
1

Prolog Programming

Logic Programming Engineering

WS 2011/12

Paola Bruscoli

2

Prolog = programming in logic

Main advantages

� ease of representing knowledge

� natural support of non-determinism

� natural support of pattern-matching

� natural support of meta-programming

Other advantages

� meaning of programs is independent of how they are executed

� simple connection between programs and computed answers

and specifications

� no need to distinguish programs from databases

Prolog = Programming in Logic

3

Topics covered

•  Preliminary concepts

•  Terms; Deterministic evaluations; Input-output non-determinism

•  Non-deterministic evaluation; Influencing efficiency; Unification

•  List processing; Type checking; Comparing terms; Arithmetic

•  Disjunction; Negation; Generation and Test Aggregation

•  Controlling search

•  Meta-programming

4

CONCEPT 1 - procedure definitions

Programs consist of procedure definitions

A procedure is a resource for evaluating something

EXAMPLE

a :- b, c.

This is read procedurally as a procedure for evaluating a by

evaluating both b and c

Here “evaluating” something means determining whether

 or not it is true according to the program as a whole

5

The procedure

 a :- b, c.

can be written in logic as a

 a ← b ∧ c

and then read declaratively as

 a is true if b is true and c is true

6

CONCEPT 2 - procedure calls

Execution involves evaluating calls, and begins with an

initial query

EXAMPLES

 ?- a, d, e.

 ?- likes(chris, X).

 ?- flight(gatwick, Z), in_poland(Z), flight(Z, beijing).

The queries are asking whether the calls in them are

true according to the given procedures in the program

7

Prolog evaluates the calls in a query sequentially,

in the left-to-right order, as written

?- a, d, e. evaluate a, then d, then e

Convention: terms beginning with an upper-case

letter or an underscore are treated as variables

?- likes(chris, X). here, X is a variable

Queries and procedures both belong to the class of

logic sentences known as clauses

8

CONCEPT 3 - computations

•  A computation is a chain of derived queries, starting with the

initial query

•  Prolog selects the first call in the current query and seeks a

program clause whose head matches the call

•  If there is such a clause, the call is replaced by the clause body,

giving the next derived query

•  This is just applying the standard notion of procedure-calling in

any formalism

9

EXAMPLE

?- a, d, e. initial query

a :- b, c. program clause with

 head a and body b, c

Starting with the initial query, the first call in it matches

the head of the clause shown, so the derived query is

?- b, c, d, e.

Execution then treats the derived query in the same way

10

CONCEPT 4 - successful computations

A computation succeeds if it derives the empty query

EXAMPLE

?- likes(bob, prolog). query

likes(bob, prolog). program clause

The call matches the head and is replaced by the clauseʼs

(empty) body, and so the derived query is empty.

So the query has succeeded, i.e. has been solved

11

CONCEPT 5 - finite failure

A computation fails finitely if the call selected from the

query does not match the head of any clause

EXAMPLE

?- likes(bob, haskell). query

This fails finitely if there is no program clause whose

head matches likes(bob, haskell).

12

EXAMPLE

?- likes(chris, haskell). query

likes(chris, haskell) :- nice(haskell).

If there is no clause head matching nice(haskell) then

 the computation will fail after the first step

13

CONCEPT 6 - infinite failure

A computation fails infinitely if every query in it is followed by a non-

empty query

EXAMPLE

 ?- a. query

 a :- a, b. clause

This gives the infinite computation

 ?- a.

 ?- a, b.

 ?- a, b, b.

 …..

This may be useful for driving some perpetual process

14

CONCEPT 7 - multiple answers

A query may produce many computations

Those, if any, that succeed may yield multiple answers to the query

(not necessarily distinct)

EXAMPLE

?- happy(chris), likes(chris, bob).

happy(chris).

likes(chris, bob) :- likes(bob, prolog).

likes(chris, bob) :- likes(bob, chris).

<…etc…>

15

We then have a search tree in which each branch is a separate

computation:

16

CONCEPT 8 - answers as consequences

A successful computation confirms that the conjunction in the initial

query is a logical consequence of the program.

