Assume
we have

Gδ ∼= S4 and Qδ ∼= C2 × C2

or
Gδ ∼= S4 × C2 and Qδ ∼= C2 × C2 × C2.

Then Zδ = Qδ.

Proof. Consider the first case: we know from Sylow’s Theorems and the fact
|S4| = 3 × 23 that S4 has either 1 or 3 Sylow 2-subgroups each of size 8.
With a little calculation we can see that there are in fact 3 (all conjugate)
and they are:

A = {(1234), (1432), (13), (24), (12)(34), (13)(24), (14)(23), e};

B = {(1243), (1342), (14), (23), (12)(34), (13)(24), (14)(23), e}; and

C = {(1324), (1423), (12), (34), (12)(34), (13)(24), (14)(23), e}.

As they all intersect in V4 and V4 ≤ Z(V4) we initially consider whether any
elements of V4 are in the centralizers of A, B or C. We see that

(13)(24) ∈ Z(A);
(14)(23) ∈ Z(B); and
(12)(34) ∈ Z(C).

23



4: The Amalgam Method

As Z(A), Z(B) and Z(C) are all 2-groups we need only consider the remain-
ing involutions and elements of order 4 in S4 to calculate the elements of
the centralizers. It is clear by considering any element (ij) and any element
(ijkl) that elements of either form are not members of the centralizers.

We therefore have:

Z(A) = {e, (13)(24)} = Ω(Z(A));
Z(B) = {e, (14)(23)} = Ω(Z(B)); and
Z(C) = {e, (12)(34)} = Ω(Z(C)).

And so we get

Zδ = 〈Ω(Z(T )) | T ∈ Syl2(Gδ)〉
= 〈Ω(Z(A)),Ω(Z(B)),Ω(Z(C))〉
= 〈e, (12)(34), (13)(24), (14)(23)〉
= V4 = Qδ.

The second result easily follows from the first, whence Zδ = Qδ = V4 × C2.

Theorem 4.9 ( [7, 10.3.7]). Let α and β be adjacent in Γ. The following
statements are then equivalent:

(i) H holds.

(ii) Zα � Qβ

Proof. First, assume that H holds. Then for δ in {α, β} we have:

Gδ ∼= S4 and Qδ ∼= C2 × C2;

or
Gδ ∼= S4 × C2 and Qδ ∼= C2 × C2 × C2.

We can therefore use Lemma 4.8 to see that Zδ = Qδ, and by Lemma
4.7(b) we have Zα � Qβ, so statement (i) implies statement (ii).

Assume now that Zα � Qβ. Let δ be in {α, β} and set

T := QαQβ and E := Qα ∩Qβ.

Once again, using Lemma 4.7(b), we see that T is a Sylow 2-subgroup
of Gδ and |T/Qδ| = 2. We therefore get

|Qα : E| = 2 = |Qβ : E|, (4.1)
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and
T = QβZα and Qα = EZα. (4.2)

Now from Lemma 4.7(c) we see that [Zα, Zβ] 6= 1 and so we also have

Zβ � Qα.

Using symmetry and (4.1) we see that

T = QαZβ and Qβ = EZβ. (4.3)

Now recall Definition 2.3 of Φ(G). We know that Zδ is an elementary
Abelian subgroup of Z(Qδ) so using (4.2) and (4.3) with Corollary 2.6 we
see that

Φ(Qα) = Φ(E) = Φ(Qβ).

Hence we have Φ(E) characteristic in Qδ. We therefore have Φ(E) nor-
mal in both Gα and Gβ. We now apply Theorem 3.7 and see that Φ(E)
must be trivial. We now have

Qα and Qβ are elementary Abelian. (4.4)

Also, the fact T = QαQβ means that

E = Z(T ). (4.5)

Now denote Wδ := [Qδ, Gδ]. Then we can use (4.1) to apply Lemma 4.6
with V = Qδ, so

Qδ = Z(Gδ)×Wδ and Wδ
∼= C2 × C2. (4.6)

By (4.2) and (4.3) there exists an involution tδ in T/Qδ that acts non-
trivially on O2(Gδ)/Wδ. Hence

Xδ := O2(Gδ)〈tδ〉 ∼= S4.

We now consider the two cases of Z(Gα) = 1 and Z(Gα) 6= 1 separately.
First we assume that Z(Gα) = 1. Then |T | = 8, and so Z(Gβ) = 1

follows from (4.5) and (4.6). We therefore have

Gα = Xα and Gβ = Xβ

as in H1.
Now consider the second case, where Z(Gα) 6= 1. We therefore have,

from (4.5) and (4.6), that Z(Gβ) 6= 1. But from Theorem 3.7 we know

Z(Gα) ∩ Z(Gβ) = 1.

As Z(Gα) and Z(Gβ) are in Z(T ) = T we can see from (4.6) that

Z(Gα) ∼= C2
∼= Z(Gβ).

It is clear that H2 follows immediately.

25



4: The Amalgam Method

Therefore Theorem 4.1 is equivalent to saying that G implies for all
adjacent vertices Zα � Qβ. We will now therefore assume there exists a pair
of incident vertices with Zα ≤ Qβ and show this leads to a contradiction.
We do this using a new concept, that of a critical pair.

Definition 4.10. Define the critical pair constant, b, as follows:

b := min{d(α, β) | α, β ∈ Γ, Zα � Qβ}.

Now define a pair (α, α′) of vertices to be a critical pair if

Zα � Qα′ and d(α, α′) = b.

Note. If α is a vertex of Γ then because Zα acts faithfully on Γ there must
exist a vertex β with Zα � Gβ. Hence Zα � Qβ and Γ is connected by
Theorem 3.6 so d(α, β) <∞ and b is an integer.

In the general amalgam method critical pairs are defined identically and
play just as crucial a role.

Now if α and β are vertices of Γ with d(α, β) < b then by the minimality
of b we have

Zα ≤ Qβ and Zβ ≤ Qα.

Therefore, by Theorem 4.9, Theorem 4.1 is equivalent to saying G implies
b = 1 for Γ.

We now consider some properties of critical pairs. We use the following
notation; let (α, α′) be a critical pair and γ a path from α to α′ of length b.
Enumerate the vertices of γ by

γ = (α, α+ 1, α+ 2, . . . , α′) or γ = (α, . . . , α′ − 2, α′ − 1, α′),

with the obvious relation

α′ − i = α+ (b− i) for 1 ≤ i ≤ b− 1.

We also denote
R := [Zα, Zα′ ].

Lemma 4.11 ( [7, 10.3.8]). Let (α, α′) be a critical pair of Γ. Then

(a) (α′, α) is also a critical pair;

(b) Gα ∩Gα+1 = Zα′Qα and Gα′−1 ∩Gα′ = ZαQα′;

(c) R ≤ Z(Gα ∩Gα+1) ∩ Z(Gα′−1 ∩Gα′) and
R = [Zα, Gα+1 ∩Gα] = [Zα′ , Gα′−1 ∩Gα′ ];

(d) |R| = 2;

(e) Zα = [Zα, Gα]× Ω(Z(Gα)) and [Zα, Gα] ∼= C2 × C2; and
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(f) |Zα : Ω(Z(Y ))| = 2 for all Sylow 2-subgroups Y of Gα.

Proof. We first use the minimality of B to see

Zα ≤ Qα′−1 ≤ Gα′−1 ∩Gα′ and Zα′ ≤ Qα+1 ≤ Gα ∩Gα+1

The fact that Zα � Qα′ provides us with

Gα′−1 ∩Gα′ = ZαQα′

since by Lemma 4.3 and G4, Qα′ has index 2 in Gα′−1 ∩Gα′ .
Now as Zα and Zα′ are normal in Gα and Gα′ , respectively, we see that

R ≤ Zα ∩ Zα′ . (4.7)

We now apply Lemma 4.7(c) and see that R 6= 1, so we we also have

Zα′ � Qα and Gα ∩Gα+1 = Zα′Qα

We therefore have part (a) (as d(α, α′) = d(α′, α)) and part (b). We use
(4.7) and Lemma 4.7(a) to prove part (c). We now use Lemma 4.7(a) and
(c) to see that

|Zα/CZα(Zα′)| = |Zα′/CZα′ (Zα)| = 2 and CZα(Zα′) = Ω(Z(Gα∩Gα+1)).
(4.8)

We use (4.8) to see part (d) and part (f), and finally Lemma 4.6 implies
part (e).

