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Prolog = programming in logic

Main advantages 

�    ease of representing knowledge 

�    natural support of non-determinism 

�    natural support of pattern-matching 

�    natural support of meta-programming

Other advantages 

�    meaning of programs is independent of how they are executed 

�    simple connection between programs and computed answers 

and specifications 

�    no need to distinguish programs from databases

Prolog = Programming in Logic 



3 

Topics covered

•  Preliminary concepts

•  Terms; Deterministic evaluations; Input-output non-determinism

•  Non-deterministic evaluation; Influencing efficiency; Unification

•  List processing; Type checking; Comparing terms; Arithmetic 

•  Disjunction; Negation; Generation and Test Aggregation

•  Controlling search      

•  Meta-programming
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CONCEPT 1 - procedure definitions

Programs consist of procedure definitions 

A procedure is a resource for evaluating something 

EXAMPLE     

a  :-  b, c. 

This is read procedurally as a procedure for evaluating a by 

evaluating both b and c 

Here “evaluating” something means determining whether

 or not it is true according to the program as a whole
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The procedure 

                               a  :-  b, c. 

can be written in logic as a   

                              a ← b ∧ c

and then read declaratively as 

        a is true   if  b is true  and  c is true
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CONCEPT 2 - procedure calls

Execution involves evaluating calls, and begins with an

initial query 

EXAMPLES 

        ?- a, d, e. 

        ?- likes(chris, X). 

        ?- flight(gatwick, Z), in_poland(Z), flight(Z, beijing). 

The queries are asking whether the calls in them are 

true according to the given procedures in the program
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Prolog evaluates the calls in a query sequentially, 

in the left-to-right order, as written 

?- a, d, e.                         evaluate a, then d, then e 

Convention: terms beginning with an upper-case 

letter or an underscore are treated as variables 

?- likes(chris, X).                  here, X is a variable 

Queries and procedures both belong to the class of 

logic sentences known as clauses
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CONCEPT 3 - computations

•  A computation is a chain of derived queries, starting with the 

initial query 

•  Prolog selects the first call in the current query and seeks a 

program clause whose head matches the call 

•  If there is such a clause, the call is replaced by the clause body, 

giving the next derived query 

•  This is just applying the standard notion of procedure-calling in 

any formalism
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EXAMPLE 

?- a, d, e.                            initial query 

a :- b, c.                              program clause with 

                                           head a and body b, c 

Starting with the initial query, the first call in it matches 

the head of the clause shown, so the derived query is 

?- b, c, d, e. 

Execution then treats the derived query in the same way
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CONCEPT 4 - successful computations

A computation succeeds if it derives the empty query

EXAMPLE 

?- likes(bob, prolog).           query 

likes(bob, prolog).               program clause 

The call matches the head and is replaced by the clauseʼs

(empty) body, and so the derived query is empty.

So the query has succeeded, i.e. has been solved
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CONCEPT 5 - finite failure

A computation fails finitely  if the call selected from the 

query does not match the head of any clause 

EXAMPLE 

?- likes(bob, haskell).                    query 

This fails finitely if there is no program clause whose 

head matches likes(bob, haskell).
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EXAMPLE 

?- likes(chris, haskell).            query 

likes(chris, haskell) :- nice(haskell). 

If there is no clause head matching nice(haskell) then

 the computation will fail after the first step
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CONCEPT 6 - infinite failure

A computation fails infinitely if every query in it is followed by a non-

empty query 

EXAMPLE 

                             ?- a.                          query 

                             a :- a, b.                    clause 

This gives the infinite computation 

                                   ?- a. 

                                   ?- a, b. 

                                   ?- a, b, b.  

                                     …..

This may be useful for driving some perpetual process
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CONCEPT 7 - multiple answers

A query may produce many computations 

Those, if any, that succeed may yield multiple answers to the query 

(not necessarily distinct)

EXAMPLE     

?- happy(chris), likes(chris, bob).   

happy(chris).   

likes(chris, bob) :- likes(bob, prolog).   

likes(chris, bob) :- likes(bob, chris).   

<…etc…>
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We then have a search tree in which each branch is a separate 

computation:
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CONCEPT 8 - answers as consequences

A successful computation confirms that the conjunction in the initial 

query is a logical consequence of the program. 

EXAMPLE     

                               ?- a, d, e. 

