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Prolog = programming in logic


Main advantages 


�    ease of representing knowledge 


�    natural support of non-determinism 


�    natural support of pattern-matching 


�    natural support of meta-programming


Other advantages 


�    meaning of programs is independent of how they are executed 


�    simple connection between programs and computed answers 

and specifications 


�    no need to distinguish programs from databases


Prolog = Programming in Logic 



3 

Topics covered


•  Preliminary concepts


•  Terms; Deterministic evaluations; Input-output non-determinism


•  Non-deterministic evaluation; Influencing efficiency; Unification


•  List processing; Type checking; Comparing terms; Arithmetic 


•  Disjunction; Negation; Generation and Test Aggregation


•  Controlling search      


•  Meta-programming




4 

CONCEPT 1 - procedure definitions


Programs consist of procedure definitions 


A procedure is a resource for evaluating something 


EXAMPLE     


a  :-  b, c. 


This is read procedurally as a procedure for evaluating a by 

evaluating both b and c 


Here “evaluating” something means determining whether


 or not it is true according to the program as a whole
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The procedure 


                               a  :-  b, c. 


can be written in logic as a   


                              a ← b ∧ c


and then read declaratively as 


        a is true   if  b is true  and  c is true
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CONCEPT 2 - procedure calls


Execution involves evaluating calls, and begins with an


initial query 


EXAMPLES 


        ?- a, d, e. 


        ?- likes(chris, X). 


        ?- flight(gatwick, Z), in_poland(Z), flight(Z, beijing). 


The queries are asking whether the calls in them are 


true according to the given procedures in the program
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Prolog evaluates the calls in a query sequentially, 


in the left-to-right order, as written 


?- a, d, e.                         evaluate a, then d, then e 


Convention: terms beginning with an upper-case 


letter or an underscore are treated as variables 


?- likes(chris, X).                  here, X is a variable 


Queries and procedures both belong to the class of 


logic sentences known as clauses
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CONCEPT 3 - computations


•  A computation is a chain of derived queries, starting with the 

initial query 


•  Prolog selects the first call in the current query and seeks a 

program clause whose head matches the call 


•  If there is such a clause, the call is replaced by the clause body, 

giving the next derived query 


•  This is just applying the standard notion of procedure-calling in 

any formalism
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EXAMPLE 


?- a, d, e.                            initial query 


a :- b, c.                              program clause with 


                                           head a and body b, c 


Starting with the initial query, the first call in it matches 


the head of the clause shown, so the derived query is 


?- b, c, d, e. 


Execution then treats the derived query in the same way
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CONCEPT 4 - successful computations


A computation succeeds if it derives the empty query


EXAMPLE 


?- likes(bob, prolog).           query 


likes(bob, prolog).               program clause 


The call matches the head and is replaced by the clauseʼs


(empty) body, and so the derived query is empty.


So the query has succeeded, i.e. has been solved
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CONCEPT 5 - finite failure


A computation fails finitely  if the call selected from the 


query does not match the head of any clause 


EXAMPLE 


?- likes(bob, haskell).                    query 


This fails finitely if there is no program clause whose 


head matches likes(bob, haskell).
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EXAMPLE 


?- likes(chris, haskell).            query 


likes(chris, haskell) :- nice(haskell). 


If there is no clause head matching nice(haskell) then


 the computation will fail after the first step
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CONCEPT 6 - infinite failure


A computation fails infinitely if every query in it is followed by a non-


empty query 


EXAMPLE 


                             ?- a.                          query 


                             a :- a, b.                    clause 


This gives the infinite computation 


                                   ?- a. 


                                   ?- a, b. 


                                   ?- a, b, b.  


                                     …..


This may be useful for driving some perpetual process
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CONCEPT 7 - multiple answers


A query may produce many computations 


Those, if any, that succeed may yield multiple answers to the query 


(not necessarily distinct)


EXAMPLE     


?- happy(chris), likes(chris, bob).   


happy(chris).   


likes(chris, bob) :- likes(bob, prolog).   


likes(chris, bob) :- likes(bob, chris).   


<…etc…>
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We then have a search tree in which each branch is a separate 

computation:
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CONCEPT 8 - answers as consequences


A successful computation confirms that the conjunction in the initial 


query is a logical consequence of the program. 


EXAMPLE     


                               ?- a, d, e. 


