Exercise 6.1
Let P be a program, HB_P the Herbrand base associated to P. An Herbrand interpretation is defined as a subset of HB_P; the set of all possible Herbrand interpretations of P is denoted by 2^{HB_P} (i.e. the powerset of HB_P).
Show that the set of all Herbrand interpretations of P, together with the set inclusion (\subseteq), forms a complete partially ordered set.

Exercise 6.2
Let P be a program. The operator of immediate consequences of P, denoted as T_P, is defined as follows:

$$T_P(I) = \{ A \in HB_P \mid A \leftarrow B_1, \ldots, B_n \in \text{ground}(P) \text{ and } \{B_1, \ldots, B_n\} \subseteq I \}.$$

Prove that
1. T_P is continuous;
2. T_P is monotonic.

Exercise 6.3
Let P be the following disjunctive program: \{p(a) \lor p(b)\}. Find its Herbrand models; show that their intersection is not a Herbrand model of P.

Exercise 6.4
Consider the following program P:

\begin{align*}
p(0, X, X). \\
p(f(X), Y, f(Z)) :&- p(X, Y, Z).
\end{align*}

Find its least Herbrand model.