If this succeeds from a program P then the computed answer is 

                                a ∧ d ∧ e 

and we have  

                           P  |=  a ∧ d ∧ e

Conversely:  if the program P does not offer any successful

 computation from the query, then the query conjunction is not a

 consequence of P
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CONCEPT 9 - variable arguments

Variables in queries are treated as existentially quantified

 EXAMPLE 

                 ?- likes(X, prolog).     

says  “is  (∃X) likes(X, prolog)   true?” 

or “find X for which likes(X, prolog) is true”

Variables in program clauses are treated as universally quantified 

EXAMPLE 

              likes(chris, X) :- likes(X, prolog). 

expresses the sentence (∀X) ( likes(chris, X) ← likes(X, prolog) )
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CONCEPT 10 - generalized matching (unification)

Matching a call to a clause head requires them to be 

either        already identical 

or              able to be made identical, if necessary by instantiating

                 (binding) their variables (unification)

EXAMPLE 

              ?- likes(U, chris). 

              likes(bob, Y) :- understands(bob, Y). 

Here, likes(U, chris) and likes(bob, Y) can be made identical (unify)

 by binding   U / bob  and  Y / chris 

The derived query is 

             ?- understands(bob, chris).
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Prolog Terms

•  Terms are the items that can appear as the arguments of 

predicates 

•  They can be viewed as the basic data manipulated during 

execution 

•  They may exist statically in the given code of the program and 

initial query, or they may come into existence dynamically by the 

process of unification

•  Terms containing no variables are said to be ground 

•  Prolog can process both ground and non-ground data 

•  A Prolog program can do useful things with a data structure even 

when that structure is partially unknown
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SIMPLE  TERMS 

     numbers         

                           3   5.6   -10   -6.31 

     atoms         

                         apple   tom   x2   'Hello there'  [ ] 

     variables         

                          X   Y31   Chris   Left_Subtree   Person   _35   _
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COMPOUND  TERMS 

prefix terms 

                  mother(chris) 

                  tree(e, 3, tree(e, 5, e))                     i.e.

                  tree(T, N, tree(e, 5, e))       a binary tree whose root 

                                                             and left subtrees are unknown
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list terms  

            [ ]     [ 3, 5 ]     [ 5, X, 9 ] 

           lists form a subclass of binary trees 

A vertical bar can be used as a separator to present a list in the form

                          [ itemized-members | residual-list ]

    [ X, 3 | Y ] 

   [ 3 | [ 5, 7 ] ]                                                                                                           

   [ 3, 5, 7 ]            

   [ 3, 5 | [ 7 ] ]                                                      
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tuple terms     

(bob, chris)    (1, 2, 3)   ((U, V), (X, Y))

                                      (e, 3, (e, 5, e))

These are preferable (efficiency-wise) when working with fixed-length

 data structures 

arithmetic terms 

3*X+5     sin(X+Y) / (cos(X)+cos(Y)) 

Although these have an arithmetical syntax, they are interpreted 

arithmetically only by a specific set of calls, presented later on.  
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DETERMINISTIC  EVALUATIONS

•  Prolog is non-deterministic in general because the evaluation of a

     query may generate multiple computations 

•  If only ONE computation is generated (whether it succeeds or fails), 
the evaluation is said to be deterministic 

•  The search tree then consists of a single branch
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EXAMPLE 

                                 all_bs([ ]). 

                                 all_bs([ b | T ])  :-  all_bs(T). 

This program defines a list in which every member is b 

Now consider the query 

                                ?- all_bs([ b, b, b ]). 

This will generate a deterministic evaluation

                                ?- all_bs([ b, b, b ]). 

                                ?- all_bs([ b, b ]). 

                                ?- all_bs([ b ]). 

                                ?- all_bs([ ]). 

                                ?- . 

So here the search tree comprises ONE branch (computation), which

happens to succeed
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EXAMPLE 

Prolog supplies the list-concatenation primitive append(X, Y, Z) but if it

 did not then we could define our own: 

                                             app([ ], Z, Z). 

                                             app([ U | X ], Y, [ U | Z ]) :- app(X, Y, Z). 

Now consider the query      ?- app([ a, b ], [ c, d ], L).

The call matches the head of the second program clause by making

 the bindings U / a   X / [ b ]   Y / [ c, d ]   L / [ a | Z ] 

So, we replace the call by the body of the clause, then apply the

 bindings just made to produce the derived query: 

                                            ?- app([ b ], [ c, d ], Z).