If this succeeds from a program P then the computed answer is 


                                a ∧ d ∧ e 


and we have  


                           P  |=  a ∧ d ∧ e


Conversely:  if the program P does not offer any successful


 computation from the query, then the query conjunction is not a


 consequence of P
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CONCEPT 9 - variable arguments


Variables in queries are treated as existentially quantified


 EXAMPLE 


                 ?- likes(X, prolog).     


says  “is  (∃X) likes(X, prolog)   true?” 


or “find X for which likes(X, prolog) is true”


Variables in program clauses are treated as universally quantified 


EXAMPLE 


              likes(chris, X) :- likes(X, prolog). 


expresses the sentence (∀X) ( likes(chris, X) ← likes(X, prolog) )
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CONCEPT 10 - generalized matching (unification)


Matching a call to a clause head requires them to be 


either        already identical 


or              able to be made identical, if necessary by instantiating


                 (binding) their variables (unification)


EXAMPLE 


              ?- likes(U, chris). 


              likes(bob, Y) :- understands(bob, Y). 


Here, likes(U, chris) and likes(bob, Y) can be made identical (unify)


 by binding   U / bob  and  Y / chris 


The derived query is 


             ?- understands(bob, chris).
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Prolog Terms


•  Terms are the items that can appear as the arguments of 

predicates 


•  They can be viewed as the basic data manipulated during 

execution 


•  They may exist statically in the given code of the program and 

initial query, or they may come into existence dynamically by the 

process of unification


•  Terms containing no variables are said to be ground 


•  Prolog can process both ground and non-ground data 


•  A Prolog program can do useful things with a data structure even 

when that structure is partially unknown
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SIMPLE  TERMS 


     numbers         


                           3   5.6   -10   -6.31 


     atoms         


                         apple   tom   x2   'Hello there'  [ ] 


     variables         


                          X   Y31   Chris   Left_Subtree   Person   _35   _
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COMPOUND  TERMS 


prefix terms 


                  mother(chris) 


                  tree(e, 3, tree(e, 5, e))                     i.e.


                  tree(T, N, tree(e, 5, e))       a binary tree whose root 


                                                             and left subtrees are unknown




22 

list terms  


            [ ]     [ 3, 5 ]     [ 5, X, 9 ] 


           lists form a subclass of binary trees 


A vertical bar can be used as a separator to present a list in the form


                          [ itemized-members | residual-list ]


    [ X, 3 | Y ] 


   [ 3 | [ 5, 7 ] ]                                                                                                           


   [ 3, 5, 7 ]            


   [ 3, 5 | [ 7 ] ]                                                      




23 

tuple terms     


(bob, chris)    (1, 2, 3)   ((U, V), (X, Y))


                                      (e, 3, (e, 5, e))


These are preferable (efficiency-wise) when working with fixed-length


 data structures 


arithmetic terms 


3*X+5     sin(X+Y) / (cos(X)+cos(Y)) 


Although these have an arithmetical syntax, they are interpreted 


arithmetically only by a specific set of calls, presented later on.  
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DETERMINISTIC  EVALUATIONS


•  Prolog is non-deterministic in general because the evaluation of a


     query may generate multiple computations 


•  If only ONE computation is generated (whether it succeeds or fails), 
the evaluation is said to be deterministic 


•  The search tree then consists of a single branch
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EXAMPLE 


                                 all_bs([ ]). 


                                 all_bs([ b | T ])  :-  all_bs(T). 


This program defines a list in which every member is b 


Now consider the query 


                                ?- all_bs([ b, b, b ]). 


This will generate a deterministic evaluation


                                ?- all_bs([ b, b, b ]). 


                                ?- all_bs([ b, b ]). 


                                ?- all_bs([ b ]). 


                                ?- all_bs([ ]). 


                                ?- . 


So here the search tree comprises ONE branch (computation), which


happens to succeed
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EXAMPLE 


Prolog supplies the list-concatenation primitive append(X, Y, Z) but if it


 did not then we could define our own: 


                                             app([ ], Z, Z). 


                                             app([ U | X ], Y, [ U | Z ]) :- app(X, Y, Z). 


Now consider the query      ?- app([ a, b ], [ c, d ], L).


The call matches the head of the second program clause by making


 the bindings U / a   X / [ b ]   Y / [ c, d ]   L / [ a | Z ] 


So, we replace the call by the body of the clause, then apply the


 bindings just made to produce the derived query: 


                                            ?- app([ b ], [ c, d ], Z).