In the general method it turn out that (a) is only true if [Zα, Zβ] 6= 1
and Qα = Op(Xα).

We now prove some important results about vertices in ∆(α).

Lemma 4.12 ( [7, 10.3.9]). Let α− 1 be in ∆(α)\{α+ 1} such as in Figure
4.2. Suppose that (α − 1, α′ − 1) is not a critical pair. Then we have the
following results:

(a) ZαZα+1 = ZαZα−1 E Gα;

(b) Qα ∩Qβ E Gα for all β in ∆(α); and

(c) α and α′ are conjugate, and b is even.

Proof. Since we have (α− 1, α′ − 1) is not critical we have the following

Zα−1 ≤ Qα′−1 (≤ Gα′−1 ∩Gα′).

In particular b > 1 and

Zα−1 ≤ ZαQα′ = ZαCGα′ (Zα′).
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Where the first inequality follows from Lemma 4.11 and the equality
from Lemma 4.7. We can therefore infer

[Zα−1, Zα′ ] ≤ R ≤ Zα,

where the second inequality follows from Lemma 4.7 again.
We therefore have Zα−1Zα being normalized by Zα′ and Gα−1 ∩Gα and

so, by Lemma 4.3, also by 〈Gα ∩Gα−1, Zα′〉 = Gα. We now use Lemma 3.4
to see (a).

To obtain part (b) we use part (a) along with Lemma 4.7(c) and Lemma
3.4 again.

Now we have two cases: either α is in (α′)G or α is in (α′ − 1)G, so

α ∈ (α′)G ⇐⇒ b is even.

To finish proving (c) we may assume that α and α′− 1 are conjugate, so
we also have Gα and Gα′−1 conjugate. We then apply (b) to see

Zα ≤ Qα′−2 ∩Qα′−1 = Qα′−1 ∩Qα′ .

However, from this we see that Zα ≤ Qα′ contradicting our assumption
that (α, α′) is a critical pair.

Theorem 4.13 ( [7, 10.3.10]). Let (α, α′) be a critical pair. Assume there
exists a vertex α− 1 in ∆(α)\{α+ 1} such that (α− 1, α′ − 1) is a critical
pair. Then b = 1.

Proof. Label vertices as shown in Figure 4.2, so that α−2 is in ∆(α−1)\{α}.

α− 2 α+ 1 α′ − 2

α− 1 α α′ − 1
α′

γ

Figure 4.2: Sample path γ [7, pp. 291 Fig. 1]

Now denote
R1 := [Zα−1, Zα′−1]

We assume that b > 1 and derive a contradiction.
We know that because d(α, α+ 1) < b and d(α′, α′ − 1) < b we have

Zα ≤ Qα+1 and Zα′ ≤ Qα′−1. Using the assumption that (α − 1, α′ − 1)
is critical we apply Lemma 4.11 to this pair to see that |R1| = 2 and

R1 = [Zα−1, Gα−1 ∩Gα] ≤ Z(Gα−1 ∩Gα) ∩ Z(Gα′−2 ∩Gα′−1).
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In particular we have that R1 ≤ Z(Qα′−1) and so [R1, Zα′ ] = 1. We now
apply Lemma 4.11(b) to see that Zα′ and Gα−1 ∩Gα generate Gα, so we
have

R1 ≤ Z(Gα). (4.9)

Now we show:

(α− 2, α′ − 2) is a critical pair. (4.10)

Assume, for a contradiction that (α − 2, α′ − 2) is not a critical pair.
Then we can apply 4.12(a) to the pair (α − 1, α′ − 1) and vertex α − 2 to
see that for all δ in ∆(α− 1) we have Zα−1Zα = Zα−1Zδ.

Now consider the vertices around α and rotate them so that α− 1 goes
to α+ 1. We can then apply 3.4 to see that

Zα+1Zα = Zα+1Zα+2.

We now appeal to the minimality of b to see that Zα+1Zα+2 ≤ Qα′ and it
follows that Zα ≤ Qα′ . This implies that (α, α′) is not a critical pair, which
is the desired contradiction to prove (4.10) holds.

Now let R2 := [Zα−2, Zα′−2]. We now use the recently proven (4.10) to
see that the pair (α, α′) and the vertex α− 2 also satisfies the hypothesis.
We therefore get that |R2| = 2 and

R2 = [Zα−2, Gα−2 ∩Gα−1] ≤ Z(Gα−1). (4.11)

Now by 3.4 there exists y ∈ Gα−1 and x ∈ Gα such that

(α− 2)y = α and (α+ 1)x = α− 1.

Hence

[Zα, Gα ∩Gα−1] = [Zα−2, Gα−2 ∩Gα−1]y = R2
y ≤ Z(Gα−1),

and using 4.11(c) we see also

Rx = [Zα, Gα ∩Gα+1]x = [Zα, Gα ∩Gα−1] = R2
y ≤ Z(Gα−1).

It therefore follows that

R ≤ Z(Gα+1). (4.12)

We also have, applying (4.9) and 3.7,

R ∩R1 = 1. (4.13)

Now we show that it must be the case that if b > 1 we have

b = 2. (4.14)
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Assume the contrary, that b > 2. Then Zα′ ≤ Qα′−2, and by (4.11) and
Lemma 4.7(a) we have that R2 centralizes Zα′ and Gα−1. Since

Gα = 〈Zα′ , Gα ∩Gα−1〉,

we must have the fact that R2 centralizes Gα−1 and Gα. We can now apply
Theorem 3.7 to see that R2 = 1, which contradicts the fact that |R2| = 2,
and so (4.14) holds.

We now treat the remaining case of b = 2. We first denote:

Vα := 〈Zβ | β ∈ ∆(α)〉, (E Gα)

and
Vα+1 := 〈Zβ | β ∈ ∆(α+ 1)〉. (E Gα+1)

Now because b > 1 we have Zβ ≤ Qα for all β in ∆(α) and also Zγ E Qα+1

for all γ in ∆(α+ 1) so Vα ≤ Qα and Vα+1 ≤ Qα+1. We also have

Zα = 〈Ω(Z(Gα ∩Gα+1))Gα〉 ≤ Vα,

because Vα is normal in Gα, and similarly, because Vα+1 is normal in Gα+1,
we have Zα+1 ≤ Vα+1. We can therefore see that

ZαZα+1 ≤ Vα ∩ Vα+1. (4.15)

Now because we know R1 ≤ Z(Gα, the 2-transitive action of Gα on ∆(α)
(Lemma 4.3(c)) gives us

V ′α = R1 ≤ Z(Gα).

We now derive a contradiction showing that Vα is Abelian: Since Vα is
generated by involutions we have Vα/R1 elementary Abelian so

R1 = Φ(Vα),

where Φ is the Frattini subgroup as defined in Definition 2.3. We now use
(4.12) to see

R = Φ(Vα+1).

Now denote
V α := Vα/Zα.

We can use Lemma 4.11(f) to get |Zβ/Zα ∩Zβ| = 2 for all β in ∆(α), so we
must have |Zβ| = 2. In addition, V α is generated by the three subgroups
Zβ with β in ∆(α), so we have

|V α| ≤ 8. (4.16)
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Now set
W := Vα ∩ Vα+1. (E Gα ∩Gα+1)

We use (4.15) to see that ZαZα+1 ≤W , and the definition of Vα gives us

Vα = 〈WGα〉. (4.17)

We now apply Lemma 2.7 to see

Φ(W ) ≤ Φ(Vα) ∩ Φ(Vα+1) = R1 ∩R = 1,

where the final equality follows from (4.13). We therefore have the fact W
is elementary Abelian, and V ′α 6= 1 shows that |Vα/W | ≥ 2.