Another similar step binds Z / [ b | Z2 ] and gives the next derived query

                                           ?- app( [ ], [ c, d ], Z2). 

This succeeds by matching the first clause, and binds Z2 / [ c, d ] 

The computed answer is therefore L / [ a, b, c, d ]
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In the previous example, in each step, the call matched no more than

one program clause-head, and so again the evaluation was deterministic 

Note that, in general, each step in a computation produces bindings 

which are either propagated to the query variables or are kept on one

side in case they contribute to the final answer 

In the example, the final output binding is L / [ a, b, c, d ]

The bindings kept on one side form the so-called binding environment 

of the computation 

The mode of the query in the previous example was 

                                 ?- app(input, input, output). 

where the first two arguments were wholly-known input, whilst the third

argument was wholly-unknown output 

However, we can pose queries with any mix of argument modes we wish
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So there is a second way in which Prolog is non-deterministic: 

a program does not determine 

the mode of the queries posed to it

EXAMPLE 

Using the same program we can pose a query having the mode  

?- app(input, input, input). such as 

                         ?- app([ a, b ], [ c, d ], [ a, b, c, d ]). 

This gives just one computation, which succeeds, but returns no

 output bindings.

Take a query having mode ?- app(output, mixed, mixed).  such as 

                            ?- app(X, [ b | L ], [ a, E, c, d ]).

This succeeds deterministically to give the output bindings 

X / [ a ], L / [ c, d ], E / b
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This second kind of non-determinism is called input-output 

non-determinism, and distinguishes Prolog from most other

programming formalisms 

With a single Prolog program, we may pose  an infinite variety of

queries, but with other formalisms we have to change the program

whenever we want to solve a new kind of problem 

This does not mean that a single Prolog program deals with all

queries with equal efficiency 

Often, in the interest of efficiency alone, we may well change a

Prolog program to deal with a new species of query
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SUMMARY 

�  given a program, we can pose any queries we like, whatever 

their modes 

�  some queries will generate just one computation,  whereas 

others will generate many 

�  multiple successful computations may or may not  yield distinct 

answers 

�  every answer is a logical consequence of the program
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NON-DETERMINISTIC EVALUATIONS

A Prolog evaluation is non-deterministic (contains more than one

computation) when some call unifies with several clause-heads

 When this is so, the search tree will have several branches

EXAMPLE                                        

               a :- b, c.   (two clause-heads unify with a)

               a :- f.        

               b.             (two clause-heads unify with b)

               b :- g.       

               c.

               d.

               e.

               f.

A query from which calls to a or b are selected must therefore give

several computations
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choice 

points
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•  Presented with several computations, Prolog generates them one at a 

time 

•  Whichever computation it is currently generating, Prolog remains 

totally committed to it until it either succeeds or fails finitely 

•  This strategy is called depth-first search 

•  It is an unfair strategy, in that it is not guaranteed to generate all 
computations, unless they are all finite

•  When a computation terminates, Prolog backtracks  to the most 

recent choice-point offering untried branches 

•  The evaluation as a whole terminates only when no such choice-

points remain 

•  The order in which branches are tried corresponds to the text-order of 

the associated clauses in the program 

•  This is called Prologʼs search rule: 

              it prioritizes the branches in the search tree
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EFFICIENCY
The efficiency with which Prolog solves a problem depends upon

     �    the way knowledge is represented in the program     

     �    the ordering of calls

EXAMPLE 

Change the earlier query and program to 

       ?- d, e, a.             different call-order 

            a :- c, b.          different call-order 

            a :- f. 

            b. 

            b :- g. 

            c. 

            d. 

            e. 

            f.
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This evaluation 

has only 8 steps, 

whereas the  

previous one had 

10 steps 
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The policy for selecting the next call to be processed is called the

computation rule and has a major influence upon efficiency 

So remember ... 

•  a computation rule decides which call to select next from the 

query

•  a search rule decides which program clause to apply to the 

selected call

and in Prolog these two rules are, respectively, 

     “choose the first call in the current query”

     “choose the first applicable untried program clause”
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UNIFICATION

•  This is the process by which Prolog decides that a call can use 

a program clause 

•  The call has to be unified with the head 

•  Two predicates are unifiable if and only if they have a common 

instance

EXAMPLE     

      ?- likes(Y, chris).          likes(bob, X) :- likes(X, logic). 