Another similar step binds Z / [ b | Z2 ] and gives the next derived query


                                           ?- app( [ ], [ c, d ], Z2). 


This succeeds by matching the first clause, and binds Z2 / [ c, d ] 


The computed answer is therefore L / [ a, b, c, d ]
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In the previous example, in each step, the call matched no more than


one program clause-head, and so again the evaluation was deterministic 


Note that, in general, each step in a computation produces bindings 


which are either propagated to the query variables or are kept on one


side in case they contribute to the final answer 


In the example, the final output binding is L / [ a, b, c, d ]


The bindings kept on one side form the so-called binding environment 


of the computation 


The mode of the query in the previous example was 


                                 ?- app(input, input, output). 


where the first two arguments were wholly-known input, whilst the third


argument was wholly-unknown output 


However, we can pose queries with any mix of argument modes we wish
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So there is a second way in which Prolog is non-deterministic: 


a program does not determine 


the mode of the queries posed to it


EXAMPLE 


Using the same program we can pose a query having the mode  


?- app(input, input, input). such as 


                         ?- app([ a, b ], [ c, d ], [ a, b, c, d ]). 


This gives just one computation, which succeeds, but returns no


 output bindings.


Take a query having mode ?- app(output, mixed, mixed).  such as 


                            ?- app(X, [ b | L ], [ a, E, c, d ]).


This succeeds deterministically to give the output bindings 


X / [ a ], L / [ c, d ], E / b
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This second kind of non-determinism is called input-output 


non-determinism, and distinguishes Prolog from most other


programming formalisms 


With a single Prolog program, we may pose  an infinite variety of


queries, but with other formalisms we have to change the program


whenever we want to solve a new kind of problem 


This does not mean that a single Prolog program deals with all


queries with equal efficiency 


Often, in the interest of efficiency alone, we may well change a


Prolog program to deal with a new species of query
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SUMMARY 


�  given a program, we can pose any queries we like, whatever 

their modes 


�  some queries will generate just one computation,  whereas 

others will generate many 


�  multiple successful computations may or may not  yield distinct 

answers 


�  every answer is a logical consequence of the program
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NON-DETERMINISTIC EVALUATIONS


A Prolog evaluation is non-deterministic (contains more than one


computation) when some call unifies with several clause-heads


 When this is so, the search tree will have several branches


EXAMPLE                                        


               a :- b, c.   (two clause-heads unify with a)


               a :- f.        


               b.             (two clause-heads unify with b)


               b :- g.       


               c.


               d.


               e.


               f.


A query from which calls to a or b are selected must therefore give


several computations




32 

choice 


points
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•  Presented with several computations, Prolog generates them one at a 

time 


•  Whichever computation it is currently generating, Prolog remains 

totally committed to it until it either succeeds or fails finitely 


•  This strategy is called depth-first search 


•  It is an unfair strategy, in that it is not guaranteed to generate all 
computations, unless they are all finite


•  When a computation terminates, Prolog backtracks  to the most 

recent choice-point offering untried branches 


•  The evaluation as a whole terminates only when no such choice-

points remain 


•  The order in which branches are tried corresponds to the text-order of 

the associated clauses in the program 


•  This is called Prologʼs search rule: 


              it prioritizes the branches in the search tree
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EFFICIENCY

The efficiency with which Prolog solves a problem depends upon


     �    the way knowledge is represented in the program     


     �    the ordering of calls


EXAMPLE 


Change the earlier query and program to 


       ?- d, e, a.             different call-order 


            a :- c, b.          different call-order 


            a :- f. 


            b. 


            b :- g. 


            c. 


            d. 


            e. 


            f.
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This evaluation 

has only 8 steps, 

whereas the  

previous one had 

10 steps 
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The policy for selecting the next call to be processed is called the


computation rule and has a major influence upon efficiency 


So remember ... 


•  a computation rule decides which call to select next from the 

query


•  a search rule decides which program clause to apply to the 

selected call


and in Prolog these two rules are, respectively, 


     “choose the first call in the current query”


     “choose the first applicable untried program clause”
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UNIFICATION


•  This is the process by which Prolog decides that a call can use 

a program clause 


•  The call has to be unified with the head 


•  Two predicates are unifiable if and only if they have a common 

instance


EXAMPLE     


      ?- likes(Y, chris).          likes(bob, X) :- likes(X, logic). 


