Chapter 7

Negation: Declarative Interpretation
Outline

- First-Order Formulas and Logical Truth
- The Completion semantics
- Soundness and restricted completeness of SLDNF-Resolution
- Extended consequence operator
- An alternative semantics: Standard models

First-Order Formulas

\(\Pi, F\) ranked alphabets of predicate symbols and function symbols, respectively,
\(V\) set of variables

The (first-order) formulas (over \(\Pi, F,\) and \(V\)) are inductively defined as follows:

- if \(A \in TB_{\Pi,F,V}\), then \(A\) is a formula

- if \(G_1\) and \(G_2\) are formulas, then \(\neg G_1\), \(G_1 \land G_2\) (written \(G_1, G_2\)), \(G_1 \lor G_2\), \(G_1 \leftarrow G_2\), and \(G_1 \leftrightarrow G_2\) are formulas

- if \(G_1\) is formula and \(x \in V\), then \(\forall x\ G\) and \(\exists x\ G\) are formulas
Extended Notion of Logical Truth (I)

G formula, I interpretation with domain D, $\sigma : V \rightarrow D$ state

G true in I under σ, written $I \models_\sigma G :\iff$

- $I \models_\sigma p(t_1, \ldots, t_n) :\iff (\sigma(t_1), \ldots, \sigma(t_n)) \in p_i$
- $I \models_\sigma \neg G :\iff I \not\models_\sigma G$
- $I \models_\sigma G_1 \land G_2 :\iff I \models_\sigma G_1$ and $I \models_\sigma G_2$
- $I \models_\sigma G_1 \lor G_2 :\iff I \models_\sigma G_1$ or $I \models_\sigma G_2$
- $I \models_\sigma G_1 \leftarrow G_2 :\iff$ if $I \models_\sigma G_2$ then $I \models_\sigma G_1$
- $I \models_\sigma G_1 \leftrightarrow G_2 :\iff I \models_\sigma G_1$ iff $I \models_\sigma G_2$
- $I \models_\sigma \forall x G :\iff$ for every $d \in D$: $I \models_\sigma^d G$
- $I \models_\sigma \exists x G :\iff$ for some $d \in D$: $I \models_\sigma^d G$

where $\sigma' : V \rightarrow D$ with $\sigma'(x) = d$ and $\sigma'(y) = \sigma(y)$ for every $y \in V - \{x\}$
Extended Notion of Logical Truth (II)

G formula, S, T sets of formulas, I, interpretation
Let $x_1, ..., x_k$ be the variables occurring in G.

- $\forall x_1, ..., x_k G$ universal closure of G (abbreviated $\forall G$)
- $I \models \forall G \iff I \models_\sigma G$ for every state σ
- $I \models_\sigma p(t_1, ..., t_n) \iff (\sigma(t_1), ..., \sigma(t_n)) \in p_I$
- G true in I (or: I model of G), written: $I \models G \iff I \models \forall G$
- I model of S, written: $I \models S \iff I \models G$ for every $G \in S$
- T semantic (or: logical) consequence of S, written $S \models T$
 \iff every model of S is a model of T
Programs Never Have Negative Consequences (I)

\[
\begin{align*}
\text{\textbf{P}_{\text{mem}}:} & \quad \text{\textit{member}(x, [x|y]) \leftarrow} \\
& \quad \text{\textit{member}(x, [y|z]) \leftarrow \text{\textit{member}(x, z)}}
\end{align*}
\]

Then \(\text{\textbf{P}_{\text{mem}}} \models \text{\textit{member}(a, [a|b])} \) and \(\text{\textbf{P}_{\text{mem}}} \not\models \text{\textit{member}(a, [])} \).

But also \(\text{\textbf{P}_{\text{mem}}} \not\models \lnot\text{\textit{member}(a, [])} \), since

\[
\text{\textbf{HB}_{\{\text{\textit{member}}},\{,[]\},a} \models \text{\textbf{P}_{\text{mem}}} \quad \text{and} \quad \text{\textbf{HB}_{\{\text{\textit{member}}},\{,[]\},a} \not\models \lnot\text{\textit{member}(a, [])}.
\]

Nevertheless the SLDNF-tree of \(\text{\textbf{P}_{\text{mem}}} \cup \{ \lnot\text{\textit{member}(a, [])} \} \) is successful:

\[
\begin{array}{c}
\lnot\text{\textit{member}(a,[])} \\
\Downarrow \\
\text{\textit{member}(a,[])} \\
\Downarrow \\
\text{success}
\end{array}
\]

\text{failure}
Programs Never Have Negative Consequences (II)

Problem: For every extended program P the “corresponding” Herbrand base is a model.