Let θ be the binding set  { Y / bob, X / chris } 

If E is any logical formula then Eθ denotes the result of applying θ 

to E, so obtaining an instance of E     

              likes(Y, chris)θ = likes(bob, chris)     

              likes(bob, X)θ = likes(bob, chris) 

As the two instances are identical, we say that θ is a unifier for the

original predicates
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THE GENERAL COMPUTATION STEP

      current query             ?- P(args1), others. 

      program clause          P(args2) :- body. 

If θ exists such that     P(args1)θ  = P(args2)θ  

then this clause can be used by this call to produce 

       derived query             ?- bodyθ, othersθ. 

Otherwise, this clause cannot be used by this call
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EXAMPLE              

             ?- app(X, X, [ a, b, a, b ]). 

Along the successful computation we have          

O1 = { X   / [ a | X1 ] }               these are the          

O2 = { X1 / [ b | X2 ] }               output bindings          

O3 = { X2 / [ ] }                         in the unifiers 

whose composition is  { X / [ a, b ],  X1 / [ b ],  X2 / [ ] } 

The answer substitution is then { X / [ a, b ] } 

and applying this to the initial query gives the answer       

             app([ a, b ], [ a, b ], [ a, b, a, b ])
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LIST PROCESSING

Lists are the most commonly-used structures in Prolog, 

and relations on them usually require recursive programs 

EXAMPLE 

To define a palindrome: 

palin([ ]). 

palin([U | Tail]) :-append(M, [U], Tail), 

                           palin(M). 

                                                 Tail
M U U 
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More abstractly: 

        palin([ ]). 

        palin(L) :-first(L, U), last(L, U), 

                        middle(L, M), palin(M). 

        first([U | _], U). 

        last([U], U). 

        last([_ | Tail], U) :- last(Tail, U). 

        middle([ ], [ ]). 

        middle([_], [ ]). 

        middle([_ | Tail], M) :- append(M, [_], Tail).
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EXAMPLE 

To reverse a list: 

         reverse([ ], [ ]). 

         reverse([U | X], R) :- reverse(X, Y),

                                         append(Y, [U], R). 

U 

U 

X 

Y 

reverse X to get Y
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•  Note that the program just seen is not tail-recursive 

•  If we try to force it to be so, by reordering the calls thus: 

          reverse([U | X], R) :- append(Y, [U], R), 

                                           reverse(X, Y). 

       then the evaluation is likely to go infinite for some modes.

•  However, the following is tail-recursive: 

        reverse(L, R) :- rev(L, [ ], R). 

        rev([ ], R, R). 

        rev([U | Tail], A, R) :- rev(Tail, [U | A], R).

•  With this program, the time taken to reverse a given list is 
proportional to the length of that list, and the runtime 
environment

•  It does not generate a stack of pending calls
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BUILT-IN LIST PRIMITIVES

Prolog contains its own library of list programs, such as: 

append(X, Y, Z)              appending Y onto X gives Z 

reverse(X, Y)                  reverse of X is Y 

length(X, N)                    length of X is N 

member(U, X)                 U is in X 

non_member(U, X)         U is not in X 

sort(X, Y)                        sorting X gives Y 

To access these in Sicstus, include in your file       

?- use_module(library(lists)).
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TYPE-CHECKING

To check argument types you can make use of the following, which

 are supplied as primitives: 

atom(X)            X is an atom 

number(X)        X is a number 

integer(X)         X is an integer 

var(X)               X is (an unbound) variable 

nonvar(X)         X is not a variable 

compound(X)   X is a compound term
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With these primitives you can then define further type-checking

procedures 

EXAMPLES

To test whether a term is a list: 

is_list(X) :- atom(X), X=[ ]. 

is_list(X) :- compound(X), X=[_ | _]. 

To test whether a term is a binary tree: 

bintree(X) :- atom(X), X=e. 

bintree(X) :- compound(X), X=t(L, _, R), 

                     bintree(L), bintree(R).
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COMPARING TERMS

Prolog has many primitives for comparing terms, including: 

X = Y            X unifies with Y 

                    e.g. X=a succeeds, binding X / a  

X == Y         X and Y are identical       

                     e.g. [ a, b ] == [ a, b ] succeeds, but 

                            [ a, b ] == [ a, X ] fails 

X \== Y        X and Y are not identical 

                    e.g. [ a, b ] \== [ a, X ] succeeds, without binding X
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ARITHMETIC

Arithmetic expressions use the standard operators such as 

+    -     *     /           (besides others) 