Let θ be the binding set  { Y / bob, X / chris } 


If E is any logical formula then Eθ denotes the result of applying θ 


to E, so obtaining an instance of E     


              likes(Y, chris)θ = likes(bob, chris)     


              likes(bob, X)θ = likes(bob, chris) 


As the two instances are identical, we say that θ is a unifier for the


original predicates
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THE GENERAL COMPUTATION STEP


      current query             ?- P(args1), others. 


      program clause          P(args2) :- body. 


If θ exists such that     P(args1)θ  = P(args2)θ  


then this clause can be used by this call to produce 


       derived query             ?- bodyθ, othersθ. 


Otherwise, this clause cannot be used by this call
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EXAMPLE              


             ?- app(X, X, [ a, b, a, b ]). 


Along the successful computation we have          


O1 = { X   / [ a | X1 ] }               these are the          


O2 = { X1 / [ b | X2 ] }               output bindings          


O3 = { X2 / [ ] }                         in the unifiers 


whose composition is  { X / [ a, b ],  X1 / [ b ],  X2 / [ ] } 


The answer substitution is then { X / [ a, b ] } 


and applying this to the initial query gives the answer       


             app([ a, b ], [ a, b ], [ a, b, a, b ])
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LIST PROCESSING


Lists are the most commonly-used structures in Prolog, 


and relations on them usually require recursive programs 


EXAMPLE 


To define a palindrome: 


palin([ ]). 


palin([U | Tail]) :-append(M, [U], Tail), 


                           palin(M). 


                                                 Tail

M U U 
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More abstractly: 


        palin([ ]). 


        palin(L) :-first(L, U), last(L, U), 


                        middle(L, M), palin(M). 


        first([U | _], U). 


        last([U], U). 


        last([_ | Tail], U) :- last(Tail, U). 


        middle([ ], [ ]). 


        middle([_], [ ]). 


        middle([_ | Tail], M) :- append(M, [_], Tail).
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EXAMPLE 


To reverse a list: 


         reverse([ ], [ ]). 


         reverse([U | X], R) :- reverse(X, Y),


                                         append(Y, [U], R). 


U 

U 

X 

Y 

reverse X to get Y

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•  Note that the program just seen is not tail-recursive 


•  If we try to force it to be so, by reordering the calls thus: 


          reverse([U | X], R) :- append(Y, [U], R), 


                                           reverse(X, Y). 


       then the evaluation is likely to go infinite for some modes.


•  However, the following is tail-recursive: 


        reverse(L, R) :- rev(L, [ ], R). 


        rev([ ], R, R). 


        rev([U | Tail], A, R) :- rev(Tail, [U | A], R).


•  With this program, the time taken to reverse a given list is 
proportional to the length of that list, and the runtime 
environment


•  It does not generate a stack of pending calls
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BUILT-IN LIST PRIMITIVES


Prolog contains its own library of list programs, such as: 


append(X, Y, Z)              appending Y onto X gives Z 


reverse(X, Y)                  reverse of X is Y 


length(X, N)                    length of X is N 


member(U, X)                 U is in X 


non_member(U, X)         U is not in X 


sort(X, Y)                        sorting X gives Y 


To access these in Sicstus, include in your file       


?- use_module(library(lists)).
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TYPE-CHECKING


To check argument types you can make use of the following, which


 are supplied as primitives: 


atom(X)            X is an atom 


number(X)        X is a number 


integer(X)         X is an integer 


var(X)               X is (an unbound) variable 


nonvar(X)         X is not a variable 


compound(X)   X is a compound term
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With these primitives you can then define further type-checking


procedures 


EXAMPLES


To test whether a term is a list: 


is_list(X) :- atom(X), X=[ ]. 


is_list(X) :- compound(X), X=[_ | _]. 


To test whether a term is a binary tree: 


bintree(X) :- atom(X), X=e. 


bintree(X) :- compound(X), X=t(L, _, R), 


                     bintree(L), bintree(R).
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COMPARING TERMS


Prolog has many primitives for comparing terms, including: 


X = Y            X unifies with Y 


                    e.g. X=a succeeds, binding X / a  


X == Y         X and Y are identical       


                     e.g. [ a, b ] == [ a, b ] succeeds, but 


                            [ a, b ] == [ a, X ] fails 


X \== Y        X and Y are not identical 


                    e.g. [ a, b ] \== [ a, X ] succeeds, without binding X
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ARITHMETIC


Arithmetic expressions use the standard operators such as 


+    -     *     /           (besides others) 