We now look at the action of Gα on V α. The kernel of this action
contains Qα since [Gα−1 ∩Gα, Zα−1] = R1 ≤ Zα. Now denote

V 0 := [V α, O
2(Gα)].

First consider the case that V 0 = 1. Then W is normal in Gα and
V ′α = 1. But this contradicts the result that V ′α = R1 as we have also proven
|R1| = 2.

Now consider the other case, that V 0 6= 1. We now use (4.16) we see
that

|V 0| = 4. (4.18)

Now assume |Vα/W | = 2. Let x be in Gα such that W x 6= W . Then
Vα = WW x and so W ∩W x = Z(Vα) and |Vα/W ∩W x| = 4. Let D be
in Syl3(Gα). The nontrivial action of D on V α implies a nontrivial actiuon
of D on Vα/W ∩W x. Therefore, all maximal subgroups of Vα that contain
W ∩W x are D-conjugates of W . However, this would mean every element
of V #

α is an involution and so Vα is elementary Abelian, but this contradicts
the fact V ′α = R1.

We therefore have that
|Vα/W | ≥ 4.

We can now apply (4.15) and use (4.16) to see

|V α| = 8, W = ZαZα+1 and |W | = 2. (4.19)

Now because Zα′ ≤ Gα and Zα′ � Qα we see that [V o, Zα′ ] 6= 1. How-
ever, we also see that because b = 2 we have

[Vα, Zα′ ] ≤ [Vα, Vα+1] ≤W,

so W = [V 0, Zα′ ]. But then

〈WGα〉 = V 0,

which contradicts (4.17), (4.18) and (4.19), so we have b = 1 as desired.
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4.6 Main Result

We are now in a position to prove Theorem 4.1:

Theorem 4.14 ( [7, 10.3.11]). Suppose G holds. Then P1 and P2 satisfy H;
that is, either

P1
∼= P2

∼= S4 or P1
∼= P2

∼= C2 × S4.

Proof. Let G satisfy G but not H. Among all the quadruples (G,P1, P2, T )
that satisfy G but notH choose the quadruple such that |T | is minimal. Then
by Theorem 4.9 we obtain that b > 1 and by Theorem 4.13 (α− 1, α′− 1) is
not critical for all α− 1 in ∆(α)/{α+ 1}. We now apply Lemma 4.12 to see

b ≡ 0(mod 2) and X := Qα ∩Qα+1 E Gα. (4.20)

We can also apply Theorem 3.7(b) and Lemma 4.3(a) to get

|Qα : X| = |Qα+1 : X| = 2.

Now let
D ∈ Syl3(Gα) and Gα := Gα/X.

Then Gα is a group of order 12 and Qα is a normal subgroup of order 2. It
therefore follows that D is also normal in Gα. Now let X ≤ L ≤ Gα such
that L = DQα+1. We now obtain the following results

L is a normal subgroup of index 2 in Gα; (4.21)
L ∼= S3; (4.22)

Syl2(L) = {Qβ | β ∈ ∆(α)}; (4.23)
O2(L) = X = Qα ∩Qβ for all β ∈ ∆(α); (4.24)

Qα+1 = Zα′O2(L); and (4.25)
CL(O2(L)) ≤ O2(L). (4.26)

Where (4.25) follows from Lemma 4.11(b) and to see (4.26) note that
Zα (E Gα) is contained in Qα+1 and thus also in O2(L). We therefore see

CL(O2(L)) ≤ CL(Zα) ≤ Qα ∩ L ≤ O2(L),

where the central inequality is from Lemma 4.7.
Now G4 tells us there exists an element t in Gα+1/Qα+1 such that

αt = α+ 2 and t2 ∈ Qα+1.

Therefore Qα+1 = (Qα+1)t is a Sylow 2-subgroup of L (≤ Gα) and Lt

(≤ Gα+2). First we show:
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O2(L) is not elementary Abelian. (4.27)

Assume that O2(L) is a counterexample to this. Then by (4.22), (4.24)
we can denote

A1 := O2(L) and A2 := O2(Lt).

A1 and A2 are two elementary Abelian subgroups of index 2 in Qα+1. Con-
sider the two cases A1 = A2 and A1 6= A2.

If A1 and A2 are equal then A1 must be normal in 〈Gα, Gα+2〉 and so
slao normal in

〈Gα, Gα ∩Gα+1, Gα+1 ∩Gα+2〉 = 〈Gα, Gα+1〉 = G.

But this contradicts G3 and (4.26).
We therefore have A1 not equal to A2. We can use (4.22), (4.23) and

(4.26) to see that Qα+1 is non-Abelian and so we have

A := A1 ∩A2 = Z(Qα+1) and |Qα+1/A| = 4.

Now if O2(Gα+1) acted trivially on Qα+1/A then we would have

〈Gα, O2(Gα+1)〉 ≤ NG(A1),

Which contradicts Theorem 3.7. We therefore must have O2(Gα+1) act-
ing transitively on (Qα+1/A)#. But that means every element of Q#

α+1 is
an involution and Qα+1 is elementary Abelian, again a contradiction. We
therefore have (4.27) holding.

Now we denote
G0 := 〈L,Lt〉

and we denote the largest normal subgroup of G0 in Qα+1 by Q. Because
we have Gt0 = G0 we also have Qt = Q. Now we want to show that

[Q,D] 6= 1. (4.28)

To prove this, assume that [Q,D] = 1 and set

G̃0 := G0/Q.
†

We now use the fact Qα+1 is a Sylow 2-subgroup of both L and Lt and
(4.21)-(4.26) to see that the quadruple

(G̃0, L̃, L̃
t, Q̃α+1)

†In this proof we use the tilde notation, eG0, rather than the bar notation G0 to follow
convention.
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satisfies our hypotheses G2, G3 and G4. Now as we are assuming [Q,D] = 1
we can use Lemma 4.7(c) and Corollary B.2 to see

W̃ := [Z̃α, D̃] 6= 1 (Q ≤W ≤ O2(L)),

and also
CeL(O2(L̃)) ≤ O2(L̃)

so we have G1 and G2 also holding and so all of G is satisfied.
We now appeal to the minimality of |T | to establish a contradiction and

so prove (4.28). As |Qα+1| < |T | we get that either

L̃ ∼= S4 or L̃ ∼= C2 × S4.

So by Lemma 4.6 we have

W̃ = [O2(L̃), O2(L̃)] � O2(L̃t),

and W̃ ≤ Z̃α implies Zα � O2(Lt). Now using (4.22) we have

O2(L) = (O2(L) ∩O2(Lt))Zα

Since Zα ≤ Ω(Z(O2(L))) we get

Φ(O2(L)) = Φ(O2(L) ∩O2(Lt)),

and if we conjugate with t we see that Φ(O2(L)) = Φ(O2(Lt)). But now
– as in the proof of step (4.27) – Φ(O2(L)) is normal in 〈Gα, Gα+2〉 = G,
and G3 gives us that Φ(O2(L)) = 1. This contradicts (4.27) and so we have
established (4.28).

We now show

Let β ∈ ∆(α) and γ ∈ ∆(β)\{α}.
Then 〈Zα, Zγ〉 is not normal in L. (4.29)

We fix the notation
∆(β) = {α, γ, δ},

and we set
Vβ := 〈Zα, Zγ , Zδ〉 (E Gβ).

