Recursive functions
Part 1: primitive recursion

Recursive functions and computability

- **Recursive functions** are another class of effectively-computable functions.
- Unlike for Turing machines and abacus machines, the description of recursive functions is **inductive**: certain basic functions are recursive, and functions build from recursive functions in a certain way are also recursive.

Church’s thesis

- **Church’s thesis**: “Every effectively-computable function is recursive.”
- Analogous to Turing’s thesis.

Computability: the big picture

- Later, we show that recursive functions can simulate TMs, and abacus machines can simulate recursive functions.
- Because TMs can simulate abacus machines, we get a cycle of simulations.
- So all three kinds of computable functions are the same.
- In particular, Church’s thesis and Turing’s thesis are equivalent.
Roadmap

- First, we introduce the primitive recursive functions.
- Then we introduce the recursive function by adding a construct called minimization.
- Intuitively, primitive recursive functions can do only FOR loops and always terminate, whereas minimization corresponds to a WHILE loop that may not terminate.

Motivation for primitive recursion

The two “rewriting rules”

\[x^0 = 1 \] \hspace{1cm} (1)
\[x^{y+1} = x \cdot x^y \] \hspace{1cm} (2)

are enough to define the \(\text{exp} \) function.

Motivation for primitive recursion

Consider the function \(\exp(x, y) = x^y \):

\[
\begin{align*}
x^0 &= 1 \\
x^1 &= x \\
x^2 &= x \cdot x \\
&\vdots \\
x^y &= x \cdot x \cdots \cdot x \quad (y \text{ occurrences of } x) \\
x^{y+1} &= x \cdot x \cdots \cdot x \quad (y + 1 \text{ occurrences of } x) \\
&= x \cdot x^y
\end{align*}
\]

Motivation for primitive recursion

The rules for \(\exp \) reduce exponentiation to multiplication; now consider

\[
\begin{align*}
x \cdot 0 &= 0 \quad \text{(1)} \\
x \cdot (y + 1) &= x + x \cdot y \quad \text{(2)}
\end{align*}
\]

So the rules for \(\cdot \) reduce multiplication to addition.
Motivation for primitive recursion

Now consider

\[x + 0 = x \] (1)
\[x + (y + 1) = 1 + (x + y) \] (2)

So the rules for + reduce addition to adding 1.

Building blocks for prim. rec. functions

On the next slides, we introduce the building blocks for primitive recursive functions. There will be

- three classes of basic functions: successor, zero, and projections, and
- two ways of building new primitive recursive functions from old: composition and primitive recursion.

Motivation for primitive recursion

- Primitive recursion is in the spirit of our “computation by rewriting” definitions of \(\exp \), \(\cdot \), and +.
- It consists of one rule for \(y = 0 \) and one rule for \(y > 0 \).
- \(y \) acts as a “countdown” for the number of remaining steps in the computation.

The successor function

- The function that takes \(x \) to \(x + 1 \) can be taken apart no further.
- Therefore, it will be a basic building block for primitive recursive functions.
- We denote it by \(s \) (for “successor”).
The zero function

- The zero is used in every computation and will therefore be a basic building block for primitive recursive functions.
- For technical reasons, we shall use the zero function

\[z : \begin{cases} N & \rightarrow N \\ z(x) & = 0 \end{cases} \]

Composition

If \(g_1, g_2, \ldots, g_m \) are functions \(N^k \rightarrow N \), and \(f \) is a function \(N^m \rightarrow N \), then the function \(h : N^k \rightarrow N \) given by

\[h(x_1, \ldots, x_k) = f(g_1(x_1, \ldots, x_k), \ldots, g_m(x_1, \ldots, x_k)) \]

is said to arise by composition from \(f, g_1, \ldots, g_k \).
We write

\[h = Cn[f, g_1, \ldots, g_m]. \]

The projections

- A projection function is of the form:

\[p_i^k : \begin{cases} N^k & \rightarrow N \\ p(x_1, x_2, \ldots, x_k) & = x_i \end{cases} \]

- Called so because it goes from \(k \)-dimensional “space” into one-dimensional “space”.
- Projections occur in almost every computation and will therefore be basic building blocks for primitive recursive functions.