EXAMPLE

 ?- a, d, e.

If this succeeds from a program P then the computed answer is

 a ∧ d ∧ e

and we have

 P |= a ∧ d ∧ e

Conversely: if the program P does not offer any successful

 computation from the query, then the query conjunction is not a

 consequence of P

17

CONCEPT 9 - variable arguments

Variables in queries are treated as existentially quantified

 EXAMPLE

 ?- likes(X, prolog).

says “is (∃X) likes(X, prolog) true?”

or “find X for which likes(X, prolog) is true”

Variables in program clauses are treated as universally quantified

EXAMPLE

 likes(chris, X) :- likes(X, prolog).

expresses the sentence (∀X) (likes(chris, X) ← likes(X, prolog))

18

CONCEPT 10 - generalized matching (unification)

Matching a call to a clause head requires them to be

either already identical

or able to be made identical, if necessary by instantiating

 (binding) their variables (unification)

EXAMPLE

 ?- likes(U, chris).

 likes(bob, Y) :- understands(bob, Y).

Here, likes(U, chris) and likes(bob, Y) can be made identical (unify)

 by binding U / bob and Y / chris

The derived query is

 ?- understands(bob, chris).

19

Prolog Terms

•  Terms are the items that can appear as the arguments of

predicates

•  They can be viewed as the basic data manipulated during

execution

•  They may exist statically in the given code of the program and

initial query, or they may come into existence dynamically by the

process of unification

•  Terms containing no variables are said to be ground

•  Prolog can process both ground and non-ground data

•  A Prolog program can do useful things with a data structure even

when that structure is partially unknown

20

SIMPLE TERMS

 numbers

 3 5.6 -10 -6.31

 atoms

 apple tom x2 'Hello there' []

 variables

 X Y31 Chris Left_Subtree Person _35 _

21

COMPOUND TERMS

prefix terms

 mother(chris)

 tree(e, 3, tree(e, 5, e)) i.e.

 tree(T, N, tree(e, 5, e)) a binary tree whose root

 and left subtrees are unknown

22

list terms

 [] [3, 5] [5, X, 9]

 lists form a subclass of binary trees

A vertical bar can be used as a separator to present a list in the form

 [itemized-members | residual-list]

 [X, 3 | Y]

 [3 | [5, 7]]

 [3, 5, 7]

 [3, 5 | [7]]

23

tuple terms

(bob, chris) (1, 2, 3) ((U, V), (X, Y))

 (e, 3, (e, 5, e))

These are preferable (efficiency-wise) when working with fixed-length

 data structures

arithmetic terms

3*X+5 sin(X+Y) / (cos(X)+cos(Y))

Although these have an arithmetical syntax, they are interpreted

arithmetically only by a specific set of calls, presented later on.

24

DETERMINISTIC EVALUATIONS

•  Prolog is non-deterministic in general because the evaluation of a

 query may generate multiple computations

•  If only ONE computation is generated (whether it succeeds or fails),
the evaluation is said to be deterministic

•  The search tree then consists of a single branch

25

EXAMPLE

 all_bs([]).

 all_bs([b | T]) :- all_bs(T).

This program defines a list in which every member is b

Now consider the query

 ?- all_bs([b, b, b]).

This will generate a deterministic evaluation

 ?- all_bs([b, b, b]).

 ?- all_bs([b, b]).

 ?- all_bs([b]).

 ?- all_bs([]).

 ?- .

So here the search tree comprises ONE branch (computation), which

happens to succeed

26

EXAMPLE

Prolog supplies the list-concatenation primitive append(X, Y, Z) but if it

 did not then we could define our own:

 app([], Z, Z).

 app([U | X], Y, [U | Z]) :- app(X, Y, Z).

Now consider the query ?- app([a, b], [c, d], L).

The call matches the head of the second program clause by making

 the bindings U / a X / [b] Y / [c, d] L / [a | Z]

So, we replace the call by the body of the clause, then apply the

 bindings just made to produce the derived query:

 ?- app([b], [c, d], Z).

Another similar step binds Z / [b | Z2] and gives the next derived query

 ?- app([], [c, d], Z2).

