Closing the circle
Overview

1. Encode configurations of TM’s.
2. Encode TM’s themselves.
3. Define a primitive recursive function

$$conf(m, x, t)$$

that yields the configuration reached by the TM with code m on input x after time t.

4. Use $conf(m, x, t)$ to define the recursive function computed by the TM.
To encode the tape, we use

- a **left number**, which results from interpreting the tape left of the scanned square as a binary numeral, prefixed by infinitely many superfluous 0’s;

- a **right number**, which results from interpreting the rest of the tape, consisting of the scanned square and the portion to its right, as a binary numeral **written backwards**.
For the sake of presentation, suppose that the TM takes only one argument, x.

Then the initial tape has one block of $x + 1$ strokes and is otherwise blank, and the leftmost stroke is scanned.

So the left number is 0, and the right number is

$$2^0 + 2^1 + 2^2 + \cdots + 2^{x-1} + 2^x = 2^{x+1} - 1.$$

We define a primitive recursive function

$$start(x) = 2^{x+1} - 1.$$
Computing the scanned symbol

Let r be the right number. The scanned symbol is

- 0 if the binary representation of r ends with 0, i.e. if r is even.
- 1 if the binary representation of r ends with 1, i.e. if r is odd.

So the scanned symbol is the remainder of dividing r by 2:

$$\text{scan}(r) = \text{rem}(r, 2).$$

As seen earlier, rem is primitive recursive; so the same is true for scan.
Writing a 0

Suppose the action is W_0.

- The left number remains the same.
- If the scanned square already contains 0, the right number remains the same; otherwise, it is decreased by 1.
- Letting p be the left number and r the right number, we have

$$newleft_0(p, r) = p$$
$$newright_0(p, r) = r - \text{scan}(r).$$
Writing a 1

In a similar way, we get a primitive recursive functions for writing a 1:

$$newleft_1(p, r) = p$$

$$newright_1(p, r) = r + 1 - \text{scan}(r).$$
Moving left: new left number

Let p be the pre-move left number, and let p^* be the post-move left number.

The binary representation of p^* is obtained by chopping of the last 0 or 1.

This means that p^* is p divided by 2 (and rounded down), so p^* is given by

$$newleft_L(p, r) = quo(p, 2).$$
Moving left: new right number

- Let r be the pre-move right number, and let r^* be the post-move right number.
- Let p_0 be the symbol to the left of the scanned square.
- The binary representation of r^* is obtained from the one for r by appending p_0, so
 \[r^* = 2r + p_0. \]
- We have $p_0 = \text{rem}(p, 2)$; so r^* is given by
 \[\text{newright}_L(p, r) = 2r + \text{rem}(p, 2). \]
Moving right

By reversing the rôles of p and r, we get the functions for moving right:

\[
newleft_R(p, r) = 2p + \text{rem}(r, 2)
\]
\[
newright_R(p, r) = \text{quo}(r, 2).
\]
Before we proceed, we encode the actions as follows:

<table>
<thead>
<tr>
<th>action</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_0</td>
<td>0</td>
</tr>
<tr>
<td>W_1</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
</tr>
</tbody>
</table>
The action as an extra argument

We can now define new versions of \textit{newleft} and \textit{newright} that take the action as an extra argument:

\[
\text{newleft}(p, r, a) = \begin{cases}
 p & \text{if } a = 0 \text{ or } a = 1 \\
 \text{quo}(p, 2) & \text{if } a = 2 \\
 2p + \text{rem}(r, 2) & \text{if } a = 3
\end{cases}
\]

This is a \textbf{definition by cases}, so \textit{newleft} is primitive recursive. Similarly for \textit{newright}.

Encoding configurations

- A configuration consists of a tape and a state.
- So a configuration can be represented as a triple \((p, q, r)\), where is \(p\) and \(r\) are left and right numbers, and \(q\) is a state.
- We can use the primitive recursive encoding
 \[c = \text{triple}(p, q, r) = 2^p \cdot 3^q \cdot 5^r \]
 and its primitive recursive decodings
 \[
 \begin{align*}
 \text{left} &= \text{lo}(c, 2) \\
 \text{state} &= \text{lo}(c, 3) \\
 \text{right} &= \text{lo}(c, 5).
 \end{align*}
 \]
Extracting the final value

- Suppose that the TM halts in a standard final configuration \(c = \text{triple}(p, q, r) \).