Hence: No negative ground literal L can ever be a logical consequence of P.

But: SLDNF-tree of $P \cup \{L\}$ may be successful!

\Rightarrow Soundness of SLDNF-resolution?

Solution: Strengthen P by completion (“replace implications by equivalences”) to $\text{comp}(P)$ and compare SLDNF-resolution with $\text{comp}(P)$ instead of P!
Completion (Example I)

\[
P: \begin{array}{ll}
happy & \leftarrow \text{sun, holidays} \\
happy & \leftarrow \text{snow, holidays} \\
snow & \leftarrow \text{cold, precipitation} \\
cold & \leftarrow \text{winter} \\
\text{precipitation} & \leftarrow \text{holidays} \\
\text{winter} & \leftarrow \\
\text{holidays} & \leftarrow \\
\end{array}
\]

\[
\text{comp}(P): \begin{array}{ll}
happy & \leftarrow (\text{sun, holidays}) \lor (\text{snow, holidays}) \\
snow & \leftarrow \text{cold, precipitation} \\
cold & \leftarrow \text{winter} \\
\text{precipitation} & \leftarrow \text{holidays} \\
\text{winter} & \leftarrow \text{true} \\
\text{holidays} & \leftarrow \text{true} \\
\text{sun} & \leftarrow \text{false} \\
\end{array}
\]

Then, \(\text{comp}(P) \models \text{happy, snow, cold, precipitation, winter, holidays, } \neg \text{sun} \).
Completion (Example II)

\[
P: \begin{align*}
\text{member}(x, [x|y]) & \leftarrow \\
\text{member}(x, [y|z]) & \leftarrow \text{member}(x, z) \\
\text{disjoint}([], x) & \leftarrow \\
\text{disjoint}([x|y], z) & \leftarrow \text{member}(x, z), \text{disjoint}(y, z)
\end{align*}
\]

\[
\begin{align*}
\text{comp}(P): \quad & \forall x_1, x_2 \text{ member}(x_1, x_2) \iff \left(\exists x, y \quad x_1 = x, x_2 = [x|y] \right) \lor \\
& \quad \left(\exists x, y, z \quad x_1 = x, x_2 = [y|z], \text{ member}(x, z) \right) \\
& \forall x_1, x_2 \text{ disjoint}(x_1, x_2) \iff \left(\exists x \quad x_1 = [], x_2 = x \right) \lor \\
& \quad \left(\exists x, y, z \quad x_1 = [x|y], x_2 = z, \neg \text{ member}(x, z), \text{ disjoint}(y, z) \right)
\end{align*}
\]

plus standard equality and inequality axioms

Then, e.g. \(\text{comp}(P) \models \text{ member}(a, [a|b]), \neg \text{ member}(a, []), \neg \text{ disjoint}([a], [a]). \)
Completion (I)

Completion of extended program P (denoted by $\text{comp}(P)$) is the set of formulas constructed from P by the following 6 steps:

1. Associate with every n-ary predicate symbol p a sequence of pairwise distinct variables x_1, \ldots, x_n which do not occur in P.

2. Transform each clause $c = p(t_1, \ldots, t_n) \leftarrow B$ into

 $$p(x_1, \ldots, x_n) \leftarrow x_1 = t_1, \ldots, x_n = t_n, B$$

3. Transform each resulting formula $p(x_1, \ldots, x_n) \leftarrow G$ into

 $$p(x_1, \ldots, x_n) \leftarrow \exists z \ G$$

 where z is a sequence of the elements of $\text{Var}(c)$.
Completion (II)

4. For every n-ary predicate symbol p, let
 \[p(x_1, \ldots, x_n) \leftarrow \exists z_1 \ G_1, \ldots, p(x_1, \ldots, x_n) \leftarrow \exists z_m \ G_m \]
 be all implications obtained in Step 3 ($m \geq 0$).

- If $m > 0$, then replace these by the formula
 \[\forall x_1, \ldots, x_n \ p(x_1, \ldots, x_n) \leftarrow \exists z_1 \ G_1 \lor \ldots \lor \exists z_m \ G_m \]
 (If some $\exists z_i \ G_i$ is empty, then replace it by \textit{true}.)