This succeeds by matching the first clause, and binds Z2 / [c, d]

The computed answer is therefore L / [a, b, c, d]

27

In the previous example, in each step, the call matched no more than

one program clause-head, and so again the evaluation was deterministic

Note that, in general, each step in a computation produces bindings

which are either propagated to the query variables or are kept on one

side in case they contribute to the final answer

In the example, the final output binding is L / [a, b, c, d]

The bindings kept on one side form the so-called binding environment

of the computation

The mode of the query in the previous example was

 ?- app(input, input, output).

where the first two arguments were wholly-known input, whilst the third

argument was wholly-unknown output

However, we can pose queries with any mix of argument modes we wish

28

So there is a second way in which Prolog is non-deterministic:

a program does not determine

the mode of the queries posed to it

EXAMPLE

Using the same program we can pose a query having the mode

?- app(input, input, input). such as

 ?- app([a, b], [c, d], [a, b, c, d]).

This gives just one computation, which succeeds, but returns no

 output bindings.

Take a query having mode ?- app(output, mixed, mixed). such as

 ?- app(X, [b | L], [a, E, c, d]).

This succeeds deterministically to give the output bindings

X / [a], L / [c, d], E / b

29

This second kind of non-determinism is called input-output

non-determinism, and distinguishes Prolog from most other

programming formalisms

With a single Prolog program, we may pose an infinite variety of

queries, but with other formalisms we have to change the program

whenever we want to solve a new kind of problem

This does not mean that a single Prolog program deals with all

queries with equal efficiency

Often, in the interest of efficiency alone, we may well change a

Prolog program to deal with a new species of query

30

SUMMARY

� given a program, we can pose any queries we like, whatever

their modes

� some queries will generate just one computation, whereas

others will generate many

� multiple successful computations may or may not yield distinct

answers

� every answer is a logical consequence of the program

31

NON-DETERMINISTIC EVALUATIONS

A Prolog evaluation is non-deterministic (contains more than one

computation) when some call unifies with several clause-heads

 When this is so, the search tree will have several branches

EXAMPLE

 a :- b, c. (two clause-heads unify with a)

 a :- f.

 b. (two clause-heads unify with b)

 b :- g.

 c.

 d.

 e.

 f.

A query from which calls to a or b are selected must therefore give

several computations

32

choice

points

33

•  Presented with several computations, Prolog generates them one at a

time

•  Whichever computation it is currently generating, Prolog remains

totally committed to it until it either succeeds or fails finitely

•  This strategy is called depth-first search

•  It is an unfair strategy, in that it is not guaranteed to generate all
computations, unless they are all finite

•  When a computation terminates, Prolog backtracks to the most

recent choice-point offering untried branches

•  The evaluation as a whole terminates only when no such choice-

points remain

•  The order in which branches are tried corresponds to the text-order of

the associated clauses in the program

•  This is called Prologʼs search rule:

 it prioritizes the branches in the search tree

34

EFFICIENCY
The efficiency with which Prolog solves a problem depends upon

 � the way knowledge is represented in the program

 � the ordering of calls

EXAMPLE

Change the earlier query and program to

 ?- d, e, a. different call-order

 a :- c, b. different call-order

 a :- f.

 b.

 b :- g.

 c.

 d.

 e.

 f.

35

This evaluation

has only 8 steps,

whereas the

previous one had

10 steps

36

The policy for selecting the next call to be processed is called the

computation rule and has a major influence upon efficiency

So remember ...

•  a computation rule decides which call to select next from the

query

•  a search rule decides which program clause to apply to the

selected call

and in Prolog these two rules are, respectively,

 “choose the first call in the current query”

 “choose the first applicable untried program clause”

37

UNIFICATION

•  This is the process by which Prolog decides that a call can use

a program clause

•  The call has to be unified with the head

•  Two predicates are unifiable if and only if they have a common

instance

EXAMPLE

 ?- likes(Y, chris). likes(bob, X) :- likes(X, logic).