- If the result is \(y \), then there is a single block with \(y + 1 \) strokes, which are the binary representation of \(r \); so

\[
 r = 2^{y+1} - 1.
\]

- So \(y = \text{lo}(r + 1, 2) - 1 \), i.e. \(y \) is given by the primitive recursive function

\[
 \text{value}(c) = \text{lo}(\text{right}(c) + 1, 2) - 1.
\]
In a standard final configuration $c = \text{triple}(p, q, r)$, we have $p = 0$, and the previous slide implies that

$$\exists y < r. r = 2^{y+1} - 1.$$

So c represents a s.f.c. iff the relation $\text{is}_\text{std}(c)$ is defined as

$$\text{is}_\text{std}(c) \iff \text{left}(c) = 0 \text{ and } \exists y < \text{right}(c). \text{right}(c) = 2^{y+1} - 1$$

holds. Because the \exists is bounded, this relation is primitive recursive.
Encoding TM’s

We have seen an encoding of TM’s before; now we use an improved version. Recall that a TM can be presented by a transition table, e.g.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>W_1q_1</td>
<td>Lq_2</td>
</tr>
<tr>
<td>q_2</td>
<td>W_1q_2</td>
<td>Lq_3</td>
</tr>
<tr>
<td>q_3</td>
<td>W_1q_3</td>
<td></td>
</tr>
</tbody>
</table>

We use the convention that q_1 is the starting state.
Encoding TM’s

By introducing a halting state q_0, we can assume that the transition table is defined everywhere. E.g. the table from the previous slide becomes

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>$W_0 q_0$</td>
<td>$W_1 q_0$</td>
</tr>
<tr>
<td>q_1</td>
<td>$W_1 q_1$</td>
<td>$L q_2$</td>
</tr>
<tr>
<td>q_2</td>
<td>$W_1 q_2$</td>
<td>$L q_3$</td>
</tr>
<tr>
<td>q_3</td>
<td>$W_1 q_3$</td>
<td>$W_1 q_0$</td>
</tr>
</tbody>
</table>

The table can be written as a list, e.g. $(W_0, q_0, W_1, q_0, W_1, q_1, L, q_2, W_1, q_2, L, q_3, W_1, q_3, W_1, q_0)$.
Encoding TM’s

The entries of the list can be represented by natural numbers, e.g.

\[(W_0, q_0, W_1, q_0, W_1, q_1, L, q_2, W_1, q_2, L, q_3, W_1, q_3, W_1, q_0)\]

becomes

\[(0, 0, 1, 0, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 1, 0).\]

This list can be encoded into a natural number \(m\) which is the code of the TM, e.g.

\[2^0 \cdot 3^0 \cdot 5^1 \cdot 7^0 \cdot 11^1 \cdot 13^1 \cdot 17^2 \ldots .\]
Using the encoding

\[(W_0, q_0, W_1, q_0, W_1, q_1, L, q_2, W_1, q_2, L, q_3, W_1, q_3, W_1, q_0)(0, 0, 1, 0, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 1, 0)\]

- The action when scanning symbol \(i\) in state \(q\) is given by entry number \(4q + 2i\).
- The next state is given by entry number \(4q + 2i + 1\).
- We have primitive recursive functions

\[\begin{align*}
\text{action}(m, q, r) &= \text{entry}(m, 4q + 2 \cdot \text{scan}(r)) \\
\text{newstate}(m, q, r) &= \text{entry}(m, 4q + 2 \cdot \text{scan}(r) + 1).
\end{align*}\]
Next, we define a primitive recursive function \(\text{conf}(m, x, t) \) that returns the configuration reached by TM with code \(m \) on input \(x \) after \(t \) steps.

- After 0 steps we have

\[
\text{conf}(m, x, 0) = \text{triple}(0, 1, \text{start}(x)).
\]

- We define

\[
\text{conf}(m, x, t + 1) = \text{newconf}(m, \text{conf}(m, x, t)).
\]
Defining $\text{newconf}(m, c)$

1. Apply left, state, and right to c to obtain the left number p, the number q of the state, and the right number r.

2. Apply action and newstate to (m, q, r) to obtain the number a of the action, and the number q^* of the new state.

3. Let $\text{newconf}(m, c) =$
 \[\text{triple}(\text{newleft}(p, r, a), q^*, \text{newright}(p, r, a)) \].

We used only composition, so newconf is primitive recursive.
Halting in standard configuration

The TM is halted when \(\text{state}(\text{conf}(m, x, t)) = 0 \).

So, letting

\[
\text{stdh}(m, x, t) = \begin{cases}
0 & \text{if } \text{state}(\text{conf}(m, x, t)) = 0 \\
\text{and } \text{is_std}(\text{conf}(m, x, t)) & \\
1 & \text{otherwise,}
\end{cases}
\]

the machine is halted in a standard configuration iff \(\text{stdh}(m, x, t) = 0 \).

This is a definition by cases, so the function \(\text{stdh} \) is primitive recursive.
The time of halting

The time (if any) when the machine halts in a standard configuration is

\[
\text{halt}(m, x) = \begin{cases}
\text{the least } t & \text{if such a } t \\
\text{such that} & \text{exists} \\
\text{stdh}(m, x, t) = 0 \\
\text{undefined} & \text{otherwise.}
\end{cases}
\]

The function \textit{halt} is recursive, because it is defined by minimization over a (primitive) recursive function (\textit{stdh}).
Putting it all together

Let $F(m, x) = \text{value}(\text{conf}(m, x, \text{halt}(m, x)))$.

$F(m, x)$ is the value of the function computed by the TM with code m for argument x.

F is recursive, because it is defined by composition from recursive functions.

Let $f(x) = F(m, x)$.

f is the function computed by the TM with code m, and f is recursive.
So we have proved:

Theorem. Every Turing-computable function is recursive.

This closes the circle.