Operands are simple terms or arithmetic expressions 


EXAMPLE 


( 7 + 89 * sin(Y+1) ) /  ( cos(X) + 2.43 ) 


Arithmetic expressions must be ground at the instant Prolog is 


required to evaluate them


REMARK: Different Prolog systems may allow for more/less liberal grammars to compare expressions
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COMPARING ARITHMETIC EXPRESSIONS


E1 =:= E2    tests whether the values of E1 and E2 are equal 


E1 =\= E2    tests whether their values of E1 and E2 are unequal 


E1 < E2       tests whether the value of E1 is less than 


                    the value of E2 


Likewise we have 


> for greater 


>=  for greater or equal 


=<  for equal or less


EXAMPLES 


         ?- X=3, (2+2) =:= (X+1).            succeeds 


         ?- (2+2) =:= (X+1), X=3.            gives an error 


         ?- (2+2) > X.                              gives an error
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The value of an arithmetic expression E may be computed and


 assigned to a variable X by the call 


                                   X  is  E 


EXAMPLES 


          ?- X  is  (2+2).         succeeds and binds X / 4 


          ?- 4  is  (2+2).          gives an error 


          ?- X  is  (Y+2).         gives an error


In SWI it succeeds! 
SWI grammar permits a
more general test
 
           E1 is E2
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                           Do not confuse is with =


X=Y means “X can be unified with Y” and is rarely needed 


EXAMPLES 


?- X = (2+2).         succeeds and binds X / (2+2) 


?- 4 = (2+2).         does not give an error, but fails 


?- X = (Y+2).        succeeds and binds X / (Y+2) 


The ”is” predicate is used only for the very specific purpose 


variable  is  arithmetic-expression-to-be-evaluated




52 

EXAMPLE 


Summing a list of numbers: 


       sumlist([ ], 0). 


       sumlist([ N | Ns], Total) :- sumlist(Ns, Sumtail), 


                                                Total  is  N+Sumtail. 


This is not tail-recursive - the query length will expand in proportion


 to the length of the input list
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Typical non-tail-recursive execution: 


     ?- sumlist([ 2, 5, 8 ], T). 


     ?- sumlist([ 5, 8 ]), T is 2+T1. 


     ?- sumlist([ 8 ], T2), T1 is 5+T2, T is 2+T1. 


     ?- sumlist([ ], T3), T2 is 8+T3, T1 is 5+T2, T is 2+T1. 


     ?- T2 is 8+0, T1 is 5+T2, T is 2+T1. 


     ?- T1 is 5+8, T is 2+T1. 


     ?- T is 2+13. 


     ?- . 


succeeds with the output binding T / 15




54 

EXAMPLE 


Doing it tail-recursively: 


        sumlist(Ns, Total) :- tr_sum(Ns, 0, Total). 


        tr_sum([ ], Total, Total). 


        tr_sum([ N | Ns ], S, Total) :- Sub is N+S, 


                                                       tr_sum(Ns, Sub, Total). 


Here, tr_sum(Ns, S, T) means           T = S + Σ Ns
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Typical tail-recursive execution: 


  ?- sumlist([ 2, 5, 8 ], T). 


  ?- tr_sum([ 2, 5, 8 ], 0, T). 


  ?- Sub is 2+0, tr_sum([ 5, 8 ], Sub, T). 


  ?- tr_sum([ 5, 8 ], 2, T). 


         :  


  ?- tr_sum([ 8 ], 7, T). 


         : 


  ?- tr_sum([ ], 15, T). 


  ?- . 


and again succeeds with T / 15 


Here the query length never exceeds two calls and each derived


query can overwrite its predecessor in memory
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DISJUNCTION


•  Disjunction between calls can always be expressed using 

procedures offering alternative clauses 


     EXAMPLE 


                  out_of_range(X, Low, High) :- X<Low. 


                  out_of_range(X, Low, High) :- X>High.


•  Equivalently, use Prologʼs disjunction connective, the semi-colon 

EXAMPLE 


                   out_of_range(X, Low, High) :- X<Low ; X>High. 


•  With mixtures of conjunctions and disjunctions, use parentheses to 

avoid ambiguity: 


     EXAMPLE        


                    a :- b, (c ; (d, e)).
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NEGATION


Prolog does not have an explicit connective for classical negation.  