Composition: example

Consider

\[h(x_1, x_2, x_3) = f(g(x_1, x_2, x_3)) \]

where \(f = s \) and \(g = p_3^2 \). Thus \(h \) returns the successor of the second argument. Formally:

\[h = Cn[f, g] = Cn[s, p_3^2]. \]
Composition:

Constant functions. Consider

\[h(x) = f(g(x)) \]

where \(f = s \) and \(g = z \).

Thus \(h \) is the constant function that returns 1. Formally: \(h = Cn[f, g] = Cn[s, z] \). We have

- \(z \) the constant 0 function
- \(Cn[s, z] \) the constant 1 function
- \(Cn[s, Cn[s, z]] \) the constant 2 function

\[\vdots \]

Primitive recursion

If \(f : N^k \to N \) and \(g : N^{k+2} \to N \), then the function \(h : N^{k+1} \to N \) is said to be defined by **primitive recursion** from \(f \) and \(g \) if

\[
\begin{align*}
 h(\bar{x}, 0) &= f(\bar{x}) \\
 h(\bar{x}, s(y)) &= g(\bar{x}, y, h(\bar{x}, y))
\end{align*}
\]

where \(\bar{x} \) stands for \(x_1, \ldots, x_k \). We write

\[h = Pr[f, g] \]

Sum

\[
\begin{align*}
 \text{sum}(x, 0) &= x \\
 \text{sum}(x, s(y)) &= s(\text{sum}(x, y))
\end{align*}
\]

So

\[
\begin{align*}
 f(x) &= x = p_1^1(x) \\
 g(x, y, u) &= s(u) = Cn[s, p_3^3]
\end{align*}
\]

Thus

\[\text{sum} = Pr[f, g] = Pr[p_1^1, Cn[s, p_3^3]] \]

Multiplication

Multiplication can be defined as follows:

\[\text{prod} = Pr[z, Cn[\text{sum}, p_1^3, p_3^3]] \]
Definition of primitive recursive functions

Definition. The class of primitive recursive functions is defined as follows:

- The zero function \(z \), the successor function \(s \), and all projection functions \(p^k_i \) are primitive recursive.
- Functions which arise by composition \(C_n \) or primitive recursion \(Pr \) from primitive recursive functions are also primitive recursive.

Exercise

The predecessor function \(\text{pred} \) takes one argument \(y \) and returns \(y - 1 \) if \(y \) is greater than 0, and returns 0 otherwise. Show that \(\text{pred} \) is primitive recursive by using (not necessarily all of) \(s, z, p^k_i, C_n, \) and \(Pr \).

Exercise

Show that the factorial function is primitive recursive.

Exercise

We have seen that there are encodings of pairs of natural numbers, i.e. that there are total injections \(c : N \times N \to N \); show for one such encoding \(c \) that it is primitive recursive.
Next, we will show that every primitive recursive function is computable by an abacus machine (and therefore also by a Turing machine).

Abacus program for the zero function

Decrease the content of R_1 until it contains zero:

0: if $[1]=0$ then
 {goto 99}
else
 {1-;goto 0}

Abacus program for the successor

Increase R_1:

0: 1+; goto 99

Abacus program for the projection p^k_i

- If $i = 1$, the program needs to do nothing, because the result is already in R_1.

 0: goto 99

- For $i \neq 1$, the program makes R_1 zero and then empties R_i into R_1:

 0: if $[1]=0$ then {goto 1} else {1-;goto 0}
 1: if $[i]=0$ then {goto 99} else {i-;goto 2}
 2: 1+; goto 1
Suppose that h is defined by composition from f, g_1, g_2 as follows:

$$h(x_1, x_2, x_3) = f(g_1(x_1, x_2, x_3), g_2(x_1, x_2, x_3)).$$

The next slide contains an abacus program for h, where x_1, x_2, x_3 and aux are register that must not be used by $f, g_1,$ or g_2.