Operands are simple terms or arithmetic expressions 

EXAMPLE 

( 7 + 89 * sin(Y+1) ) /  ( cos(X) + 2.43 ) 

Arithmetic expressions must be ground at the instant Prolog is 

required to evaluate them

REMARK: Different Prolog systems may allow for more/less liberal grammars to compare expressions
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COMPARING ARITHMETIC EXPRESSIONS

E1 =:= E2    tests whether the values of E1 and E2 are equal 

E1 =\= E2    tests whether their values of E1 and E2 are unequal 

E1 < E2       tests whether the value of E1 is less than 

                    the value of E2 

Likewise we have 

> for greater 

>=  for greater or equal 

=<  for equal or less

EXAMPLES 

         ?- X=3, (2+2) =:= (X+1).            succeeds 

         ?- (2+2) =:= (X+1), X=3.            gives an error 

         ?- (2+2) > X.                              gives an error
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The value of an arithmetic expression E may be computed and

 assigned to a variable X by the call 

                                   X  is  E 

EXAMPLES 

          ?- X  is  (2+2).         succeeds and binds X / 4 

          ?- 4  is  (2+2).          gives an error 

          ?- X  is  (Y+2).         gives an error

In SWI it succeeds! 
SWI grammar permits a
more general test
 
           E1 is E2
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                           Do not confuse is with =

X=Y means “X can be unified with Y” and is rarely needed 

EXAMPLES 

?- X = (2+2).         succeeds and binds X / (2+2) 

?- 4 = (2+2).         does not give an error, but fails 

?- X = (Y+2).        succeeds and binds X / (Y+2) 

The ”is” predicate is used only for the very specific purpose 

variable  is  arithmetic-expression-to-be-evaluated
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EXAMPLE 

Summing a list of numbers: 

       sumlist([ ], 0). 

       sumlist([ N | Ns], Total) :- sumlist(Ns, Sumtail), 

                                                Total  is  N+Sumtail. 

This is not tail-recursive - the query length will expand in proportion

 to the length of the input list
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Typical non-tail-recursive execution: 

     ?- sumlist([ 2, 5, 8 ], T). 

     ?- sumlist([ 5, 8 ]), T is 2+T1. 

     ?- sumlist([ 8 ], T2), T1 is 5+T2, T is 2+T1. 

     ?- sumlist([ ], T3), T2 is 8+T3, T1 is 5+T2, T is 2+T1. 

     ?- T2 is 8+0, T1 is 5+T2, T is 2+T1. 

     ?- T1 is 5+8, T is 2+T1. 

     ?- T is 2+13. 

     ?- . 

succeeds with the output binding T / 15
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EXAMPLE 

Doing it tail-recursively: 

        sumlist(Ns, Total) :- tr_sum(Ns, 0, Total). 

        tr_sum([ ], Total, Total). 

        tr_sum([ N | Ns ], S, Total) :- Sub is N+S, 

                                                       tr_sum(Ns, Sub, Total). 

Here, tr_sum(Ns, S, T) means           T = S + Σ Ns
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Typical tail-recursive execution: 

  ?- sumlist([ 2, 5, 8 ], T). 

  ?- tr_sum([ 2, 5, 8 ], 0, T). 

  ?- Sub is 2+0, tr_sum([ 5, 8 ], Sub, T). 

  ?- tr_sum([ 5, 8 ], 2, T). 

         :  

  ?- tr_sum([ 8 ], 7, T). 

         : 

  ?- tr_sum([ ], 15, T). 

  ?- . 

and again succeeds with T / 15 

Here the query length never exceeds two calls and each derived

query can overwrite its predecessor in memory
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DISJUNCTION

•  Disjunction between calls can always be expressed using 

procedures offering alternative clauses 

     EXAMPLE 

                  out_of_range(X, Low, High) :- X<Low. 

                  out_of_range(X, Low, High) :- X>High.

•  Equivalently, use Prologʼs disjunction connective, the semi-colon 

EXAMPLE 

                   out_of_range(X, Low, High) :- X<Low ; X>High. 

•  With mixtures of conjunctions and disjunctions, use parentheses to 

avoid ambiguity: 

     EXAMPLE        

                    a :- b, (c ; (d, e)).
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NEGATION

Prolog does not have an explicit connective for classical negation.  