It is arguable that we do not need one 


EXAMPLE 


innocent(X) ← ¬guilty(X)        in classical logic 


In practice we do not establish the innocence of X by 


proving the negation of “X is guilty” 


Instead, we establish it by finitely failing to prove “X is guilty”
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Prolog provides a special operator  \+  read as 


                      “finitely fail to prove” 


So in Prolog we would write 


                innocent(X) :-  \+guilty(X). 


The operational meaning of  \+  is 


\+P succeeds iff  P fails finitely 


\+P fails finitely iff  P succeeds
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EXAMPLE 

“X is sad if someone else fails to like X” 


Using the data, bob, chris and frank are sad, 


because in each case someone else fails to like them 
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\+ does not perfectly simulate classical negation 


EXAMPLE 


p ← ¬p                classically implies p but 


p :- \+p.               cannot solve    ?- p. 


                           (it will fail infinitely, not finitely)


So, p is a logical consequence in the first case, but is not a 


computable consequence in the second
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EXAMPLE 

“X is very sad if no one else likes X” 


Here, just bob and chris are very sad, 


because in each case no one else likes them 


Syntax Note - essential to put a space between \+ and ( 
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Some Prologs (but not Sicstus) require \+P to be ground at the


instant it is selected for evaluation


We can reformulate the previous example as


          very_sad(X) :- person(X), \+liked(X). 


          liked(X) :- person(Y), Y \== X, likes(Y, X). 


This is the safe option: 


if our Prolog does not reject non-ground  \+ calls then it may


compute intuitively wrong answers when it evaluates them 


The above  \+liked(X)  call is ground when it is selected, because 


the person(X) call has already grounded X
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The \+ operator partially compensates for the head of a clause


being restricted to a single predicate 


If we want to use the knowledge that, say, 


                A ∨ B ← C we can approximate it 


    by     A :- C, \+B. 


or by     B :- C, \+A. 


or by    both of them together
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GENERATE-AND-TEST


Generate-and-test is a feature of many algorithms 


It can be formulated as      


         generate items satisfying property P,      


         test whether they satisfy property Q      


P acts as a generator      Q acts as a tester
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EXAMPLE 


“X is happy  if  all friends of X like logic” 


In classical logic we can express this by 


happy(X)  ← (∀Y)(friend(X, Y) →  likes(Y, logic)) 


In Prolog we can rewrite this as 


happy(X) :- forall(friend(X, Y), likes(Y, logic)). 


in which the forall will 


                generate  each friend Y of X 


               test  whether Y likes logic
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EXAMPLE 


Show that L is a list of positive numbers 


all_pos_nums(L) :-     is_list(L), 


                                   forall(member(U, L), (number(U), U>0)). 


and some appropriate is_list procedure
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•  Some Prologs (but not Sicstus) supply forall as a primitive 


•  If necessary we can define it ourselves: 


                  forall(P, Q) :- \+ (P, \+ Q). 


     “no way of solving P fails to solve Q”


•  Note that forall does not perfectly simulate ∀ 


           (∀...)(P → P) is true in classical logic 


but 


           forall(P, P) succeeds only if the number 


                             of ways of solving P is finite
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CALL-TERMS 
A call-term is anything that the Prolog interpreter can be asked to 


evaluate logically, such as 


In a call forall(P, Q) the arguments P and Q may be any call-terms,


however complex - but if they are not atomic then they need to be


parenthesized 
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AGGREGATION 
•  Often we want to collect into a single list all those items 

satisfying some property 


•  Prolog supplies a convenient primitive for this:     


findall(Term, Call-term, List)


EXAMPLE


To find all those whom chris likes: 


?- findall(X, likes(chris, X), L). 


this returns              L / [ logic, frank ] 
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EXAMPLE 


To find all sublists of [ a, b, c ] having length 2: 


?- findall([ X, Y ], sublist([ X, Y ], [ a, b, c ]), S). 


this returns S / [ [ a, b ], [ b, c ] ]


EXAMPLE 


Given any list X, construct the list Y obtained by replacing each


 member of X by E: 


replace(X, E, Y) :- findall(E, member(_, X), Y). 


Then,


?- replace([ a, b, c ], e, Y). 


             returns Y / [ e, e, e ] 


?- replace([ a, b, c ], [ 0 ], Y). 


             returns Y / [ [ 0 ], [ 0 ], [ 0 ] ]
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EXAMPLE 


Construct a list L of pairs (X, F) where X is a person and F is a list


of all the friends of X: 


friend_list(L) :- 


       findall( (X, F),  


                   ( person(X), findall(Y, friend(X, Y), F) ), L ). 