Let θ be the binding set { Y / bob, X / chris }

If E is any logical formula then Eθ denotes the result of applying θ

to E, so obtaining an instance of E

 likes(Y, chris)θ = likes(bob, chris)

 likes(bob, X)θ = likes(bob, chris)

As the two instances are identical, we say that θ is a unifier for the

original predicates

38

THE GENERAL COMPUTATION STEP

 current query ?- P(args1), others.

 program clause P(args2) :- body.

If θ exists such that P(args1)θ = P(args2)θ

then this clause can be used by this call to produce

 derived query ?- bodyθ, othersθ.

Otherwise, this clause cannot be used by this call

39

EXAMPLE

 ?- app(X, X, [a, b, a, b]).

Along the successful computation we have

O1 = { X / [a | X1] } these are the

O2 = { X1 / [b | X2] } output bindings

O3 = { X2 / [] } in the unifiers

whose composition is { X / [a, b], X1 / [b], X2 / [] }

The answer substitution is then { X / [a, b] }

and applying this to the initial query gives the answer

 app([a, b], [a, b], [a, b, a, b])

40

LIST PROCESSING

Lists are the most commonly-used structures in Prolog,

and relations on them usually require recursive programs

EXAMPLE

To define a palindrome:

palin([]).

palin([U | Tail]) :-append(M, [U], Tail),

 palin(M).

 Tail
M U U

41

More abstractly:

 palin([]).

 palin(L) :-first(L, U), last(L, U),

 middle(L, M), palin(M).

 first([U | _], U).

 last([U], U).

 last([_ | Tail], U) :- last(Tail, U).

 middle([], []).

 middle([_], []).

 middle([_ | Tail], M) :- append(M, [_], Tail).

42

EXAMPLE

To reverse a list:

 reverse([], []).

 reverse([U | X], R) :- reverse(X, Y),

 append(Y, [U], R).

U

U

X

Y

reverse X to get Y

43

•  Note that the program just seen is not tail-recursive

•  If we try to force it to be so, by reordering the calls thus:

 reverse([U | X], R) :- append(Y, [U], R),

 reverse(X, Y).

 then the evaluation is likely to go infinite for some modes.

•  However, the following is tail-recursive:

 reverse(L, R) :- rev(L, [], R).

 rev([], R, R).

 rev([U | Tail], A, R) :- rev(Tail, [U | A], R).

•  With this program, the time taken to reverse a given list is
proportional to the length of that list, and the runtime
environment

•  It does not generate a stack of pending calls

44

BUILT-IN LIST PRIMITIVES

Prolog contains its own library of list programs, such as:

append(X, Y, Z) appending Y onto X gives Z

reverse(X, Y) reverse of X is Y

length(X, N) length of X is N

member(U, X) U is in X

non_member(U, X) U is not in X

sort(X, Y) sorting X gives Y

To access these in Sicstus, include in your file

?- use_module(library(lists)).

45

TYPE-CHECKING

To check argument types you can make use of the following, which

 are supplied as primitives:

atom(X) X is an atom

number(X) X is a number

integer(X) X is an integer

var(X) X is (an unbound) variable

nonvar(X) X is not a variable

compound(X) X is a compound term

46

With these primitives you can then define further type-checking

procedures

EXAMPLES

To test whether a term is a list:

is_list(X) :- atom(X), X=[].

is_list(X) :- compound(X), X=[_ | _].

To test whether a term is a binary tree:

bintree(X) :- atom(X), X=e.

bintree(X) :- compound(X), X=t(L, _, R),

 bintree(L), bintree(R).