It is arguable that we do not need one 

EXAMPLE 

innocent(X) ← ¬guilty(X)        in classical logic 

In practice we do not establish the innocence of X by 

proving the negation of “X is guilty” 

Instead, we establish it by finitely failing to prove “X is guilty”
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Prolog provides a special operator  \+  read as 

                      “finitely fail to prove” 

So in Prolog we would write 

                innocent(X) :-  \+guilty(X). 

The operational meaning of  \+  is 

\+P succeeds iff  P fails finitely 

\+P fails finitely iff  P succeeds
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EXAMPLE 

“X is sad if someone else fails to like X” 

Using the data, bob, chris and frank are sad, 

because in each case someone else fails to like them 
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\+ does not perfectly simulate classical negation 

EXAMPLE 

p ← ¬p                classically implies p but 

p :- \+p.               cannot solve    ?- p. 

                           (it will fail infinitely, not finitely)

So, p is a logical consequence in the first case, but is not a 

computable consequence in the second
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EXAMPLE 

“X is very sad if no one else likes X” 

Here, just bob and chris are very sad, 

because in each case no one else likes them 

Syntax Note - essential to put a space between \+ and ( 
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Some Prologs (but not Sicstus) require \+P to be ground at the

instant it is selected for evaluation

We can reformulate the previous example as

          very_sad(X) :- person(X), \+liked(X). 

          liked(X) :- person(Y), Y \== X, likes(Y, X). 

This is the safe option: 

if our Prolog does not reject non-ground  \+ calls then it may

compute intuitively wrong answers when it evaluates them 

The above  \+liked(X)  call is ground when it is selected, because 

the person(X) call has already grounded X
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The \+ operator partially compensates for the head of a clause

being restricted to a single predicate 

If we want to use the knowledge that, say, 

                A ∨ B ← C we can approximate it 

    by     A :- C, \+B. 

or by     B :- C, \+A. 

or by    both of them together
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GENERATE-AND-TEST

Generate-and-test is a feature of many algorithms 

It can be formulated as      

         generate items satisfying property P,      

         test whether they satisfy property Q      

P acts as a generator      Q acts as a tester



65 

EXAMPLE 

“X is happy  if  all friends of X like logic” 

In classical logic we can express this by 

happy(X)  ← (∀Y)(friend(X, Y) →  likes(Y, logic)) 

In Prolog we can rewrite this as 

happy(X) :- forall(friend(X, Y), likes(Y, logic)). 

in which the forall will 

                generate  each friend Y of X 

               test  whether Y likes logic
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EXAMPLE 

Show that L is a list of positive numbers 

all_pos_nums(L) :-     is_list(L), 

                                   forall(member(U, L), (number(U), U>0)). 

and some appropriate is_list procedure
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•  Some Prologs (but not Sicstus) supply forall as a primitive 

•  If necessary we can define it ourselves: 

                  forall(P, Q) :- \+ (P, \+ Q). 

     “no way of solving P fails to solve Q”

•  Note that forall does not perfectly simulate ∀ 

           (∀...)(P → P) is true in classical logic 

but 

           forall(P, P) succeeds only if the number 

                             of ways of solving P is finite
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CALL-TERMS 
A call-term is anything that the Prolog interpreter can be asked to 

evaluate logically, such as 

In a call forall(P, Q) the arguments P and Q may be any call-terms,

however complex - but if they are not atomic then they need to be

parenthesized 
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AGGREGATION 
•  Often we want to collect into a single list all those items 

satisfying some property 

•  Prolog supplies a convenient primitive for this:     

findall(Term, Call-term, List)

EXAMPLE

To find all those whom chris likes: 

?- findall(X, likes(chris, X), L). 

this returns              L / [ logic, frank ] 
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EXAMPLE 

To find all sublists of [ a, b, c ] having length 2: 

?- findall([ X, Y ], sublist([ X, Y ], [ a, b, c ]), S). 

this returns S / [ [ a, b ], [ b, c ] ]

EXAMPLE 

Given any list X, construct the list Y obtained by replacing each

 member of X by E: 

replace(X, E, Y) :- findall(E, member(_, X), Y). 

Then,

?- replace([ a, b, c ], e, Y). 

             returns Y / [ e, e, e ] 

?- replace([ a, b, c ], [ 0 ], Y). 

             returns Y / [ [ 0 ], [ 0 ], [ 0 ] ]
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EXAMPLE 

Construct a list L of pairs (X, F) where X is a person and F is a list

of all the friends of X: 

friend_list(L) :- 

       findall( (X, F),  

                   ( person(X), findall(Y, friend(X, Y), F) ), L ). 