So here we have a findall inside a findall
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EXAMPLE


Construct a list L of persons each of whom does whatever 


chris does: 


clones_of_chris(L) :-     


        findall( X,               


                     ( person(X),   


                       forall(does(chris, Y), does(X, Y)) ), L ). 


So here we have a forall inside a findall
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EXAMPLE


Given a list L of classes, test whether all of them contain more


females than males: 


mostly_female_classes(L) :- 


          forall( (  member(C, L),      


          findall(F,  (member(F, C), female(F)), Fs),     


          findall(M, (member(M, C), male(M)),  Ms),   


          length(Fs,  NF),   


          length(Ms, NM) ), 


          NF > NM ). 


So here we have findalls inside a forall
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CONTROLLING SEARCH


•  The extent to which a search tree is generated can be controlled 

by use of the “cut” primitive, denoted by ! 


•  When executed, a cut prunes some parts of the search tree 


•  It is motivated by a wish to suppress unwanted computations 


•  It can be placed anywhere in a query or program where one 

might otherwise place an ordinary call 


•  Any number of cuts can be used
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A program clause having a cut looks like: 


head  :-  preceding-calls, !, other-calls. 


The cut acts only when it is selected as the next call to be


evaluated, and it then 


•  prunes all untried ways of evaluating 


     whichever call invoked the clause containing the cut 


and 


•  prunes all untried ways of evaluating 


     the calls in this clause which precede the cut
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EXAMPLE
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EXAMPLE 


This program tests a term X and prints a comment 


The intention is that if X is a number then 


the comment is yes but is otherwise no 


         comment(X) :- number(X), !, write(yes).   


          comment(X) :- write(no).


Will it work (assuming X is ground)?
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BUT - suppose we reorder the clauses as:    


            comment(X) :- write(no).   


            comment(X) :- number(X), !, write(yes).
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EXAMPLE 


Define least(X, Y, L)  to mean “L is the least of X and Y” 


                least(X, Y, X) :- X<Y, !.   


                least(X, Y, Y).


?- least(1, 2, L).           correctly succeeds, binding L / 1 


?- least(2, 1, L).           correctly succeeds, binding L / 1


BUT ... 


?- least(1, 2, 2).          wrongly succeeds 


?- least(a, b, b).          wrongly succeeds 


and this happens however the clauses are ordered   
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THE GREAT MORAL 


1.  If you can reasonably avoid using cut, do so  


2.  If you must use it, take great care with clause order


3.     In any event, compute only the TRUTH


EXAMPLE 


          comment(X) :-    number(X), write(yes).   


          comment(X) :- \+number(X), write(no).


This program, having no cut, potentially evaluates


number(X) twice, depending on the query - a small overhead
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META-PROGRAMMING


•  This concerns programs that variously access, control or 

analyse other programs or their components 


•  It is a feature of many declarative formalisms and gives them a 
high degree of expressiveness 


•  It is approximately comparable to the use of higher-order 

functions in a functional programming language 


•  In Prolog, most meta-programming exploits the fact that 


     terms and predicates have 


     identical syntactic structure
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EXAMPLE 


overcome_with_joy(X) :- user_of(X, prolog). 


In the above, user_of(X, prolog) is a predicate 


overcome_with_joy(X) :- true_that(user_of(X, prolog)). 


In the above, user_of(X, prolog) is an argument (term)
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BUILT-IN META-PREDICATES

We have already met some of these:      


\+P           forall(P, Q)           findall(Term, Q, List) 


Here, P and Q are object-level arguments, 


but are interpreted as  call-terms at the meta-level 


Their run-time manipulation can use the same unification mechanism 


as used for ordinary object-level terms


EXAMPLE 


                      choose(X, wants(chris, X)). 


                      ?- choose(Y, Q), forall(nice(Y), Q). 