47

COMPARING TERMS

Prolog has many primitives for comparing terms, including:

X = Y X unifies with Y

 e.g. X=a succeeds, binding X / a

X == Y X and Y are identical

 e.g. [a, b] == [a, b] succeeds, but

 [a, b] == [a, X] fails

X \== Y X and Y are not identical

 e.g. [a, b] \== [a, X] succeeds, without binding X

48

ARITHMETIC

Arithmetic expressions use the standard operators such as

+ - * / (besides others)

Operands are simple terms or arithmetic expressions

EXAMPLE

(7 + 89 * sin(Y+1)) / (cos(X) + 2.43)

Arithmetic expressions must be ground at the instant Prolog is

required to evaluate them

REMARK: Different Prolog systems may allow for more/less liberal grammars to compare expressions

49

COMPARING ARITHMETIC EXPRESSIONS

E1 =:= E2 tests whether the values of E1 and E2 are equal

E1 =\= E2 tests whether their values of E1 and E2 are unequal

E1 < E2 tests whether the value of E1 is less than

 the value of E2

Likewise we have

> for greater

>= for greater or equal

=< for equal or less

EXAMPLES

 ?- X=3, (2+2) =:= (X+1). succeeds

 ?- (2+2) =:= (X+1), X=3. gives an error

 ?- (2+2) > X. gives an error

50

The value of an arithmetic expression E may be computed and

 assigned to a variable X by the call

 X is E

EXAMPLES

 ?- X is (2+2). succeeds and binds X / 4

 ?- 4 is (2+2). gives an error

 ?- X is (Y+2). gives an error

In SWI it succeeds!
SWI grammar permits a
more general test

 E1 is E2

51

 Do not confuse is with =

X=Y means “X can be unified with Y” and is rarely needed

EXAMPLES

?- X = (2+2). succeeds and binds X / (2+2)

?- 4 = (2+2). does not give an error, but fails

?- X = (Y+2). succeeds and binds X / (Y+2)

The ”is” predicate is used only for the very specific purpose

variable is arithmetic-expression-to-be-evaluated

52

EXAMPLE

Summing a list of numbers:

 sumlist([], 0).

 sumlist([N | Ns], Total) :- sumlist(Ns, Sumtail),

 Total is N+Sumtail.

This is not tail-recursive - the query length will expand in proportion

 to the length of the input list

53

Typical non-tail-recursive execution:

 ?- sumlist([2, 5, 8], T).

 ?- sumlist([5, 8]), T is 2+T1.

 ?- sumlist([8], T2), T1 is 5+T2, T is 2+T1.

 ?- sumlist([], T3), T2 is 8+T3, T1 is 5+T2, T is 2+T1.

 ?- T2 is 8+0, T1 is 5+T2, T is 2+T1.

 ?- T1 is 5+8, T is 2+T1.

 ?- T is 2+13.

 ?- .

succeeds with the output binding T / 15

54

EXAMPLE

Doing it tail-recursively:

 sumlist(Ns, Total) :- tr_sum(Ns, 0, Total).

 tr_sum([], Total, Total).

 tr_sum([N | Ns], S, Total) :- Sub is N+S,

 tr_sum(Ns, Sub, Total).

Here, tr_sum(Ns, S, T) means T = S + Σ Ns

55

Typical tail-recursive execution:

 ?- sumlist([2, 5, 8], T).

 ?- tr_sum([2, 5, 8], 0, T).

 ?- Sub is 2+0, tr_sum([5, 8], Sub, T).

 ?- tr_sum([5, 8], 2, T).

 :

 ?- tr_sum([8], 7, T).

 :

 ?- tr_sum([], 15, T).

 ?- .

and again succeeds with T / 15

Here the query length never exceeds two calls and each derived

query can overwrite its predecessor in memory

56

DISJUNCTION

•  Disjunction between calls can always be expressed using

procedures offering alternative clauses

 EXAMPLE

 out_of_range(X, Low, High) :- X<Low.

 out_of_range(X, Low, High) :- X>High.

•  Equivalently, use Prologʼs disjunction connective, the semi-colon

EXAMPLE

 out_of_range(X, Low, High) :- X<Low ; X>High.

•  With mixtures of conjunctions and disjunctions, use parentheses to

avoid ambiguity:

 EXAMPLE

 a :- b, (c ; (d, e)).

57

NEGATION

Prolog does not have an explicit connective for classical negation.

It is arguable that we do not need one

EXAMPLE

innocent(X) ← ¬guilty(X) in classical logic

In practice we do not establish the innocence of X by

proving the negation of “X is guilty”

Instead, we establish it by finitely failing to prove “X is guilty”

58

Prolog provides a special operator \+ read as

 “finitely fail to prove”

So in Prolog we would write

 innocent(X) :- \+guilty(X).