Now every x in Qα\Qβ interchanges γ and δ and normalizes L (from
(4.21)). Now if 〈Zα, Zγ〉 is normal in L, then we also have 〈Zα, Zδ〉 equal
to 〈Zα, Zxγ 〉, and so is normal in L. This implies that Vβ is normal in L
(� Gα ∩ Gβ), which contradicts Theorem 3.7. This shows (4.29) and we
now show

Let b ≥ 4, α− 1 ∈ ∆(α)\{α+ 1} and α− 2 ∈ ∆(α− 1)\{α}.
Then (α− 2, α′ − 2) is a critical pair. (4.30)
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To prove this we assume that (α− 2, α′ − 2) is not critical. Then Zα−2 ≤
Qα′−3 ∩Qα′−2. Since by (4.20) α′ − 2 is conjugate to α we get

Zα−2 ≤ Qα′−3 ∩Qα′−2

= Qα′−2 ∩Qα′−1 from (4.20)
≤ Gα′−1 ∩Gα′
= ZαQα′ , from 4.11(b)

and so we have
[Zα−2, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα.

Hence Zα−2Zα (≤ Qα ∩ Qα−1) is normalized by Zα′ and also by Qα−1 (≤
Gα−2 ∩ Gα). Now (4.21) - (4.26) imply that Zα−2Zα is normal in L which
contradicts 5 and so (4.30) is proved.

Now for the following argument let α− 1 be in ∆(α)\{α+ 1} and let x
be in L (≤ Gα) such that

(α+ 1)x = α− 1.

Then
α− 2 := (α+ 2)x

is adjacent to α− 1 and is different from both α and α+ 2.
Now we will show

b ≤ 4. (4.31)

First we assume b ≥ 4. Applying (4.30) we see (α−2, α′−2) is a critical
pair. We can therefore use Lemma 4.11 to see

R2 := [Zα−2, Zα′−2] ≤ Z(Gα−2 ∩Gα−1) ∩ Zα′−2.

In addition to this, b ≥ 4 tells us Zα′ ≤ Qα′−2, so we also have [R2, Zα′ ] =
1. Now we can use (4.21) - (4.26) to give us [R2, L] = 1 and

R2 ≤ Z(Gα+2 ∩Gα+1),

since x is an element of L.
As we also have, from 4.11(a), that (α, α′) is a critical pair and there

exists α′ + 2 such that d(α′, α′ + 2) = 2 and (α′ + 2, α+ 2) is critical. Now
we use the assumption that b ≥ 4. Then we have Zα′+2 ≤ Qα′−2 and so

[R2, Zα′+2] = 1,

because R2 ≤ Zα′−2. We therefore have

Gα+2 ∩Gα+3 = Qα+2Zα′+2, (from 4.11(b))
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centralized by R2. It follows that R2 ≤ Z(Gα+2) and also R2 ≤ Z(Gα−2)
after conjugation with x in L. This contradicts the action of Zα′−2 on Zα,
as in Lemma 4.11(b), (e) and (f). We therefore have proved (4.31).

We now are finally in a position to prove the theorem, by showing that
(4.31) and (4.28) contradict each other.

Because we have Q ≤ O2(Lt) ≤ Qα+2 we see that

[Q,Zα+2] = 1. (4.32)

Now we have to distinguish between two cases: Zα+2 � O2(L) and
Zα+2 ≤ O2(L).

In the first case Qα+1 = O2(L)Zα+2 and

L = 〈ZLα+2〉O2(L) = CL(Q)O2(L).

This shows that O2(L) ≤ CL(Q) since Q is normal in L. In particular
this means [Q,D] = 1, which contradicts (4.28).

We therefore only have to consider the second case Zα+2 ≤ O2(L). Then
we have Zα+2 ≤ Qα, and (4.31) and (4.20) show that we must have b = 4.
We can now use (4.30) to see that

Zα+2 � Qα−2 = Q(α+2)x ,

and Ltx is a normal subgroup of index 2 in Gα−2. The subgroup

〈(Zα+2)L
tx〉 (≤ G0)

contains a Sylow 3-subgroup D2 of Gα−2. Now as above, (4.32) and Q E G0

show that [Q,D2] = 1. This contradicts (4.28) since D2 is a G0-conjugate
of the Sylow 3-subgroup D of Gα. So the result is proved.

4.6.1 General Conclusions

In the general case, if [Zα, Zβ] 6= 1, the amalgam method leads to the con-
struction of F -modules, namely for critical pairs (α, β), Zβ is an F -module
of

Xβ = Xβ/CXβ (Zβ).

Even if [Zα, Zβ] = 1 then if Vβ is defined as in Theorem 4.13, it turns
out for critical pairs (α, β) that Vβ is a quadratic module for Xβ/CXβ (Vβ).
Then extra assumptions can be used to narrow down the possible groups.

4.7 Worked Examples

We give two examples of groups satisfying G: one example for H1 and one
example for H2. These are sourced from [7, pp. 299–301].
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4.7.1 Worked Example Satisfying G and H1

We will consider the case G = GL3(2). This is the general linear group of
degree 3 over F2, the field of two elements. That is, all invertible 3 by 3
matrices over F2.

Denote

P1 :=


 a b c

0 d e
0 f g

 | a, b, c, d, e, f, g ∈ F2

 .

Then P1 is a subgroup of G as if x1 and x2 are defined as:

xi :=

 ai bi ci
0 di ei
0 fi gi

 .

Then we have

x−1
i =

1
ai(digi − eifi)

 digi − eifi cifi − bigi biei − cidi
0 aigi −aiei
0 −aifi aidi

 ,

where the denominator is the determinant of xi so is non-zero (as xi is in
GL3(2)) and because we are working in F2 this is the identity element, so
the determinant of x−1

i is

det(x−1
i ) = (ai(digi − eifi))2 = (det(xi))2 6= 0.

Therefore x−1
i is in GL3(2) and in P1. We also get:

x1 · x2 =

 a1 b1 c1

0 d1 e1

0 f1 g1

 ·
 a2 b2 c2

0 d2 e2

0 f2 g2


=

 a1a2 a1b2 + b1d2 + c1f2 a1c2 + b1e2 + c1g2

0 d1d2 + e1f2 d1e2 + e1g2

0 f1d2 + g1f2 f1e2 + g1g2

 ∈ P1.

We therefore have P1 being a subgroup of G.
Now denote P2 as follows:

P2 :=


 a b c

d e f
0 0 g

 | a, b, c, d, e, f, g ∈ F2

 .

Similarly, for

yi :=

 ai bi ci
di ei fi
0 0 gi

 ,
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we have

y−1
i =

1
gi(aiei − bidi)

 eigi −bigi bifi − ciei
−digi aigi cidi − aifi

0 0 aiei − bidi

 ,

and again as we are working in F2 and

det(yi) = gi(aiei − bidi) 6= 0

we must have the determinant of y−1
i as

det(y−1
i ) = (gi(aiei − bidi))2 = (det(xi))2) 6= 0.

Therefore y−1
i is in both GL3(2) and P2. Finally we have

y1 · y2 =

 a1 b1 c1

d1 e1 f1

0 0 g1

 ·
 a2 b2 c2

d2 e2 f2

0 0 g2


=

 a1a2 + b1d2 a1b2 + b1e2 a1c2 + b1f2 + c1g2

d1a2 + e1d2 d1b2 + e1e2 d1c2 + e1f2 + f1g2

0 0 g1g2

 ∈ P2.

So P2 is also a subgroup of GL3(2).
We now need to check 3 things: that G, P1 and P2 satisfy G, H1 and G

is generated by P1 and P2.
Now define two mappings from P1 and P2 to SL2(2) the group of 2 by 2

matrices with entries in F2 and with determinant 1:

ϕ1 : P1 −→ SL2(2) ϕ1(xi) 7→
(
di ei
fi gi

)
;

and

ϕ2 : P2 −→ SL2(2) ϕ2(yi) 7→
(
ai bi
di ei

)
.