We build the result of h in a register z, while y acts as a “countdown”. Example for $y = 2$:

<table>
<thead>
<tr>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$h(x, 0) = f(x)$</td>
</tr>
<tr>
<td>1</td>
<td>$h(x, 1) = g(x, 0, f(x))$</td>
</tr>
<tr>
<td>0</td>
<td>$h(x, 2) = g(x, 1, g(x, 0, f(x)))$</td>
</tr>
</tbody>
</table>

We use a register i for the increasing counter. On the next slide, x, y, z, i are registers that must not be used by f and g.

[Abacus program for composition]

1. $\rightarrow x_1$; // save R1
2. $\rightarrow x_2$; // save R2
3. $\rightarrow x_3$; // save R3
Program for g_1;
1. \rightarrow aux; // save result of g_1
[x1] $\rightarrow 1$; // restore R1
[x2] $\rightarrow 2$; // restore R2
[x3] $\rightarrow 3$; // restore R3
Program for g_2;
1. $\rightarrow 2$; // move result of g_2 to R2
[aux] $\rightarrow 1$; // restore result of g_1 to R1
Program for f
Summary of primitive recursion

Definition of primitive recursive functions

Definition. The class of primitive recursive functions is defined as follows:

- The zero function \(z \), the successor function \(s \), and all projection functions \(p_i^k \) are primitive recursive.

- Functions which arise by composition \(C_n \) or primitive recursion \(Pr \) from primitive recursive functions are also primitive recursive.

Primitive recursion

If \(f : \mathbb{N}^k \rightarrow \mathbb{N} \) and \(g : \mathbb{N}^{k+2} \rightarrow \mathbb{N} \), then the function \(h : \mathbb{N}^{k+1} \rightarrow \mathbb{N} \) is said to be defined by primitive recursion from \(f \) and \(g \) if

\[
\begin{align*}
h(\bar{x}, 0) &= f(\bar{x}) \\
h(\bar{x}, s(y)) &= g(\bar{x}, y, h(\bar{x}, y))
\end{align*}
\]

where \(\bar{x} \) stands for \(x_1, \ldots, x_k \). We write

\[h = \text{Pr}[f, g] \]

Abacus program for composition

Suppose that \(h \) is defined by composition from \(f, g_1, g_2 \) as follows:

\[h(x_1, x_2, x_3) = f(g_1(x_1, x_2, x_3), g_2(x_1, x_2, x_3)). \]

The next slide contains an abacus program for \(h \), where \(x_1, x_2, x_3 \) and \(\text{aux} \) are register that must not be used by \(f, g_1, \) or \(g_2 \).
Abacus program for composition

1. -> x1; // save R1
2. -> x2; // save R2
3. -> x3; // save R3

Program for g1;
1. -> aux; // save result of g1
[x1] -> 1; // restore R1
[x2] -> 2; // restore R2
[x3] -> 3; // restore R3

Program for g2;
1. -> 2; // move result of g2 to R2
[aux] -> 1; // restore result of g1 to R1

Program for f

We build the result of \(h \) in a register \(z \), while \(y \) acts as a “countdown”. Example for \(y = 2 \):

<table>
<thead>
<tr>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(h(x, 0) = f(x))</td>
</tr>
<tr>
<td>1</td>
<td>(h(x, 1) = g(x, 0, f(x)))</td>
</tr>
<tr>
<td>0</td>
<td>(h(x, 2) = g(x, 1, g(x, 0, f(x))))</td>
</tr>
</tbody>
</table>

We use a register \(i \) for the increasing counter.