From this query we get the derived query 


                      ?- forall(nice(Y), wants(chris, Y)). 


by binding           X / Y, Q / wants(chris, Y)
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THE  =..  PRIMITIVE 


This is another built-in meta-predicate 


It relates a term to a list comprising that termʼs principal 


functor and arguments 


EXAMPLES 


chris =.. L                           binds L / [chris] 


happy(chris) =.. L               binds L / [happy, chris] 


likes(X, prolog) =.. L           binds L / [likes, X, prolog] 


T =.. [append, X, Y, Z]        binds T / append(X, Y, Z) 


T =.. [s, s(0)]                       binds T / s(s(0))
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EXAMPLE (HARDER)


•  From any given non-variable term, extract a list L of all that 

termʼs functors with their arities 


•  For instance, we want the query 


                     ?- functors(p(a, f(X, g(b)), Y), L). 


     to return  L / [(p, 3), (a, 0), (f, 2), (g, 1), (b, 0)] 


•  Syntax Note: Prolog atoms are just functors whose arity is 0


Here is the program (make sure you understand it)
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META-VARIABLES  

These are ordinary variables but are expected to become bound to


terms that will then be treated as call-terms 


EXAMPLE 


Here is a program that simulates  \+X 


             our_not(X) :- X, !, fail.      (Here, X acts as a meta-variable)


             our_not(X).


note  - “fail”      always fails finitely


The query              ?- our_not(happy(chris)). 


binds      X / happy(chris)      in the first clause, so that 


X will be a call-term at the instant it is selected for evaluation 


The above query behaves exactly the same as ?- \+happy(chris). 
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EXAMPLE


tell_us_about(X, Y) :- 


        person(X), aspect(Y), Test=..[Y, X], 


        Test. 


?- tell_us_about(susan, Y).            returns Y / strict  or  Y / fair 


?- tell_us_about(X, logical).           returns X / chris 
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DYNAMIC  CLAUSES


•  Clauses can be created, consulted or deleted dynamically 


•  Their head relations can be declared as “dynamic”, but Sicstus 


     does not insist upon this, unless those relations are additionally


     defined by explicit procedures 


     e.g.    :- dynamic likes/2.           forces likes to be dynamic 


•  The most common primitives acting on dynamic clauses are: 


       clause - finds a clause body, given the head relation 


       assert - creates a clause 


       retract - deletes a clause
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THE  “CLAUSE”  PRIMITIVE 


A call to this has the form 


       clause(H, B)               where H is any predicate in


                                          which at least the relation name is given 


It succeeds if and only if 


                      H unifies by θ with the head of an existing


                      dynamic clause Head :- Body.  whereupon 


                      B is returned as Bodyθ
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EXAMPLE 

?- clause(likes(chris, frank), B). 


returns two alternative values for B 


   B / likes(frank, prolog) 


   B / (honest(frank), praises(frank, chris))


?- clause(likes(frank, X), B). 


returns     X / prolog, B / true 
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THE  “ASSERT”  PRIMITIVE 


This has the form assert(Clause) 


EXAMPLES 


?- assert(likes(chris, prolog)).    


adds to the dynamic-clause-base the clause likes(chris, prolog). 


?- assert((likes(X, prolog) :- wise(X))). 


adds to the dynamic-clause-base the clause 


likes(X, prolog) :- wise(X).
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THE  “RETRACT”  PRIMITIVE 


This has the form retract(Clause) 


EXAMPLE 


?- retract((likes(X, haskell) :- crazy(X))). 


deletes from the dynamic-clause-base the clause 


likes(X, haskell) :- crazy(X). 


Additional note 


To retract all current dynamic clauses for a relation P, execute the 


call retractall(P(...)) in which each argument of P is an underscore, 


as in 


retractall(likes(_, _))
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EXAMPLE - simulating destructive assignment 


Suppose that a 2-dimensional array “a” of numbers is represented


by a set of assertions which have already been set up using assert:


           a(I, J, V)                     represents   a[I, J] = V 


Suppose now we want to update “a” so that any element previously


 <0 is altered to become, say, 10. We can do this by evaluating the


call-term 


forall( (a(I, J, V), V<0), 


          (retract(a(I, J, V)), assert(a(I, J, 10))) )
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META-INTERPRETERS


These are programs which express ways of executing queries


 using other programs treated as data 


EXAMPLE


This expresses the behaviour of a sequential, depth-first 


interpreter asked to evaluate a list of calls given as Query
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The computation rule used depends upon how 


select and combine are defined 


To express the Prolog computation rule: 


The result is then an interpreter, written in Prolog, which 


simulates Prologʼs own behaviour 
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EXAMPLE 


A computation-rule that is often superior to Prologʼs is the


procrastination principle (a standard heuristic in AI): 


“select whichever call can invoke  


the fewest number of clauses” 


To obtain this behaviour we have to write an appropriate definition


of select
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Defining select for the procrastination principle: 