Now ϕ1(xi) and ϕ2(yi) are members of SL2(2) because:

det(xi) = ai · det(ϕ1(xi)),

and
det(yi) = gi · det(ϕ2(yi)),

and because xi and yi are members of GL3(2) we must have the determinants
of ϕ1(xi) and ϕ2(yi) non-zero and so (because we are working over F2) they
must be equal to 1. The mappings are clearly onto and they have kernels:

ker(ϕ1) =


 1 b c

0 1 0
0 0 1

 | b, c ∈ F2

 ∼= C2 × C2;
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and

ker(ϕ2) =


 1 0 c

0 1 f
0 0 1

 | b, c ∈ F2

 ∼= C2 × C2.

Now ker(ϕi) has a complement in Pi that acts faithfully on ker(ϕi) and
so

P1
∼= S4

∼= P2,

and our example satisfies H.
Now we calculate T , the intersection of P1 and P2. Elements of T are of

the form  a b c
0 d e
0 0 f

 .

However, T is a subgroup of GL3(2) and so elements must have non-zero
determinant, and therefore a, d and f are all non-zero, and so are equal to
1. We therefore have

T :=


 1 a b

0 1 c
0 0 1

 | a, b, c ∈ F2

 ,

and as the order of GL3(2) is 168 (= 23 · 3 · 7) and the order of T is 8 (= 23)
T is a Sylow 2-subgroup of any subgroup of GL3(2) which contains T . So T
is a Sylow 2-subgroup of P1 and P2 as required. The other conditions in G
are easy to see and so we need only now see that G is generated by P1 and
P2.

We see this by first noting

|P1P2| =
|P1||P2|
|T |

=
|S4|2

8
= 72,

and then consider

|G : 〈P1, P2〉| ≤
|G|
|P1P2|

=
168
72

< 3.

As the order of G is not divisible by 16 (which would be needed if the index
of 〈P1, P2〉 in G were 2) we have G = 〈P1, P2〉. Therefore GL3(2), P1 and
P2 satisfy G and H1.
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4.7.2 Worked Example Satisfying G and H2

To see H2 we consider the case G = S6, the symmetric group of degree 6.
Let

a := (12) and b := (12)(34)(56).

Now consider the centralizers of these elements:

P1 := CG(a) and P2 := CG(b),

and consider an element of P1. Then under conjugation of x the set {1, 2}
must be invariant. This is equivalent to the set {3, 4, 5, 6} being invariant
under conjugation by x. Therefore the elements of P1 are of the form (12)ic
where i = 0, 1 and c is an element of the symmetric group on the elements
3, 4, 5 and 6 (denoted Σ{3,4,5,6}). Therefore

P1 = 〈a〉 × Σ{3,4,5,6} ∼= C2 × S4,

and we get
O2(P1) = 〈a〉 × 〈(34)(56)〉 × 〈(35)(46)〉.

We also get that
T := O2(P1)〈(34)〉,

is a Sylow 2-subgroup of P1.
Now considering P2 we see that for x an element of G and defining

Ω := {(12), (34), (56)} ,

we get that x is an element of P2 if and only if

Ωx = Ω,

and hence P2 acts on Ω. The kernel of this action is clearly

N := 〈(12)〉 × 〈(34)〉 × 〈(56)〉,

and we get
P2/N ∼= ΣΩ

∼= S3,

and so we see that N is in fact equal to O2(P2). We therefore have

T = N〈(35)(46)〉,

and this is a Sylow 2-subgroup of P2.
We have P1 and P2 non-equal and as

|P1 : T | = 3 = |P2 : T |,

we get that, as required,
T = P1 ∩ P2.
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4: The Amalgam Method

We therefore have this example satisfying all of G and H and we have
only to check that G is generated by P1 and P2.

As in the previous example we look at the index of 〈P1, P2〉 in G,

|G : 〈P1, P2〉| ≤
|G|
|P1P2|

=
6!

3 · 48
= 5

and because P1 is not contained in A6 we see that in fact G is equal to
〈P1, P2〉 and so S6, P1 and P2 satisfy both G and H2.
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Chapter 5

Generalizations and
Applications to Identifying
Groups

The idea of an amalgam can be extended to the idea of a general amalgam
over a connected partially ordered set. The definitions in this section are
from [4, Chapters 28, 29].

5.1 Generalized Amalgams

Definition 5.1. Let D be a set with a partial order ≤D. Then D is con-
sidered a connected partial order if and only if for any two elements a and
b of D there is a finite sequence x0, x1, . . . , xn with x0 and xn equal to a
and b respectively and, for all i, xi and xi+1 are comparable.

We can now define an amalgam based on a connected partially ordered
set.

Definition 5.2. Let D be a connected partially ordered set. An amalgam
D (based on D) is a collection {Xa}a∈D of groups along with a collection
of group homomorphisms {δab}a,b∈D

a≤b
with

δab : Xa −→ Xb

which satisfy the following two conditions:

• For all elements a, b and c in D with a ≤ b ≤ c the composition δbc◦δab
equals δac, so Figure 5.1 commutes; and

• For all elements a in D we have δaa equal to the identity function on
Xa.
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Xb

Xa Xc

@
@R

δbc

�
��δab

-
δac

Figure 5.1: Commutative Diagram for a D-amalgam

We can denote D as D = {Xa, δab} or D = {Xa}.

We can think of the amalgam as towers of groups based on equivalence
classes of elements that can be compared. Unfortunately, because we are
considering a connected partially ordered set rather than a totally ordered
set the picture cannot be easily visualized. If we have a totally ordered set
the picture is clearer with a tower of subgroups arranged by order with every
subgroup connected to every subgroup ‘above’ it in the tower.

Just as with our previous notion of an amalgam we can also complete a
general amalgam:

Definition 5.3. Let D be an amalgam defined on a connected partially
ordered set D, groups Xa and group homomorphisms δab. A completion
of D is a group H with a collection of homomorphisms

ηa : Xa −→ H

for all a in D which satisfy:

• ηa = ηb ◦ δab for all a ≤ b; so Figure 5.2 commutes; and

• H = 〈ηa(Xa) | a ∈ D〉.

We now define the general amalgam of a group X.

H

Xa Xb

�
��

ηa

-
δab

@
@I

ηb

Figure 5.2: Completion rule for a general amalgam
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Definition 5.4. Let X be a group, D a connected partially ordered set and
{Xa}a∈D a family of subgroups of X indexed by elements of D. Let the Xa

satisfy:

• X is generated by {Xa}a∈D, that is

X = 〈Xa | a ∈ D〉; and

• Xa ≤ Xb whenever a ≤ b.

Let ab : Xa → Xb for a ≤ b be the inclusion map. Then D = {Xa, ab}
is called an X-amalgam.

5.2 Comparing Completions and Universal Com-
pletions

We can compare completions by defining morphisms between completions:

Definition 5.5. Let {H, ηa} and {H̃, η̃a} be two completions of an amalgam
D. A morphism of completions from {H, ηa} to {H̃, η̃a} is a homomor-
phism

Ψ : H −→ H̃,

such that for every element a in D we have

η̃a = Ψ ◦ ηa.

We can define epimorphisms, monomorphisms and isomorphisms of com-
pletions by considering if Ψ has the appropriate properties as a group ho-
momorphism. We now prove that any morphism of completions is actually
an epimorphism.

Lemma 5.6. Let Ψ be a morphism of completions from H to H̃. Then Ψ
is surjective and H̃ is contained in Ψ(H).

Proof. Let h̃ be an element of H̃ that is not in Ψ(H). As H̃ is a completion
of an amalgam it is generated by the images of Xa under η̃a for all a in D.
Let

h̃ = η̃a1(xa1)η̃a2(xa2) · · · η̃an(xan),

where each xai is an element of Xai . Then as Ψ is a morphism of completions
we can replace each η̃ai by Ψ ◦ ηai and so we have

h̃ = (Ψ ◦ ηa1(xa1))(Ψ ◦ ηa2(xa2)) · · · (Ψ ◦ ηan(xan)).