- If $m = 0$, then add the formula
 \[\forall x_1, \ldots, x_n \ p(x_1, \ldots, x_n) \leftarrow false \]
Completion (III)

5. Standard axioms of equality
\[
\begin{align*}
\forall [& x = x] \\
\forall [& x = y \rightarrow y = x] \\
\forall [& x = y \land y = z \rightarrow x = z] \\
\forall [& x_i = y \rightarrow f(x_1, \ldots, x_i, \ldots, x_n) = f(x_1, \ldots, y, \ldots, x_n)] \\
\forall [& x_i = y \rightarrow (p(x_1, \ldots, x_i, \ldots, x_n) \leftrightarrow p(x_1, \ldots, y, \ldots, x_n))]
\end{align*}
\]

6. Standard axioms of inequality
\[
\begin{align*}
\forall [& x_1 \neq y_1 \lor \ldots \lor x_n \neq y_n \rightarrow f(x_1, \ldots, x_n) \neq f(y_1, \ldots, y_n)] \\
\forall [& f(x_1, \ldots, x_m) \neq g(y_1, \ldots, y_n)] \quad \text{(whenever } f \neq g) \\
\forall [& x \neq t] \quad \text{(whenever } x \text{ is proper subterm of } t)
\end{align*}
\]

5. and 6. ensure that = must be interpreted as equality!
Soundness of SLDNF-Resolution

P extended program, Q extended query, θ substitution:
- $\theta \models_{\text{Var}(Q)}$ correct answer substitution of Q \iff $\text{comp}(P) \models Q\theta$
- $Q\theta$ correct instance of Q \iff $\text{comp}(P) \models Q\theta$

Theorem (cf. e.g. [Lloyd, 1987])
If there exists a successful SLDNF-derivation of $P \cup \{Q\}$ with CAS θ, then $\text{comp}(P) \models Q\theta$.

Corollary
If there exists a successful SLDNF-derivation of $P \cup \{Q\}$, then $\text{comp}(P) \models \exists Q$.
SLDNF-Resolution is Not Complete (I): Inconsistency

\[P : \begin{array}{c}
p \leftarrow \neg p
\end{array} \]

\[\text{comp}(P) \supseteq \{ p \leftrightarrow \neg p \} \quad \text{“=} \quad \{ \text{false} \}. \]

Hence, \(\text{comp}(P) \models p \) and \(\text{comp}(P) \models \neg p. \)

(because \(I \not\models \text{comp}(P) \) for every interpretation \(I \), i.e. \(\text{comp}(P) \) is inconsistent)

But there is neither a successful SLDNF-derivation of \(P \cup \{ p \} \) nor of \(P \cup \{ \neg p \}. \)
SLDNF-Resolution is Not Complete (II): Non-Strictness

\[P : \begin{align*}
 p & \leftarrow q \\
 p & \leftarrow \neg q \\
 q & \leftarrow q
\end{align*} \]

\[\text{comp}(P) \supseteq \{ p \leftarrow q \lor \neg q, q \leftarrow q \} \equiv \{ p \leftarrow \text{true} \}. \]

Hence, \(\text{comp}(P) \models p \).

But there is no successful SLDNF-derivation of \(P \cup \{ p \} \).
SLDNF-Resolution is Not Complete (III): Floundering

\[P : \quad p(x) \leftarrow \neg q(x) \]

\[\text{comp}(P) \supseteq \{ \forall x_1 \ p(x_1) \leftrightarrow \exists x \ x_1 = x, \neg q(x), \ \forall x_1 \ q(x_1) \leftrightarrow \text{false} \} \]

\[\text{“=”} \ \{ \forall x_1 \ p(x_1) \leftrightarrow \text{true}, \ \forall x_1 \ q(x_1) \leftrightarrow \text{false} \}. \]

Hence, \[\text{comp}(P) \models \forall x_1 \ p(x_1). \]

But there is no successful SLDNF-derivation of \[P \cup \{ p(x_1) \}. \]
SLDNF-Resolution is Not Complete (IV): Unfairness

\[P : \begin{array}{l}
 r \leftarrow p, q \\
 p \leftarrow p
\end{array} \]

\[\text{comp}(P) \supseteq \{ r \leftarrow p, q, \ p \leftarrow p, \ q \leftarrow \text{false} \} = \{ r \leftarrow \text{false}, \ q \leftarrow \text{false} \}. \]

Hence, \(\text{comp}(P) \vdash \neg r. \)

But there is no successful SLDNF-derivation of \(P \cup \{ \neg r \} \) w.r.t. leftmost selection rule.
Dependency Graphs

dependency graph D_P of an extended program P

$:\iff$

directed graph with labeled edges, where

- the nodes are the predicate symbols of P;
- the edges are either labeled by $+$ (positive edge) or by $-$ (negative edge);
- $p \stackrel{+}{\rightarrow} q$ edge in D_P: \iff

 P contains a clause $p(s_1, \ldots, s_m) \leftarrow L, q(t_1, \ldots, t_n), N$

- $p \stackrel{-}{\rightarrow} q$ edge in D_P: \iff

 P contains a clause $p(s_1, \ldots, s_m) \leftarrow L, \neg q(t_1, \ldots, t_n), N$
Strict, Hierarchical, Stratified Programs

P extended program, D_P dependency graph of P, p, q predicate symbols, Q extended query:

- p depends evenly (resp. oddly) on q ⇔ there is a path in D_P from p to q with an even—including 0—(resp. odd) number of negative edges
- P is strict w.r.t. Q ⇔ no predicate symbol occurring in Q depends both evenly and oddly on a predicate symbol in the head of a clause in P
- P is hierarchical ⇔ no cycle exists in D_P
- P is stratified ⇔ no cycle with a negative edge exists in D_P
Restricted Completeness of SLDNF-Resolution (I)

Theorem ([Lloyd, 1987])
Let \(P \) be a \textit{hierarchical} and \textit{allowed} program and \(Q \) be an \textit{allowed} query.

If \(\text{comp}(P) \models Q\theta \) for some \(\theta \) such that \(Q\theta \) is ground, then there exists a successful SLDNF-derivation of \(P \cup \{Q\} \) with \textit{CAS} \(\theta \).

Note:
Theorem does not hold, if arbitrary selection rule is fixed!
Selection rule has to be \textit{safe}!
Restricted Completeness of SLDNF-Resolution (II)

Theorem ([Cavedon and Lloyd, 1989])

Let \(P \) be a stratified and allowed program and \(Q \) be an allowed query, such that \(P \) is strict w.r.t. \(Q \).

If \(\text{comp}(P) \models Q\theta \) for some \(\theta \) such that \(Q\theta \) is ground, then there exists a successful SLDNF-derivation of \(P \cup \{Q\} \) with \text{CAS} \ \theta.

Note:

Theorem does not hold if arbitrary selection rule is fixed!
Selection rule has to be safe and fair!
Fair Selection Rules

(extended) selection rule \(\mathcal{R} \) is fair \(\iff \)

for every SLDNF-tree \(\mathcal{F} \) via \(\mathcal{R} \) and for every branch \(\xi \) in \(\mathcal{F} \):

- either \(\xi \) is failed
- or for every literal \(L \) occurring in a query of \(\xi \), (some further instantiated version of) \(L \) is selected within a finite number of derivation steps

Example:

- selection rule “select leftmost literal” is unfair
- selection rule “select leftmost literal to the right of the literals introduced at the previous derivation step, if it exists; otherwise select leftmost literal” is fair
Extended Consequence Operator

Let P be an extended program and I a Herbrand interpretation. Then

$$T_P(I) : \iff \{ H \mid H \leftarrow B \in \text{ground}(P), I \models B \}$$

In case P is a definite program, we know that

- T_P is monotonic,
- T_P is continuous,
- T_P has the least fixpoint $\mathcal{M}(P),$
- $\mathcal{M}(P) = T_P^\uparrow w.$

In case of extended programs all of these properties are lost!
Extended T_P-Characterization (I)

Lemma 4.3 ([Apt and Bol, 1994])
Let P be an extended program and I a Herbrand interpretation. Then

$$I \models P \iff T_P(I) \subseteq I.$$

Proof:

$I \models P$

iff for every $H \leftarrow B \in \text{ground}(P)$: $I \models B$ implies $I \models H$

iff for every $H \leftarrow B \in \text{ground}(P)$: $I \models B$ implies $H \in I$

iff for every ground atom H: $H \in T_P(I)$ implies $H \in I$

iff $T_P(I) \subseteq I$
Extended T_p-Characterization (II)

Definition
Let F and Π be ranked alphabets of function symbols and predicate symbols, respectively, let $= \notin \Pi$ be a binary predicate symbol ("equality"), and let I be a Herbrand interpretation for F and Π.

Then $I_e : \iff I \cup \{ (t, t) \mid t \in HU_F \}$ is called a standardized Herbrand interpretation for F and $\Pi \cup \{ = \}$.

Lemma 4.4 ([Apt and Bol, 1994])
Let P be an extended program and I a Herbrand interpretation. Then

$$I_e \models comp(P) \iff T_P(I) = I.$$
Extended T_P-Characterization (III)

Proof Idea of Lemma 4.4:

\[I_\twoheadrightarrow \models \text{comp}(P) \]

iff (since I_\twoheadrightarrow is a model for standard axioms of equality and inequality)

\[\text{for every ground atom } H : I \models (H \leftrightarrow \bigvee_{(H \leftarrow B) \in \text{ground}(P)} B) \]

iff for every ground atom \(H: H \in I \iff I \models B \) for some \(H \leftarrow B \in \text{ground}(P) \)

iff for every ground atom \(H : H \in I \iff H \in T_P(I) \)

iff \(T_P(I) = I \)
Completion may be Inadequate

\[\begin{align*}
\text{ill} &\leftarrow \neg \text{ill, infection} \\
\text{infection} &\leftarrow
\end{align*}\]

\(\text{comp}(P) \supseteq \{\text{ill} \leftarrow \neg \text{ill, infection} \ , \ \text{infection} \leftarrow \text{true}\}\)

is consistent (it has no models).
Hence, \(\text{comp}(P) \models \text{healthy}\).

But \(I = \{\text{infection, ill}\}\) is (the only) Herbrand model of \(P\).
Hence, \(P \not\models \text{healthy}\).
Non-Intended Minimal Herbrand Models

\[P_1: \quad p \leftarrow \neg q \]

\(P_1 \) has three Herbrand models:
\(M_1 = \{p\}, \ M_2 = \{q\}, \) and \(M_3 = \{p, q\} \)

\(P_1 \) has no least, but two minimal Herbrand models: \(M_1 \) and \(M_2 \)

However: \(M_1 \), and not \(M_2 \), is the “intuitive” model of \(P_1 \).
Supported Herbrand Interpretations

A Herbrand interpretation I is supported if:

$(\forall H \in I \exists B \in \text{ground}(P) \text{ such that } I \models B)$

(Intuition: B is an “explanation” for H)

Example:

M_1 is a supported model of P_1. ($\neg q$ is explanation for p)

M_2 is no supported model of P_1.

Also note (cf. Lemma 4.3) that $T_{P_1}(M_2) = \emptyset \subseteq M_2$, but in particular $T_{P_1}(M_1) = M_1$.
Extended T_P-Characterization (IV)

Lemma 6.2 ([Apt and Bol, 1994])
Let P be an extended program and I a Herbrand interpretation. Then

$$I \models P \text{ and } I \text{ supported } \iff T_P(I) = I.$$

Proof Idea:

1. $I \models P$ and I supported
2. iff for every $(H \leftarrow B) \in \text{ground}(P):$ $I \models B$ implies $I \models H$
 and for every $H \in I:$$I \models \bigvee_{(H \leftarrow B) \in \text{ground}(P)} B$
3. iff for every ground atom $H:$$I \models (H \leftarrow \bigvee_{(H \leftarrow B) \in \text{ground}(P)} B)$
 and $I \models (H \rightarrow \bigvee_{(H \leftarrow B) \in \text{ground}(P)} B)$
4. iff for every ground atom $H:$$I \models (H \leftrightarrow \bigvee_{(H \leftarrow B) \in \text{ground}(P)} B)$
5. iff I model for $\text{comp}(P)$
6. iff (Lemma 4.4) $T_P(I) = I$
Non-Intended Supported Models

\[P_2: \begin{align*}
p & \leftarrow \neg q \\
q & \leftarrow q
\end{align*} \]

\(P_2 \) has three Herbrand models:
\(M_1 = \{p\}, \ M_2 = \{q\}, \text{ and } M_3 = \{p, q\} \)

\(P_2 \) has two supported Herbrand models: \(M_1 \) and \(M_2 \)

However: \(M_1 \), and not \(M_2 \), is the “intended” model of \(P_2 \).
\(M_1 \) is called the standard model of \(P_2 \) (cf. slide VII/35).
Stratifications

P extended program and D_P dependency graph of P:

- predicate symbol p defined in P :
 $\iff P$ contains a clause $p(t_1, \ldots, t_n) \leftarrow B$
- $P_1 \cup \ldots \cup P_n = P$ stratification of P :
 - $P_i \neq \emptyset$ for every $i \in [1, n]$
 - $P_i \cap P_j = \emptyset$ for every $i, j \in [1, n]$ with $i \neq j$
 - for every p defined in P_i and edge $p \rightarrow^+ q$ in D_P: q not defined in $\bigcup_{j=i+1}^nP_j$
 - for every p defined in P_i and edge $p \rightarrow^- q$ in D_P: q not defined in $\bigcup_{j=i}^nP_j$

Lemma 6.5 ([Apt and Bol, 1994])

An extended program is stratified iff it admits a stratification.

Note: A stratified program may have different stratifications.
Example (I)

\[P: \]
\[
\begin{align*}
\text{zero}(0) & \leftarrow \\
\text{positive}(x) & \leftarrow \text{num}(x), \neg \text{zero}(x) \\
\text{num}(0) & \leftarrow \\
\text{num}(s(x)) & \leftarrow \text{num}(x)
\end{align*}
\]

\[P_1 \cup P_2 \cup P_3 \text{ is a stratification of } P, \text{ where} \]
\[P_1 = \{ \text{num}(0) \leftarrow , \text{num}(s(x)) \leftarrow \text{num}(x) \} \]
\[P_2 = \{ \text{zero}(0) \leftarrow \} \]
\[P_3 = \{ \text{positive}(x) \leftarrow \text{num}(x), \neg \text{zero}(x) \} \]
Example (II)

\[P: \]
\[
\begin{align*}
 &\text{num}(0) \leftarrow \\
 &\text{num}(s(x)) \leftarrow \text{num}(x) \\
 &\text{even}(0) \leftarrow \\
 &\text{even}(x) \leftarrow \neg \text{odd}(x), \text{num}(x) \\
 &\text{odd}(s(x)) \leftarrow \text{even}(x)
\end{align*}
\]

\emph{P} admits no stratification.
Standard Models (Stratified Programs)

Let I be an Herbrand interpretation, Π set of predicate symbols:

$I \upharpoonright \Pi \leftrightarrow I \cap \{p(t_1, ..., t_n) \mid p \in \Pi, t_1, ..., t_n \text{ ground terms}\}$

Let $P_1 \cup ... \cup P_n$ be stratification of extended program P.

$M_1 \leftrightarrow$ least Herbrand model of P_1 such that

$M_1 \upharpoonright \{p \mid p \text{ not defined in } P\} = \emptyset$

$M_2 \leftrightarrow$ least Herbrand model of P_2 such that

$M_2 \upharpoonright \{p \mid p \text{ defined nowhere or in } P_1\} = M_1$

\vdots

$M_n \leftrightarrow$ least Herbrand model of P_n such that

$M_n \upharpoonright \{p \mid p \text{ defined nowhere or in } P_1 \cup ... \cup P_{n-1}\} = M_{n-1}$

We call $M_P = M_n$ the standard model of P.
Example (I)

Let $P_1 \cup P_2 \cup P_3$ with

\[P_1 = \{ \text{num}(0) \leftarrow , \text{num}(s(x)) \leftarrow \text{num}(x) \} \]

\[P_2 = \{ \text{zero}(0) \leftarrow \} \]

\[P_3 = \{ \text{positive}(x) \leftarrow \text{num}(x) , \neg \text{zero}(x) \} \]

be stratification of P.

Then:

\[M_1 = \{ \text{num}(t) \mid t \in HU_{s,0} \} \]

\[M_2 = \{ \text{num}(t) \mid t \in HU_{s,0} \} \cup \{ \text{zero}(0) \} \]

\[M_3 = \{ \text{num}(t) \mid t \in HU_{s,0} \} \cup \{ \text{zero}(0) \} \cup \{ \text{positive}(t) \mid t \in HU_{s,0} - \{0\} \} \]

Hence $M_P = M_3$ is the standard model of P.
Properties of Standard Models

Theorem 6.7 ([Apt and Bol, 1994])
Consider a stratified program P. Then,
- M_P does not depend on the chosen stratification of P,
- M_P is a minimal model of P,
- M_P is a supported model of P.

Corollary
For a stratified program P, $\text{comp}(P)$ admits a Herbrand model.
Objectives

- First-Order Formulas and Logical Truth
- The Completion semantics
- Soundness and restricted completeness of SLDNF-Resolution
- Extended consequence operator
- An alternative semantics: Standard models