So here we have a findall inside a findall
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EXAMPLE

Construct a list L of persons each of whom does whatever 

chris does: 

clones_of_chris(L) :-     

        findall( X,               

                     ( person(X),   

                       forall(does(chris, Y), does(X, Y)) ), L ). 

So here we have a forall inside a findall
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EXAMPLE

Given a list L of classes, test whether all of them contain more

females than males: 

mostly_female_classes(L) :- 

          forall( (  member(C, L),      

          findall(F,  (member(F, C), female(F)), Fs),     

          findall(M, (member(M, C), male(M)),  Ms),   

          length(Fs,  NF),   

          length(Ms, NM) ), 

          NF > NM ). 

So here we have findalls inside a forall
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CONTROLLING SEARCH

•  The extent to which a search tree is generated can be controlled 

by use of the “cut” primitive, denoted by ! 

•  When executed, a cut prunes some parts of the search tree 

•  It is motivated by a wish to suppress unwanted computations 

•  It can be placed anywhere in a query or program where one 

might otherwise place an ordinary call 

•  Any number of cuts can be used
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A program clause having a cut looks like: 

head  :-  preceding-calls, !, other-calls. 

The cut acts only when it is selected as the next call to be

evaluated, and it then 

•  prunes all untried ways of evaluating 

     whichever call invoked the clause containing the cut 

and 

•  prunes all untried ways of evaluating 

     the calls in this clause which precede the cut
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EXAMPLE
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EXAMPLE 

This program tests a term X and prints a comment 

The intention is that if X is a number then 

the comment is yes but is otherwise no 

         comment(X) :- number(X), !, write(yes).   

          comment(X) :- write(no).

Will it work (assuming X is ground)?
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BUT - suppose we reorder the clauses as:    

            comment(X) :- write(no).   

            comment(X) :- number(X), !, write(yes).
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EXAMPLE 

Define least(X, Y, L)  to mean “L is the least of X and Y” 

                least(X, Y, X) :- X<Y, !.   

                least(X, Y, Y).

?- least(1, 2, L).           correctly succeeds, binding L / 1 

?- least(2, 1, L).           correctly succeeds, binding L / 1

BUT ... 

?- least(1, 2, 2).          wrongly succeeds 

?- least(a, b, b).          wrongly succeeds 

and this happens however the clauses are ordered   
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THE GREAT MORAL 

1.  If you can reasonably avoid using cut, do so  

2.  If you must use it, take great care with clause order

3.     In any event, compute only the TRUTH

EXAMPLE 

          comment(X) :-    number(X), write(yes).   

          comment(X) :- \+number(X), write(no).

This program, having no cut, potentially evaluates

number(X) twice, depending on the query - a small overhead
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META-PROGRAMMING

•  This concerns programs that variously access, control or 

analyse other programs or their components 

•  It is a feature of many declarative formalisms and gives them a 
high degree of expressiveness 

•  It is approximately comparable to the use of higher-order 

functions in a functional programming language 

•  In Prolog, most meta-programming exploits the fact that 

     terms and predicates have 

     identical syntactic structure
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EXAMPLE 

overcome_with_joy(X) :- user_of(X, prolog). 

In the above, user_of(X, prolog) is a predicate 

overcome_with_joy(X) :- true_that(user_of(X, prolog)). 

In the above, user_of(X, prolog) is an argument (term)
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BUILT-IN META-PREDICATES
We have already met some of these:      

\+P           forall(P, Q)           findall(Term, Q, List) 

Here, P and Q are object-level arguments, 

but are interpreted as  call-terms at the meta-level 

Their run-time manipulation can use the same unification mechanism 

as used for ordinary object-level terms

EXAMPLE 

                      choose(X, wants(chris, X)). 

                      ?- choose(Y, Q), forall(nice(Y), Q). 