However, because Ψ and the ηai are homomorphisms we get

h̃ = Ψ ◦ [ηa1(xa1)ηa2(xa2) · · · ηan(xan)].

44



5: Generalizations and Applications

But since {H, ηa} is a completion, each element ηai(xai) is a member of H
and so

h̃ = Ψ(h)

where h is a member of H. This contradicts the assumption that h̃ was not
in the image of H under Ψ. The second results follows from considering the
images of each ηai(Xai) under Ψ, which generate H̃.

The idea of morphisms of completions leads to a very important concept
in amalgam theory - that of a completion being universal.

Definition 5.7. Let {H, ηa} be a completion of an amalgam D. We say
that {H, ηa} is universal if and only if for any given completion {H̃, η̃a}
there is a unique morphism of completions from {H, ηa} to {H̃, η̃a}.

Proposition 5.8 ( [4, 28.2]). Let D be an amalgam. Then D has a universal
completion and it is unique up to isomorphism of completions.

Proof. We create the universal completion by creating the quotient of a free
product. Let D = {Xa, δab} be an amalgam and let F be the free product of
all the Xi. Let K be the normal subgroup of F generated by the elements

x−1δab(x),

with x ranging over Xa and a and b ranging over all of D with a ≤ b. Let
H be the quotient F/K with the obvious mappings of Xi into H. It is clear
that H is a universal completion and the definition of a universal completion
along with Lemma 5.6 gives uniqueness.

Definition 5.9. Let D be an amalgam. We denote the universal com-
pletion by {gp〈D〉, ξD,a} where gp〈D〉 is the group defined in 5.8 and

ξD,a : Xa −→ gp〈D〉,

the homomorphsims.

5.3 Defining Amalgams

We make one more definition relating to types of amalgams.

Definition 5.10. Let D be an X-amalgam. We call D a defining X-
amalgam if and only if the injections of Xi into X form a universal com-
pletion of D.

We prove a preliminary lemma.
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Lemma 5.11 ( [4, 28.4]). Let X be a group and let D be an X-amalgam
over a connected partially ordered set D. Let X̂a and x̂ be the images of Xa

and x in gp〈D〉 under ξD,a. Then

(a) There is a unique homomorphism θD,X from gp〈D〉 into X mapping x̂
to X for every x in Xa for all a in D. This θD,X is surjective and is
a morphism of completions.

(b) The mapping ξD,a into the universal completion is an isomorphism
of Xa with X̂a for all a in D. Moreover, the X̂a for a in D form a
gp〈D〉-amalgam D̂ which is isomorphic to D.

Proof. We have part (a) following immediately from the definition of the
universal completion.

For part (b) we construct the injections θD,X ◦ ξD,a which inject Xa into
X and the result follows.

We now provide equivalent definitions of a defining amalgam.

Lemma 5.12 ( [4, 28.5]). Let D be an X-amalgam. The following conditions
are all equivalent:

(a) The mapping θD,X defined in 5.11 is an isomorphism;

(b) D is a defining X-amalgam, that is, the injections of Xa into X form
a universal completion of D; and

(c) If X̂ is a completion of D then any morphism X̂ → X of completions
is an isomorphism.

Proof. Since the maps θD,X are from Xa into the universal completion gp〈D〉
we immediately have that (a) implies (b).

Now let (b) hold and let X̂ be a completion of D. Then, because X is a
universal completion of D (by (b)), we have a map

ϕ : X −→ X̂.

Now let ψ be a morphism of completions from X̂ to X as in (c). Then we
can construct the morphism of completions

ψ ◦ ϕ : X −→ X.

However X is a universal completion so by definition there is only one
morphism of completions from X to X, that is the identity map and so ϕ
must be injective. By Lemma 5.6 we have that ϕ is surjective and so it is
an isomorphism and (b) implies (c).

Finally, θD,X is a morphism of completions and so (c) directly applies.
Therefore (c) implies (a) and the equivalence is proved.
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5.4 The Coset Geometry and Coset Complex

We can now define the general amalgam analogue of the coset graph, the
coset geometry, and the topological idea of the coset complex.

Definition 5.13. We have for any X-amalgam D = {Xa, δab} based on a
connected partially ordered set D a coset geometry

Γ = Γ(D, X) = Γ(D).

This consists of vertices that are cosets of the Xa’s in X. Two vertices, Xag
and Xbh are connected by an edge if and only if a < b and Xag ⊆ Xbh or
b < a and Xbh ⊆ Xag.

We say that a vertex is of type a if it is of the form Xag for some g in
X.

Definition 5.14. Let D be an X-amalgam and define the coset complex
to be the simplicial complex whose vertices are the vertices of Γ(D, X) and
whose simplices are the flags of Γ(D, X) (a flag is a subset in which any two
objects are incident). We denote the coset complex by

C = C(D, X) = C(D)

We have the following lemma that is important in the use of the coset
complex and coset geometry. They are similar results as to those already
proven regarding the coset graph.

Lemma 5.15 ( [4, 28.8]). Let D be an X-amalgam based on a connected
partially ordered set D. Then we have the following statements holding:

(a) Γ(D, X) is a connected graph;

(b) X acts by right translation on Γ(D) and C(D, X) transitively on objects
of a given type. For every element x in X, right translation by x pre-
serves incidence in Γ(D, X) and preserves simplices in C(D, X) (that
is, sends incident vertices to incident vertices and sends simplices to
simplices);

(c) The stabilizer of a vertex in Γ(D, X) of type a is conjugate to Xa and
the kernel of the action of X on both Γ(D, X) and C(D, X) is the
intersection of all conjugates of all Xa for a in D.

Proof. Both (b) and (c) follow immediately from the definitions of Γ(D, X)
and C(D, X).

We see (a) by noting that the connectedness of objects in Γ(D, X) is an
equivalence relation preserved by the action of X on Γ(D, X). Now pick a in
D and let Γ0 be the connected component of the coset geometry containing
the vertex Xa. Then Γ0 is preserved under the action of the stabilizer of
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Xa, which is equal to Xa. As D is connected, every trivial coset Xb, for b in
D is connected to Xa and so is contained in Γ0. Then the stabilizer of Γ0

contains the group generated by all the Xa, which is equal to X. However,
X is transitive on objects of a given type and so Γ0 = Γ, and hence (a)
holds.

We now give a few definitions pertaining to the coset complex.

Definition 5.16. Let C and Ĉ be simplicial complexes. We say a simplicial
mapping (one preserving simplices),

χ : Ĉ −→ C,

is a local isomorphism if for every vertex x̂ in Ĉ and its image χ(x̂) in C,
χ induces an isomorphism of simplicial complexes between the stars of these
vertices, st bC(x̂) and stC (χ(x̂)) (a star of a vertex x is a subcomplex of the
simplical complex composed of all simplices of which x is a vertex).

Definition 5.17. Let C and Ĉ be simplicial complexes. We say a simplicial
mapping (one preserving simplices)

χ : Ĉ −→ C

is a covering if and only if it is surjective on the mapping of vertices and
it is a local isomorphism.

We now define an important property of simplicial complexes.

Definition 5.18. Let C be a simplical complex. Then we say that C is
simply connected if and only if it is connected (in a simplical sense) and
whenever Ĉ is another connected simplical complex and χ is a covering from
Ĉ to C then χ is an isomorphism.

5.5 Applying General Amalgams to Identifying Sim-
ple Groups

In this section we look at ways general amalgams can be used to identify
groups, and in particular simple groups. We use the following key result.

Theorem 5.19 ( [4, 29.1]). Suppose we have the following conditions:

• G is a group and D = {Xa} is an G-amalgam;

• Ĝ is a group and D̂ = {X̂a} is a defining Ĝ-amalgam; and
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• D and D̂ are based on the same connected partially ordered set D and
there exists a surjective morphism ϕ of amalgams from D̂ onto D.

Then there exists a surjective homomorphism from Ĝ to G.