The operational meaning of \+ is

\+P succeeds iff P fails finitely

\+P fails finitely iff P succeeds

59

EXAMPLE

“X is sad if someone else fails to like X”

Using the data, bob, chris and frank are sad,

because in each case someone else fails to like them

60

\+ does not perfectly simulate classical negation

EXAMPLE

p ← ¬p classically implies p but

p :- \+p. cannot solve ?- p.

 (it will fail infinitely, not finitely)

So, p is a logical consequence in the first case, but is not a

computable consequence in the second

61

EXAMPLE

“X is very sad if no one else likes X”

Here, just bob and chris are very sad,

because in each case no one else likes them

Syntax Note - essential to put a space between \+ and (

62

Some Prologs (but not Sicstus) require \+P to be ground at the

instant it is selected for evaluation

We can reformulate the previous example as

 very_sad(X) :- person(X), \+liked(X).

 liked(X) :- person(Y), Y \== X, likes(Y, X).

This is the safe option:

if our Prolog does not reject non-ground \+ calls then it may

compute intuitively wrong answers when it evaluates them

The above \+liked(X) call is ground when it is selected, because

the person(X) call has already grounded X

63

The \+ operator partially compensates for the head of a clause

being restricted to a single predicate

If we want to use the knowledge that, say,

 A ∨ B ← C we can approximate it

 by A :- C, \+B.

or by B :- C, \+A.

or by both of them together

64

GENERATE-AND-TEST

Generate-and-test is a feature of many algorithms

It can be formulated as

 generate items satisfying property P,

 test whether they satisfy property Q

P acts as a generator Q acts as a tester

65

EXAMPLE

“X is happy if all friends of X like logic”

In classical logic we can express this by

happy(X) ← (∀Y)(friend(X, Y) → likes(Y, logic))

In Prolog we can rewrite this as

happy(X) :- forall(friend(X, Y), likes(Y, logic)).

in which the forall will

 generate each friend Y of X

 test whether Y likes logic

66

EXAMPLE

Show that L is a list of positive numbers

all_pos_nums(L) :- is_list(L),

 forall(member(U, L), (number(U), U>0)).

and some appropriate is_list procedure

67

•  Some Prologs (but not Sicstus) supply forall as a primitive

•  If necessary we can define it ourselves:

 forall(P, Q) :- \+ (P, \+ Q).

 “no way of solving P fails to solve Q”

•  Note that forall does not perfectly simulate ∀

 (∀...)(P → P) is true in classical logic

but

 forall(P, P) succeeds only if the number

 of ways of solving P is finite

68

CALL-TERMS
A call-term is anything that the Prolog interpreter can be asked to

evaluate logically, such as

In a call forall(P, Q) the arguments P and Q may be any call-terms,

however complex - but if they are not atomic then they need to be

parenthesized

69

AGGREGATION
•  Often we want to collect into a single list all those items

satisfying some property

•  Prolog supplies a convenient primitive for this:

findall(Term, Call-term, List)

EXAMPLE

To find all those whom chris likes:

?- findall(X, likes(chris, X), L).

this returns L / [logic, frank]

70

EXAMPLE

To find all sublists of [a, b, c] having length 2:

?- findall([X, Y], sublist([X, Y], [a, b, c]), S).

this returns S / [[a, b], [b, c]]

EXAMPLE

Given any list X, construct the list Y obtained by replacing each

 member of X by E:

replace(X, E, Y) :- findall(E, member(_, X), Y).

Then,

?- replace([a, b, c], e, Y).

 returns Y / [e, e, e]

?- replace([a, b, c], [0], Y).

 returns Y / [[0], [0], [0]]

71

EXAMPLE

Construct a list L of pairs (X, F) where X is a person and F is a list

of all the friends of X:

friend_list(L) :-

 findall((X, F),

 (person(X), findall(Y, friend(X, Y), F)), L).