From this query we get the derived query 

                      ?- forall(nice(Y), wants(chris, Y)). 

by binding           X / Y, Q / wants(chris, Y)
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THE  =..  PRIMITIVE 

This is another built-in meta-predicate 

It relates a term to a list comprising that termʼs principal 

functor and arguments 

EXAMPLES 

chris =.. L                           binds L / [chris] 

happy(chris) =.. L               binds L / [happy, chris] 

likes(X, prolog) =.. L           binds L / [likes, X, prolog] 

T =.. [append, X, Y, Z]        binds T / append(X, Y, Z) 

T =.. [s, s(0)]                       binds T / s(s(0))
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EXAMPLE (HARDER)

•  From any given non-variable term, extract a list L of all that 

termʼs functors with their arities 

•  For instance, we want the query 

                     ?- functors(p(a, f(X, g(b)), Y), L). 

     to return  L / [(p, 3), (a, 0), (f, 2), (g, 1), (b, 0)] 

•  Syntax Note: Prolog atoms are just functors whose arity is 0

Here is the program (make sure you understand it)
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META-VARIABLES  

These are ordinary variables but are expected to become bound to

terms that will then be treated as call-terms 

EXAMPLE 

Here is a program that simulates  \+X 

             our_not(X) :- X, !, fail.      (Here, X acts as a meta-variable)

             our_not(X).

note  - “fail”      always fails finitely

The query              ?- our_not(happy(chris)). 

binds      X / happy(chris)      in the first clause, so that 

X will be a call-term at the instant it is selected for evaluation 

The above query behaves exactly the same as ?- \+happy(chris). 
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EXAMPLE

tell_us_about(X, Y) :- 

        person(X), aspect(Y), Test=..[Y, X], 

        Test. 

?- tell_us_about(susan, Y).            returns Y / strict  or  Y / fair 

?- tell_us_about(X, logical).           returns X / chris 
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DYNAMIC  CLAUSES

•  Clauses can be created, consulted or deleted dynamically 

•  Their head relations can be declared as “dynamic”, but Sicstus 

     does not insist upon this, unless those relations are additionally

     defined by explicit procedures 

     e.g.    :- dynamic likes/2.           forces likes to be dynamic 

•  The most common primitives acting on dynamic clauses are: 

       clause - finds a clause body, given the head relation 

       assert - creates a clause 

       retract - deletes a clause
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THE  “CLAUSE”  PRIMITIVE 

A call to this has the form 

       clause(H, B)               where H is any predicate in

                                          which at least the relation name is given 

It succeeds if and only if 

                      H unifies by θ with the head of an existing

                      dynamic clause Head :- Body.  whereupon 

                      B is returned as Bodyθ
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EXAMPLE 

?- clause(likes(chris, frank), B). 

returns two alternative values for B 

   B / likes(frank, prolog) 

   B / (honest(frank), praises(frank, chris))

?- clause(likes(frank, X), B). 

returns     X / prolog, B / true 
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THE  “ASSERT”  PRIMITIVE 

This has the form assert(Clause) 

EXAMPLES 

?- assert(likes(chris, prolog)).    

adds to the dynamic-clause-base the clause likes(chris, prolog). 

?- assert((likes(X, prolog) :- wise(X))). 

adds to the dynamic-clause-base the clause 

likes(X, prolog) :- wise(X).
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THE  “RETRACT”  PRIMITIVE 

This has the form retract(Clause) 

EXAMPLE 

?- retract((likes(X, haskell) :- crazy(X))). 

deletes from the dynamic-clause-base the clause 

likes(X, haskell) :- crazy(X). 

Additional note 

To retract all current dynamic clauses for a relation P, execute the 

call retractall(P(...)) in which each argument of P is an underscore, 

as in 

retractall(likes(_, _))
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EXAMPLE - simulating destructive assignment 

Suppose that a 2-dimensional array “a” of numbers is represented

by a set of assertions which have already been set up using assert:

           a(I, J, V)                     represents   a[I, J] = V 

Suppose now we want to update “a” so that any element previously

 <0 is altered to become, say, 10. We can do this by evaluating the

call-term 

forall( (a(I, J, V), V<0), 

          (retract(a(I, J, V)), assert(a(I, J, 10))) )
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META-INTERPRETERS

These are programs which express ways of executing queries

 using other programs treated as data 

EXAMPLE

This expresses the behaviour of a sequential, depth-first 

interpreter asked to evaluate a list of calls given as Query



98 

The computation rule used depends upon how 

select and combine are defined 

To express the Prolog computation rule: 

The result is then an interpreter, written in Prolog, which 

simulates Prologʼs own behaviour 
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EXAMPLE 

A computation-rule that is often superior to Prologʼs is the

procrastination principle (a standard heuristic in AI): 

“select whichever call can invoke  

the fewest number of clauses” 

To obtain this behaviour we have to write an appropriate definition

of select
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Defining select for the procrastination principle: 