Proof. By the definition of a morphism of amalgams the morphism ϕ consists
of surjective group homomorphisms ϕa from X̂a to Xa with a in D. These
ϕa make G a completion of D̂ and so, because Ĝ is a universal completion
of D̂, there exists another homomorphism χ from Ĝ to G such that for all a
in D

χ| bXa = ϕa.

We therefore have the image of X̂ under χ containing Xa for every a
in D and, as these generate G, we must have χ an onto homomorphism, as
required.

5.5.1 Revisiting Defining Amalgams

As Theorem 5.19 relies heavily on the fact that one of the amalgams is a
defining amalgam we now look at two ways of determining if an amalgam is
a defining X-amalgam. First we consider the coset complex, and link being
a defining amalgam with the property of a simplical complex being simply
connected. Secondly we look at the connected partially ordered set D and
prove two results relating to amalgams defined on a superset of D.

Theorem 5.20 ( [4, 29.2]). Let D = {Xa} be an X-amalgam over a con-
nected partially ordered set D. If the coset complex C(D, X) is simply con-
nected, then D is a defining X-amalgam.

Proof. Let X̂ = gp〈D〉, as defined in Definition 5.9, let X̂a be the image of
Xa in X̂ for each a in D and let D̂ be the X̂-amalgam comprising of the X̂a.

Let θ = θD,X be the homomorphism defined in Lemma 5.11 from X̂ to
X which is surjective. We aim to show that θ is in fact an isomorphism,
and hence, from Lemma 5.21 we see that D is in fact a defining X-amalgam.
From Lemma 5.11 we see that for each a in D, the restriction

θ| bXa : X̂a −→ Xa,

is an isomorphism and so θ sends cosets of X̂a to cosets of Xi for all i in
D and so induces a mapping which sends vertices of Ĉ(D̂, X̂) to vertices of
C(D, X). Let this mapping be denoted by Θ. It is clear that Θ preserves
simplices and is surjective on vertices of Ĉ. Finally, as we know that θ is a
group homomorphism, it is clear that Θ preserves the action of elements of
X̂ on Ĉ by right translation and the corresponding action of elements of X
on C.
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We now show that Θ is a covering in the aim of using Definition 5.18 to
prove that Θ is an isomorphism and show this implies so is θ.

Because Θ preserves the action of the groups on the corresponding coset
complex it is enough to check that Θ is a local isomorphism on one vertex
in each X̂-orbit so we simplify matters by considering only the vertices X̂a.

Now let Xbx be a vertex in C not equal to Xa. This vertex lies in the
star of Xa if and only if either

(i) a < b and Xbx = Xb; or

(ii) a > b and x ∈ Xa.

These conditions translate immediately for Ĉ and so Θ is a covering due to
the fact θ| bXa is an isomorphism for all i in D.

Now we know from Lemma 5.15 that because C and Ĉ are coset complexes
they are connected and by assumption C is simply connected and so Θ is an
isomorphism. We now need to see simply that θ is injective to prove that D
is defining.

Let x̂ be any element in the kernel of θ. We aim to show that x̂ is in fact
the identity. As x̂ is in the kernel of θ its image, θ(x̂) must act trivially on
C. However, Θ is an isomorphism which preserves the action of the groups
on the coset complexes and so x̂ must act trivially on Ĉ too. Then for any
a in D we must have x̂ being a member of the subgroup X̂a and because we
know each θ| bXa is an isomorphism we get that x̂ is the identity. Hence θ is
an isomorphism and D is indeed a defining X-amalgam.

When paired with Theorem 5.19 this theorem provides a way of compar-
ing groups by considering coset complexes which may be easier to analyze,
particularly if the groups are of large order but the cosets are more manage-
able.

We now consider how a superset of the connected partially ordered set
D is related to the amalgam D.

Theorem 5.21 ( [4, 29.4]). Let D be a connected partially ordered subset of
the connected partially ordered set E and let X be a group with D = {Xa}
an X-amalgam defined on D. Now for each b in E \D define the following
set, group and amalgam:

Db := {a ∈ D | a ≤ b};
Xb := 〈Xa | a ∈ Db〉; and
Db := {Xa | a ∈ Db}.

Now assume the following conditions hold:

(i) For every b in E\D, Db is connected and Db is a defining Xb-amalgam;
and
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(ii) Letting D∗ := {Xb | b ∈ E}, then D∗ is a defining X-amalgam.

Then D is a defining X-amalgam.

Proof. Let X̂ be gp〈D〉, θ the map θD,X defined in Lemma 5.11 and X̂a the
image of Xa for all a in D.

For all b in E \D let

X̂b = 〈X̂a | a ∈ Db〉,

a subgroup of X̂. Then we can use assumption (i) to see that for every b in
E \D, θ|cXb is an isomorphism to Xb.

Now we have proven in Lemma 5.11 (ii) that the same is true for elements
of D and so the inverses of the isomorphisms θ|cXb for b in E make X̂ a
completion of D∗. By assumption (ii) θ is an isomorphisms and so D is a
defining X-amalgam as required.

Corollary 5.22 ( [4, 29.5]). Let E = {Xa, εab} be an X-amalgam based on
a connected partially ordered set E and let D be a connected subset of E.
Let D be the amalgam comprising of Xa and εab for all a and b in D. Then
if D is a defining Xamalgam so is E.

Proof. This proof emulates the proof of Theorem 5.21.

The above results are used to identify defining amalgams. Then Theorem
5.19 with additional assumptions and specialized techniques can be used to
pin down the groups the amalgams are based on.
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Chapter 6

Conclusion

We now summarize the findings of this dissertation.

• An amalgam is a very natural way of thinking of a group ‘sitting inside’
two other groups and there is a logical idea of completing an amalgam.
The idea of an amalagam can be seen to have a practical application in
the identification of finite simple groups by considering the normalizer
of a Sylow 2-subgroup ‘sitting inside’ two maximal 2-local subgroups
and by using techniques such as the amalgam method to identify the
groups involved in the structure.

• The coset graph Γ is a way of visualizing the structure of a group G
by considering how cosets of two subgroups, P1 and P2, interact inside
G. As we have seen this is always bipartite and there is an action of
G on its vertices and edges.

• The coset graph is inextricably linked to amalgams and their structure
- group-theoretic properties of G, P1 and P2 are linked with graph-
theoretic properties of Γ - with one of the most noteworthy results
being that Γ is connected if and only if G is generated by P1 and P2

(Theorem 3.6).

• The amalgam method relies on this link to analyze the coset graph and
deduce the structure of a group given a list of assumptions G. This is
done by considering critical pairs: pairs of adjacent vertices satisfying
a property equivalent to the desired conclusion.

• Both amalgams and the coset graph can be generalized leading to the
idea of a defining amalgam and coset complex. A defining amalgam,
in some way, defines the group on which it is based and this is linked
to whether the simplicial coset complex is simply connected. We can
extend the amalgam method in order to analyze simplicial complexes
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and thus deduce further structure of groups. This would be a very in-
teresting research area and has been used to clear up some recognition
issues in the proof of the classification of finite simple groups.
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Appendix A

Schur–Zassenhaus

For self containment, we include a proof of the Schur–Zassenhaus Theorem
4.4, as given in [7, 6.2.1].

A.1 Preliminaries

We first prove Dedekind’s rule, the Frattini Argument and Gaschütz’s The-
orem (the Schur–Zassenhaus Theorem for K an Abelian subgroup of G).

Theorem A.1 (Dedekind’s Rule [1, 2.14]). For A,B,C ≤ G and B ≤ A
we have

A ∩ (BC) = B(A ∩ C)

Proof. Let bg be in B(A ∩ C) with b in B and g in A ∩ C. As g is in C we
have bg in BC and as B ≤ A we also have bg in A so B(A∩C) ⊆ A∩ (BC).

Now let a be in A ∩ BC so a = bc for some b ∈ B and c ∈ C. Then
b−1a = c is in A and in C as B ≤ A so a is in B(A ∩ C) and so

A ∩ (BC) ⊆ B(A ∩ C).