Abacus program for

\[h = \Pr(f, g) \]

On the next slide, \(x, y, z, i \) are registers that must not be used by \(f \) or \(g \), and \(y_0 \) stands for the initial value of Register 2.

\[h = \Pr(f, g) \]

1. -> x;
2. -> y;

Program for f;
1. -> z;
0 -> i; // now z = h(x, i) and i+y = y_0
A: if \(y \)=0 then { goto C } else { y-; goto B }
B: [x] -> 1;
[i] -> 2;
[z] -> 3;
Program for g;
1. -> z;
i+; // now again z = h(x, i) and i+y = y_0
goto A;
C: [z] -> 1; // return z
The Ackermann function is defined as follows:

\[
A(0, y) = y + 1 \quad (1)
\]
\[
A(x + 1, 0) = A(x, 1) \quad (2)
\]
\[
A(x + 1, y + 1) = A(x, A(x + 1, y)) \quad (3)
\]

Compute \(A(2, 1) \):

\[
A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1))
\]
\[
= A(1, A(0, A(1, 0))) = A(1, A(0, A(0, 1)))
\]
\[
= A(1, A(0, 2)) = A(1, 3) = A(0, A(1, 2))
\]
\[
= A(0, A(0, A(1, 1))) = A(0, A(0, A(0, 1)))
\]
\[
= A(0, A(0, A(0, A(0, 1)))) = A(0, A(0, A(0, 2)))
\]
\[
= A(0, A(0, 3)) = A(0, 4) = 5
\]

Define the lexicographical order on \(\mathbb{N} \times \mathbb{N} \) as follows:

\((x, y) > (x', y') \) if \(x > x' \) or \(x = x' \) and \(y > y' \).

The clauses (2) and (3) lead to lexicographically smaller arguments; this cannot go on forever, so \(A \) must finally halt.

We define a configuration to be an expression of the form

\[
A(x_1, A(x_2, \ldots (A(x_{n-1}, x_n))))
\]

Here is an algorithm for computing \(A(x, y) \):

While there is an \(A(\ldots, \ldots) \) left {

Apply the suitable rule (1, 2, or 3) to the innermost \(A \) }
Ackermann is not primitive recursive

- If $h(x, y)$ is defined by primitive recursion, then y operates as a “countdown”.
- By contrast, the totality of the Ackermann function is shown with the lexicographical ordering on pairs.
- Fact: $A(y, y)$ gets greater than any primitive recursive function $h(y)$ for sufficiently great y.
- So in particular, A is not primitive recursive.

Towards general recursion

- As we have seen, the Ackermann function is not primitive recursive.
- Some other computable functions are not primitive recursive simply because they are not total.
- In both cases, the algorithms can be written in the form “WHILE some condition holds, DO X”.
- Technically, instead of WHILE loops we add a construct called minimization which does something equivalent.

Definition of minimization

The minimization of a function $f : N^{k+1} \rightarrow N$ is defined as follows:

$$M_n[f](x_1, \ldots, x_k) = \begin{cases} y & \text{if } f(x_1, \ldots, x_k, y) = 0 \\
& \text{and for all } i < y, \\
& f(x_1, \ldots, x_k, i) \neq 0 \\
\bot & \text{otherwise} \end{cases}$$

Algorithm for $M_n[f]$

The algorithm for $M_n[f]$ (presented in pseudocode) goes as follows:

```pseudocode
y = 0;
while(not(f(x, y) = 0)) {
    y = y+1;
}
return y;
```

This can fail to halt for two reasons: either because $f(x, i)$ fails to halt for some i, or because $f(x, i) \neq 0$ for all i.
Definition of recursive functions

Definition. The class of recursive functions is defined as follows:

- The functions s and z are recursive, and so are all projections p^k_i.
- Functions built from recursive ones by using composition C_n or primitive recursion P_r are also recursive.
- Functions built from recursive ones by minimization M_n are also recursive.

Exercise

Let f be a two-argument recursive function. Show that the following functions are also recursive:

1. $g(x, y) = f(y, x)$;
2. $h(x) = f(x, x)$;
3. $k_{17}(x) = f(17, x)$, and $k^{17}_1(x) = f(x, 17)$.