So here we have a findall inside a findall

72

EXAMPLE

Construct a list L of persons each of whom does whatever

chris does:

clones_of_chris(L) :-

 findall(X,

 (person(X),

 forall(does(chris, Y), does(X, Y))), L).

So here we have a forall inside a findall

73

EXAMPLE

Given a list L of classes, test whether all of them contain more

females than males:

mostly_female_classes(L) :-

 forall((member(C, L),

 findall(F, (member(F, C), female(F)), Fs),

 findall(M, (member(M, C), male(M)), Ms),

 length(Fs, NF),

 length(Ms, NM)),

 NF > NM).

So here we have findalls inside a forall

74

CONTROLLING SEARCH

•  The extent to which a search tree is generated can be controlled

by use of the “cut” primitive, denoted by !

•  When executed, a cut prunes some parts of the search tree

•  It is motivated by a wish to suppress unwanted computations

•  It can be placed anywhere in a query or program where one

might otherwise place an ordinary call

•  Any number of cuts can be used

75

A program clause having a cut looks like:

head :- preceding-calls, !, other-calls.

The cut acts only when it is selected as the next call to be

evaluated, and it then

•  prunes all untried ways of evaluating

 whichever call invoked the clause containing the cut

and

•  prunes all untried ways of evaluating

 the calls in this clause which precede the cut

76

EXAMPLE

77

78

EXAMPLE

This program tests a term X and prints a comment

The intention is that if X is a number then

the comment is yes but is otherwise no

 comment(X) :- number(X), !, write(yes).

 comment(X) :- write(no).

Will it work (assuming X is ground)?

79

80

81

BUT - suppose we reorder the clauses as:

 comment(X) :- write(no).

 comment(X) :- number(X), !, write(yes).

82

EXAMPLE

Define least(X, Y, L) to mean “L is the least of X and Y”

 least(X, Y, X) :- X<Y, !.

 least(X, Y, Y).

?- least(1, 2, L). correctly succeeds, binding L / 1

?- least(2, 1, L). correctly succeeds, binding L / 1

BUT ...

?- least(1, 2, 2). wrongly succeeds

?- least(a, b, b). wrongly succeeds

and this happens however the clauses are ordered

83

THE GREAT MORAL

1.  If you can reasonably avoid using cut, do so

2.  If you must use it, take great care with clause order

3. In any event, compute only the TRUTH

EXAMPLE

 comment(X) :- number(X), write(yes).

 comment(X) :- \+number(X), write(no).

This program, having no cut, potentially evaluates

number(X) twice, depending on the query - a small overhead

84

META-PROGRAMMING

•  This concerns programs that variously access, control or

analyse other programs or their components

•  It is a feature of many declarative formalisms and gives them a
high degree of expressiveness

•  It is approximately comparable to the use of higher-order

functions in a functional programming language

•  In Prolog, most meta-programming exploits the fact that

 terms and predicates have

 identical syntactic structure

85

EXAMPLE

overcome_with_joy(X) :- user_of(X, prolog).

In the above, user_of(X, prolog) is a predicate

overcome_with_joy(X) :- true_that(user_of(X, prolog)).

In the above, user_of(X, prolog) is an argument (term)

86

BUILT-IN META-PREDICATES
We have already met some of these:

\+P forall(P, Q) findall(Term, Q, List)

Here, P and Q are object-level arguments,

but are interpreted as call-terms at the meta-level

Their run-time manipulation can use the same unification mechanism

as used for ordinary object-level terms

EXAMPLE

 choose(X, wants(chris, X)).

 ?- choose(Y, Q), forall(nice(Y), Q).