The result follows.

Theorem A.2 (Frattini Argument [7, 3.1.4, 3.2.7]). Let N be a normal
subgroup of G and P a Sylow p-subgroup of N . Then

G = NG(P )N.

Proof. G acts on the set Ω = Sylp(N) by conjugation, and the stabilizer of
P is NG(P ). We also have, from Sylow’s Theorems that N acts transitively
on Ω.

Now let g be an element of G. The transitivity of N on Ω produces an
element h in N such that

P g = P h.
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However, then we have
P gh

−1
= P

and so gh−1 is in the stabilizer of P , NG(P ). We therefore have g begin in
NG(P )g which is a subset of NG(P )N and so G = NG(P )N .

Theorem A.3 (Gaschütz [7, 3.3.1]). Let K be an Abelian normal subgroup
of G such that (|K|, |G : K|) = 1. Then K has a complement in G and all
complements of K are conjugate in G.

Proof. First we define a relation on S, the transversal of K in G. Let R and
S be elements of S and define

R|S :=
∏

(r,s)∈R×S
Kr=Ks

(rs−1) (∈ K).

We define the relation by

R ∼ S ⇐⇒ R|S = 1.

This is an equivalence relation on S and let us denote by R̃ the equivalence
class which contains R.

Now
xR|xS =

∏
(r,s)∈R×S
Kxr=Kxs

x(rs−1)x−1 = x(R|S)x−1,

and so if R ∼ S we also have xR ∼ xS. We can therefore define an action
of G on s/ ∼ by

S̃x := x̃−1S.

Now let α be the automorphism of K sending l to l|G/K| and let

k := (R|S)−α
−1
,

then R̃k = S̃ and so K acts transitively on S/ ∼. We also have

R|S = 1 = kR|S =⇒ k = 1

and so the stabilizer of R̃ in K is trivial and we can apply a generalized
version of Theorem A.2 to see that

G eR = {x ∈ G | xR|R = 1},

is a complement of K in G and existence is proven.
Now let X be a complement of K in G and so for all x ∈ X we have

xX = X and xX|X = 1. We therefore have X = G eX and, as K acts
transitively and (G eX)l = G eXl , we see all complements are conjugate.
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A.2 Proof

We are now in a position to prove the main theorem.

Theorem A.4 (Schur–Zassenhaus [7, 6.2.1]). Let G be a group and K a
normal subgroup of G such that (|K|, |G/K|) = 1. Then K has a complement
in G. If in addition K or G/K is soluble, then all such such complements
are conjugate in G.

Proof. Let U be a subgroup of G and N normal in G. Then we have

UK/K ∼= U/U ∩K and (G/N)/(KN/N) ∼= G/KN.

Therefore U ∩K is a normal subgroup of U with

(|U ∩K|, |U/U ∩K|) = 1,

and KN/N is a normal subgroup of G/N with

(|KN/N |, |G/KN |) = 1,

and so our hypothesis is inherited through taking subgroups and quotients
of G. If we also have K or G/K soluble then this property is also inherited.

We now induct on the order of G to prove existence of the complement.
We can therefore assume all groups of order less than G which satisfy the
hypothesis have the necessary complement. We can also assume that 1 6=
K < G.

Now let p be a prime dividing the order of K and let P be a Sylow
p-subgroup of K. denote

U := NG(P ),

and first assume that U is not equal to G. Then by induction U ∩K has a
complement in U . Theorem A.2 give us that

G = KU = K(U ∩K)H = KH.

We therefore have H another complement of K in G since H ∩K is equal
to H ∩ (U ∩K) which is equal to 1.

Now assume that U = G. Then P and also

N := Z(P ), (6= 1)

is a normal subgroup of G. Let G := G/N , then by induction there exists
N ≤ V ≤ G such that V is a complement of K in G. However, then

V ∩K = N and G = KV

and so a complement of N in V is in fact also a complement of K in G. Now
if V is not equal to G then by induction such a complement exists. If V is
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equal to G then K is trivial and so K is Abelian and we can apply Theorem
A.3 to obtain the desired complement.

Now let K or G/K be soluble and we induct on the order of G to prove
that all complements are conjugate. Let H1 and H2 be two complements of
K in G and let N be a minimal normal subgroup of G that is contained in
K. Once again set G := G/N and so H1 and H2 are complements of K in
G. By induction there exists a g in G such that

H1N = (H2N)g = H2
gN,

and so H1 and H2
g are complements of N in H1N . If N 6= K then H1N 6= G

and so by induction H1 and H2
g are conjugate in H1N and so H1 and H2

are conjugate in G.
Now assume that N = K. If K is soluble then N is a soluble minimal

normal subgroup and so must be Abelian (in fact, Elementary Abelian) and
so H1 and H2 are conjugate by Theorem A.3.

Finally, assume K is not soluble, so G is soluble. Then there must be a
normal subgroup A in G with K ≤ A E G and G/A a nontrival p-group.
By Dedekind’s rule A.1 shows that H1 ∩A and H2 ∩A are complements of
K in A and so by induction they are conjugate in A.

We therefore have (after conjugation)

H1 ∩A = H2 ∩A := D E 〈H1, H2〉.

Now since H1/D ∼= G/A ∼= H2/D there must exist Sylow p-subgroups P1 of
H1 and P2 of H2 with

Hi = DPi.

Also, because (|K|, |H|) = 1 we see that P1 and P2 are Sylow p-subgroups
of NG(D) and so by Sylow’s Theorems there must exist g in NG(D) with
P g2 = P1 and so

H2
g = DgP2

g = DP1 = H1,

and the theorem is proved.
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Appendix B

Coprime Action on G

We now give some results that facilitate proofs concerning Qα and Zα.

Lemma B.1 ( [7, 8.2.1, 8.2.2(a), 8.2.7]). Suppose A acts coprimely on G.
Let N be an A-invariant subgroup of G with the action of A on N also
coprime. Let g be in G and be such that (Ng)A = Ng. Then there exists c
in CG(A) such that

Ng = Nc.

It follows that
CG/N (A) = CG(A)N/N.

It also follows that
G = [G,A]CG(A).

Proof. As NA = N and (Ng)A = Ng we must have gag−1 in N for all a in
A.

In the semidirect product AG we get a−1gag−1 in N and

Ag
−1 ≤ AN.

Hence A and Ag
−1

are complements of N in AN and, using the fact A is
acting coprimely on G along with 4.4, they are conjugate in AN .

Thus there exists an h in N such that Ah = Ag
−1

. For c := hg this gives

c ∈ NAG(A) ∩Ng,

and [A, c] ≤ A ∩G = 1.
The second result follows immediately and the final result follows with

N := [G,A].

Corollary B.2 ( [7, 8.2.2(b)]). Let N be an A-invariant normal subgroup
of G. Suppose that the action of A on N is coprime. Then if A acts trivially
on N and G/N , then A acts trivially on G.
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Proof. This follows as a consequence of Lemma B.1 where we see that

CG/N (A) = CG(A)N/N.

Lemma B.3 ( [7, 8.4.2]). Let the action of a group A on a group G be
coprime. Then

G = CG(A)× [G,A]

Proof. By Lemma B.1 we need only show that the intersection CG(A) ∩
[G,A] = 1. To do this we consider the following endomorphism

ϕ : G −→ G g 7−→
∏
x∈A

gx.

Now consider a commutator g = [h, a] in [G,A]. We have

ϕ(g) = ϕ(ha)ϕ(h−1) =

(∏
x∈A

hax

)(∏
x∈A

h−x

)
= 1,

so [G,A] ≤ ker(ϕ).
Conversely, for g in CG(A) we get

ϕ(g) = g|A|

and
g|A| = 1⇐⇒ g = 1,

since (|A|, |G|) = 1 hence g = 1 for g in CG(A) ∩ [G,A].
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