Exercise

Give a reasonable way of assigning code numbers to recursive functions.

Exercise

Given a reasonable way of coding recursive functions by natural numbers, let $d(x) = 1$ if the one-argument function with the code number x is defined and has value 0 for argument x, and $d(x) = 0$ otherwise. Show that this function is not recursive.
Exercise

Let \(h(x, y) = 1 \) if the one-argument recursive function with code number \(x \) is defined for argument \(y \), and \(h(x, y) = 0 \) otherwise. Show that this function is not recursive.

Rec. functions are abacus-computable

- Evidently, every primitive recursive function is recursive.
- We have seen earlier that all primitive recursive functions are abacus-computable.
- We have also seen that minimization is abacus-computable.
- Therefore, all recursive functions are abacus-computable.

Abacus program for \(Mn[f] \)

Registers \(x \) and \(y \) must not be used by the program for \(f \).

\[
\begin{align*}
[1] & \to x; \\
0 & \to y; \\
A: & x \to 1; \\
& y \to 2; \\
& \text{program for } f; \\
& \text{if } [1]=0 \text{ then } \{ \text{goto C} \} \text{ else } \{ \text{goto B} \}; \\
B: & y++; \ \text{goto A}; \\
C: & [y] \to 1;
\end{align*}
\]

Recursive functions: a reminder
Primitive recursion, informally

To define a function $h(x, z)$ by primitive recursion, we need to describe what happens
- in the case where $z = 0$, and
- in the case where z is of the form $y + 1$ for some y, using the value of $h(x, y)$.

Example: multiplication

Below we have a primitive recursive definition of multiplication, in terms of $+$.

\[
\begin{align*}
x \cdot 0 &= 0 \\
x \cdot (y + 1) &= x \cdot y + x
\end{align*}
\]

Note that this looks almost like a realistic computer program. An even more realistic version might look like

\[
mult(x, y) = \\
\quad \text{if } (y = 0) \text{ then } 0 \text{ else } mult(x, y - 1) + x.
\]

Definition of primitive recursive functions

Definition. The class of primitive recursive functions is defined as follows:

- The zero function z, the successor function s, and all projection functions p_{k}^{i} are primitive recursive.
- Functions which arise by composition C_{n} or primitive recursion Pr from primitive recursive functions are also primitive recursive.
Towards general recursion

- Some functions (e.g. the Ackermann function) are not primitive recursive.
- Informally, this is because primitive recursive functions do not allow while-loops, i.e. constructs of the form “WHILE some condition holds, DO X”.
- Formally, instead of WHILE loops, we add a construct called minimization.

Definition of minimization

The minimization of a function \(f : N^{k+1} \to N \) is defined as follows (where \(x \) stands for \(x_1, \ldots, x_k \)):

\[
\text{Mn}[f](x) = \begin{cases}
 y & \text{if } f(x, y) = 0 \text{ and for all } i < y, \ f(x, i) \text{ is defined and } \neq 0 \\
 \perp & \text{otherwise}
\end{cases}
\]

Algorithm for \(\text{Mn}[f](x) \)

The algorithm for \(\text{Mn}[f](x) \) looks as follows:

\[
y = 0; \\
\text{while(}\neg(f(x, y) = 0)) \{ \\
 y = y+1; \\
\}\text{ return } y;
\]

This can fail to halt for two reasons: either because \(f(x, i) \) fails to halt for some \(i \), or because \(f(x, i) \neq 0 \) for all \(i \).

Definition of recursive functions

Definition. The class of recursive functions is defined as follows:

- The functions \(s \) and \(z \) are recursive, and so are all projections \(p^k_i \).
- Functions built from recursive ones by using composition \(C_n \) or primitive recursion \(P_r \) are also recursive.
- Functions built from recursive ones by minimization \(\text{Mn} \) are also recursive.