From this query we get the derived query

 ?- forall(nice(Y), wants(chris, Y)).

by binding X / Y, Q / wants(chris, Y)

87

THE =.. PRIMITIVE

This is another built-in meta-predicate

It relates a term to a list comprising that termʼs principal

functor and arguments

EXAMPLES

chris =.. L binds L / [chris]

happy(chris) =.. L binds L / [happy, chris]

likes(X, prolog) =.. L binds L / [likes, X, prolog]

T =.. [append, X, Y, Z] binds T / append(X, Y, Z)

T =.. [s, s(0)] binds T / s(s(0))

88

EXAMPLE (HARDER)

•  From any given non-variable term, extract a list L of all that

termʼs functors with their arities

•  For instance, we want the query

 ?- functors(p(a, f(X, g(b)), Y), L).

 to return L / [(p, 3), (a, 0), (f, 2), (g, 1), (b, 0)]

•  Syntax Note: Prolog atoms are just functors whose arity is 0

Here is the program (make sure you understand it)

89

META-VARIABLES  

These are ordinary variables but are expected to become bound to

terms that will then be treated as call-terms

EXAMPLE

Here is a program that simulates \+X

 our_not(X) :- X, !, fail. (Here, X acts as a meta-variable)

 our_not(X).

note - “fail” always fails finitely

The query ?- our_not(happy(chris)).

binds X / happy(chris) in the first clause, so that

X will be a call-term at the instant it is selected for evaluation

The above query behaves exactly the same as ?- \+happy(chris).

90

EXAMPLE

tell_us_about(X, Y) :-

 person(X), aspect(Y), Test=..[Y, X],

 Test.

?- tell_us_about(susan, Y). returns Y / strict or Y / fair

?- tell_us_about(X, logical). returns X / chris

91

DYNAMIC CLAUSES

•  Clauses can be created, consulted or deleted dynamically

•  Their head relations can be declared as “dynamic”, but Sicstus

 does not insist upon this, unless those relations are additionally

 defined by explicit procedures

 e.g. :- dynamic likes/2. forces likes to be dynamic

•  The most common primitives acting on dynamic clauses are:

 clause - finds a clause body, given the head relation

 assert - creates a clause

 retract - deletes a clause

92

THE “CLAUSE” PRIMITIVE

A call to this has the form

 clause(H, B) where H is any predicate in

 which at least the relation name is given

It succeeds if and only if

 H unifies by θ with the head of an existing

 dynamic clause Head :- Body. whereupon

 B is returned as Bodyθ

93

EXAMPLE

?- clause(likes(chris, frank), B).

returns two alternative values for B

 B / likes(frank, prolog)

 B / (honest(frank), praises(frank, chris))

?- clause(likes(frank, X), B).

returns X / prolog, B / true

94

THE “ASSERT” PRIMITIVE

This has the form assert(Clause)

EXAMPLES

?- assert(likes(chris, prolog)).

adds to the dynamic-clause-base the clause likes(chris, prolog).

?- assert((likes(X, prolog) :- wise(X))).

adds to the dynamic-clause-base the clause

likes(X, prolog) :- wise(X).

95

THE “RETRACT” PRIMITIVE

This has the form retract(Clause)

EXAMPLE

?- retract((likes(X, haskell) :- crazy(X))).

deletes from the dynamic-clause-base the clause

likes(X, haskell) :- crazy(X).

Additional note

To retract all current dynamic clauses for a relation P, execute the

call retractall(P(...)) in which each argument of P is an underscore,

as in

retractall(likes(_, _))

96

EXAMPLE - simulating destructive assignment

Suppose that a 2-dimensional array “a” of numbers is represented

by a set of assertions which have already been set up using assert:

 a(I, J, V) represents a[I, J] = V

Suppose now we want to update “a” so that any element previously

 <0 is altered to become, say, 10. We can do this by evaluating the

call-term

forall((a(I, J, V), V<0),

 (retract(a(I, J, V)), assert(a(I, J, 10))))

97

META-INTERPRETERS

These are programs which express ways of executing queries

 using other programs treated as data

EXAMPLE

This expresses the behaviour of a sequential, depth-first

interpreter asked to evaluate a list of calls given as Query

98

The computation rule used depends upon how

select and combine are defined

To express the Prolog computation rule:

The result is then an interpreter, written in Prolog, which

simulates Prologʼs own behaviour

99

EXAMPLE

A computation-rule that is often superior to Prologʼs is the

procrastination principle (a standard heuristic in AI):

“select whichever call can invoke

the fewest number of clauses”

To obtain this behaviour we have to write an appropriate definition

of select

100

Defining select for the procrastination principle:

