Chapter 6

Negation: Procedural Interpretation
Outline

- Motivate negation with two examples
- Extended programs and queries
- The computation mechanism: SLDNF-derivations
- Allowed programs and queries
- Negation in Prolog

[Apt and Bol, 1994]

Why Negation? Example (I)

\[
\begin{align*}
\text{attend}(\text{flp}, \text{andreas}) & \leftarrow \\
\text{attend}(\text{flp}, \text{maja}) & \leftarrow \\
\text{attend}(\text{flp}, \text{dirk}) & \leftarrow \\
\text{attend}(\text{flp}, \text{natalia}) & \leftarrow \\
\text{attend}(\text{fcp}, \text{andreas}) & \leftarrow \\
\text{attend}(\text{fcp}, \text{maja}) & \leftarrow \\
\text{attend}(\text{fcp}, \text{natalia}) & \leftarrow \\
\text{attend}(\text{fcp}, \text{stefan}) & \leftarrow \\
\text{attend}(\text{fcp}, \text{arturo}) & \leftarrow
\end{align*}
\]

Who attends FCP but not FLP?

\[
\text{attend}(\text{fcp}, x), \neg \text{attend}(\text{flp}, x)
\]
Why Negation? Example (II)

sets (lists) $A = [a_1, \ldots, a_m]$ and $B = [b_1, \ldots, b_n]$ disjoint

\iff

- $m = 0$, or
- $m > 0$, $a_1 \notin B$, and $[a_2, \ldots, a_m]$ and B are disjoint

\[
\text{disjoint}([], x) \leftarrow \\
\text{disjoint}([x|y], z) \leftarrow \neg \text{member}(x, z), \text{disjoint}(y,z)
\]
Extended Logic Programs and Queries

- “¬” negation sign
- $A, \neg A$ literals $\iff A$ atom
- $A, \neg A$ ground literals $\iff A$ ground atom
- (extended) query \iff finite sequence of literals
- $H \leftarrow \mathbf{B}$ (extended) clause
 $\iff H$ atom, \mathbf{B} extended query
- (extended) program
 \iff finite set of extended clauses
How do we Compute?

Negation as Failure (NF) \iff

1. Suppose $\neg A$ is selected in the query $Q = L, \neg A, \neg N$.
2. If $P \cup \{A\}$ succeeds, then the derivation of $P \cup \{Q\}$ fails at this point.
3. If all derivations of $P \cup \{A\}$ fail, then Q resolves to $Q' = L, \neg N$.

$\neg A$ succeeds iff A finitely fails.
$\neg A$ finitely fails iff A succeeds.

$\text{SLDNF} = \text{Selection rule driven Linear resolution for Definite clauses augmented by Negation as Failure rule}$
SLDNF-Resolvents

1. $Q = L, A, N$ query; A selected, positive literal
 - $H \leftarrow M$ variant of a clause c which is variable-disjoint with Q, θ MGU of A and H
 - $Q' = (L, M, N)\theta$ SLDNF-resolvent of Q (and c w.r.t. A with θ)
 - We write this SLDNF-derivation step as $Q \Rightarrow_{c}^{\theta} Q'$

2. $Q = L, \neg A, N$ query; $\neg A$ selected, negative ground literal
 - $Q' = L, N$ SLDNF-resolvent of Q (w.r.t. $\neg A$ with ϵ)
 - We write this SLDNF-derivation step as $Q \Rightarrow_{\epsilon}^{\theta} Q'$
Pseudo Derivations

A maximal sequence of SLDNF-derivation steps

\[
Q_0 \Rightarrow_{\theta_1} Q_1 \ldots \Rightarrow_{\theta_{n+1}} Q_n \Rightarrow_{c_{n+1}} Q_{n+1} \ldots
\]

is a pseudo derivation of \(P \cup \{Q_0\} : \Leftarrow \Rightarrow \\

- \(Q_0, \ldots, Q_{n+1}, \ldots \) are queries, each empty or with one literal selected in it;

- \(\theta_1, \ldots, \theta_{n+1}, \ldots \) are substitutions;

- \(c_1, \ldots, c_{n+1}, \ldots \) are clauses of program \(P \) (in case a positive literal is selected in the preceding query);

- for every SLDNF-derivation step with input clause “standardization apart” holds.
Forests

$\mathcal{F} = (\mathcal{T}, T, subs)$ \text{ forest} \iff

- \mathcal{T} set of trees where
 - nodes are queries;
 - a literal is selected in each non-empty query;
 - leaves may be marked as “success”, “failure”, or “floundered”.

- $T \in \mathcal{T}$ main tree

- $subs$ assigns to some nodes of trees in \mathcal{T} with selected negative ground literal $\neg A$ a subsidiary tree of \mathcal{T} with root A.

$T \in \mathcal{T}$ successful \iff it contains a leaf marked as “success”

$T \in \mathcal{T}$ finitely failed \iff it is finite and all leaves are marked as “failure”
Pre-SLDNF-Trees

The class of pre-SLDNF-trees for a program P is the smallest class \mathcal{C} of forests such that

- for every query Q:
 the initial pre-SLDNF-tree ($\{T_Q\}, T_Q, \text{subs}$) is in \mathcal{C}, where T_Q contains the single node Q and $\text{subs}(Q)$ is undefined

- for every $\mathcal{F} \in \mathcal{C}$:
 the extension of \mathcal{F} is in \mathcal{C}
Extension of Pre-SLDNF-Tree (I)

extension of $\mathcal{F} = (T, \: T, \: \text{subs}) : \Leftrightarrow$

1. Every occurrence of the empty query is marked as “success”.
2. For every non-empty query Q, which is an unmarked leaf in some tree in T, perform the following action:
 Let L be the selected literal of Q.
 • L positive.
 - Q has no SLDNF-resolvents
 \Rightarrow Q is marked as “failure”
 - else
 \Rightarrow for every program clause c which is applicable to L, exactly one direct descendant of Q is added. This descendant is an SLDNF-resolvent of Q and c w.r.t. L.
Extension of Pre-SLDNF-Tree (II)

- $L = \neg A$ negative.
 - A non-ground \Rightarrow Q is marked as “floundered”
 - A ground
 * $subs(Q)$ undefined
 \Rightarrow new tree T' with single node A is added to T and $subs(Q)$ is set to T'
 * $subs(Q)$ defined and successful
 \Rightarrow Q is marked as “failure”
 * $subs(Q)$ defined and finitely failed
 \Rightarrow SLDNF-resolvent of Q is added as the only direct descendant of Q
 * $subs(Q)$ defined and neither successful nor finitely failed
 \Rightarrow no action
SLDNF-Trees

SLDNF-tree
\[\iff \text{limit of a sequence } \mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots, \text{ where} \]

- \(\mathcal{F}_0 \) initial pre-SLDNF-tree
- \(\mathcal{F}_{i+1} \) extension of \(\mathcal{F}_i \), for every \(i \in \mathbb{N} \)

SLDNF-tree for \(P \cup \{Q\} \)
\[\iff \]
SLDNF-tree in which \(Q \) is the root of the main tree
Successful, Failed, and Finite SLDNF-Trees

(pre-)SLDNF-tree successful
:\iff its main tree is successful

(pre-)SLDNF-tree finitely failed
:\iff its main tree is finitely failed

SLDNF-tree finite
:\iff no infinite paths exist in it,
where a path is a sequence of nodes N_0, N_1, N_2, \ldots such that for every $i = 0, 1, 2, \ldots$:
\begin{itemize}
 \item either N_{i+1} is a direct descendant of N_i
 \item or N_{i+1} is the root of $subs(N_i)$.
\end{itemize}
Example (I)

\[p \leftarrow p \]

SLDNF-tree for \(P \cup \{ \neg p \} \) is infinite:

\[
\begin{array}{c}
\neg p \\
\quad \neg p \\
\quad \quad p \\
\quad \quad \quad p \\
\quad \quad \quad \vdots
\end{array}
\]
Example (II)

SLDNF-tree for $P \cup \{\neg p\}$ is successful:

$p \leftarrow \neg q$
$q \leftarrow$
$q \leftarrow q$
SLDNF-Derivation

SLDNF-derivation of $P \cup \{Q\} \iff$

branch in the main tree of an SLDNF-tree \mathcal{F} for $P \cup \{Q\}$ together with the set of
all trees in \mathcal{F} whose roots can be reached from the nodes in this branch

SLDNF-derivation successful \iff

it ends with \square

Let the main tree of an SLDNF-tree for $P \cup \{Q_0\}$ contain a branch

$$\xi = Q_0 \overset{\theta_1}{\Rightarrow} Q_1 \ldots Q_{n-1} \overset{\theta_n}{\Rightarrow} Q_n = \square:$$

computed answer substitution (CAS) of Q_0 (w.r.t. ξ) \Rightarrow

$$(\theta_1 \ldots \theta_n) \mid_{\text{Var}(Q_0)}$$
A Theorem on Limits

Theorem 3.10 ([Apt and Bol, 1994])

(i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.

(ii) If the SLDNF-tree \mathcal{F} is the limit of the sequence $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$, then:

a) \mathcal{F} is successful and yields $\mathsf{CAS} \, \theta$

 iff some \mathcal{F}_i is successful and yields $\mathsf{CAS} \, \theta$,

b) \mathcal{F} finitely failed

 iff some \mathcal{F}_i is finitely failed.
Why Only Select Negative Literals if they are Ground? (I)

\[\begin{align*}
 c_1: & \quad \text{zero}(0) \leftarrow \\
 c_2: & \quad \text{positive}(x) \leftarrow \neg \text{zero}(x)
\end{align*} \]

\[
\begin{array}{c}
\text{positive}(y) \\
\downarrow \{x/y\} \\
\neg \text{zero}(y) \\
\downarrow \text{failure} \\
\neg \text{zero}(y) \\
\downarrow \\
\text{zero}(y) \\
\downarrow \{y/0\} \\
\square \\
\text{success}
\end{array}
\]

Hence, \(\neg \exists y \ \text{positive}(y) \)?, i.e. \(\forall y \ \neg \text{positive}(y) \)?
Why Only Select Negative Literals if they are Ground? (II)

\[c_1: \quad \text{zero}(0) \leftarrow \]
\[c_2: \quad \text{positive}(x) \leftarrow \neg \text{zero}(x) \]

\[\text{positive}(s(0)) \]
\[\{x/s(0)\} \]
\[\neg \text{zero}(s(0)) \]
\[\epsilon \]
\[\square \]
\[\text{success} \]
\[\neg \text{zero}(s(0)) \]
\[\text{failure} \]

Hence, \(\text{positive}(s(0))! \), i.e. \(\exists y \text{ positive}(y)! \)
Why Only Select Negative Literals if they are Ground? (III)

\[c_1: \quad \text{zero}(0) \leftarrow \]
\[c_2: \quad \text{positive}(x) \leftarrow \neg \text{zero}(x) \]

\[
\begin{align*}
\text{positive}(y) & \rightarrow \{x/y\} \\
\neg \text{zero}(y) & \rightarrow (\ast) \\
\text{failure} & \rightarrow \neg \text{zero}(y) \\
\text{success} & \rightarrow \text{zero}(y) \rightarrow \{y/0\}
\end{align*}
\]

Fundamental mistake in (\ast): \(\exists y \neg \text{zero}(y) \) is not the opposite of \(\exists y \neg \neg \text{zero}(y) \)
Selection of Non-Ground Negative Literals in Prolog

```prolog
zero(0).
positive(X) :- \+ zero(X).

| ?- positive(0).      no
| ?- positive(s(0)).   yes
| ?- positive(Y).      no
```
Extended Selection Rules

(extended) selection rule :⇔

function which, given a pre-SLDNF-tree \(\mathcal{F} = (\mathcal{T}, T, \text{subs}) \), selects a literal in every non-empty unmarked leaf in every tree in \(\mathcal{T} \).

SLDNF-tree \(\mathcal{F} \) is according to selection rule \(\mathcal{R} \) :⇔

\(\mathcal{F} \) is the limit of a sequence of pre-SLDNF-trees in which literals are selected according to \(\mathcal{R} \).

selection rule \(\mathcal{R} \) is safe :⇔

\(\mathcal{R} \) never selects a non-ground negative literal
Blocked Queries

query Q blocked
\[
\iff
\]
Q non-empty and contains exclusively non-ground negative literals

$P \cup \{Q\}$ flounders
\[
\iff
\]
some SLDNF-tree for $P \cup \{Q\}$ contains a blocked node
Allowed Programs and Queries

query Q allowed
\iff
\begin{align*}
\text{every } x \in Var(Q) \text{ occurs in a positive literal of } Q
\end{align*}

clause $H \leftarrow B$ allowed $\iff \neg H, B$ allowed

(thus: unit clause $H \leftarrow$ allowed $\iff H$ ground atom)

program P allowed \iff all its clauses are allowed
Allowed Programs and Queries do not Flounder

Theorem 3.13 ([Apt and Bol, 1994])

Suppose that P and Q are allowed. Then,

(i) $P \cup \{Q\}$ does not flounder;

(ii) if θ is a CAS of Q, then $Q\theta$ is ground.
An Example

\[
\begin{align*}
\text{zero}(0) & \leftarrow \\
\text{positive}(x) & \leftarrow \neg \text{zero}(x)
\end{align*}
\]

This program is not allowed.

\[
\begin{align*}
\text{zero}(0) & \leftarrow \\
\text{positive}(x) & \leftarrow \text{num}(x), \neg \text{zero}(x) \\
\text{num}(0) & \leftarrow \\
\text{num}(s(x)) & \leftarrow \text{num}(x)
\end{align*}
\]

This program is allowed.
Specifics of PROLOG

- Leftmost selection rule
 LDNF-resolution, LDNF-resolvent, LDNF-tree, ...

- Non-ground negative literals are selected!

- A program is a sequence of clauses

- Unification without occur check

- Depth-first search, backtracking
Extended Prolog Trees

Let P extended program and Q_0 extended query.

Extended Prolog Tree for $P \cup \{Q_0\}$ is forest of finitely branching, ordering trees of queries, possibly marked with “success” or “failure”, produced as follows:

- Start with forest ($\{T_{Q_0}\}, T_{Q_0}, \text{subs}$), where T_{Q_0} contains the single node Q_0 and $\text{subs}(Q_0)$ is undefined
- Repeatedly apply to current forest $\mathcal{F} = (\mathcal{I}, T, \text{subs})$ and leftmost unmarked leaf Q in T_1, where $T_1 \in \mathcal{I}$ is leftmost, bottommost (=most nested subsidiary) tree with an unmarked leaf, the operation $\text{expand}(\mathcal{F}, Q)$
Operation Expand

operation \(\text{expand}(\mathcal{F}, Q) \) is defined by:

- if \(Q = \square \), then
 1. mark \(Q \) with “success”
 2. if \(T_1 \neq T \), then remove from \(T_1 \) all edges to the right of the branch that ends with \(Q \)
- if \(Q \) has no LDNF-resolvents, then mark \(Q \) with “failure”
- else let \(L \) be the leftmost literal in \(Q \):
 - \(L \) is positive:
 add for each clause that is applicable to \(L \) an LDNF-resovent as descendant of \(Q \) (such that the order of the clauses is respected)
 - \(L = \neg A \) is negative (not necessarily ground):
 \(\star \) if \(\text{subs}(Q) \) is undefined, then add a new tree \(T' = A \) and set \(\text{subs}(Q) \) to \(T' \)
 \(\star \) if \(\text{subs}(Q) \) is defined and successful, then mark \(Q \) with “failure”
 \(\star \) if \(\text{subs}(Q) \) is defined and finitely failed,
 then add in \(T_1 \) the LDNF-resolvent of \(Q \) as the only descendant of \(Q \)
Floundering is Ignored (I)

\[
\text{even}(0).
\text{even}(X) \leftarrow \neg \text{odd}(X).
\text{odd}(s(X)) \leftarrow \text{even}(X).
\]

\[
| \ ?- \text{even}(X).
\]

\[
x = 0 ;
\]

\[
\text{no}
\]

\[
| \ ?- \text{even}(s(s(0))).
\]

\[
\text{yes}
\]
Floundering is Ignored (II)

\[\begin{align*}
\text{num}(0). \\
\text{num}(s(X)) & : \text{num}(X). \\
\text{even}(X) & : \text{num}(X), \neg \text{odd}(X). \\
\text{odd}(s(X)) & : \text{even}(X). \\
\end{align*}\]

\[\begin{align*}
\text{?- even}(X). \\
X = 0 ; \\
X = s(s(0)) ; \\
X = s(s(s(s(0)))) ; \\
\vdots
\end{align*}\]
Objectives

- Motivate negation with two examples
- Extended programs and queries
- The computation mechanism: SLDNF-derivations
- Allowed programs and queries
- Negation in Prolog