Lecture 7

Search
Outline

- Introduce search trees
- Discuss various types of labeling trees, in particular trees for
 - forward checking
 - partial look ahead
 - maintaining arc consistency (MAC)
- Discuss various search algorithms for labeling trees
- Discuss search algorithms for constrained optimization problems
- Introduce various heuristics for search algorithms
Useful Slogan

Search Algorithm = Search Tree + Traversal Algorithm

diagram of a search tree with nodes labeled "constraint propagation" and "splitting"
Search Trees

Consider a CSP \(\mathcal{P} \) with a sequence of variables \(X \)

Search tree for \(\mathcal{P} \): a finite tree such that

- its nodes are CSP's
- its root is \(\mathcal{P} \)
- the nodes at an even level have exactly one direct descendant
- if \(\mathcal{P}_1, \ldots, \mathcal{P}_m \) are direct descendants of \(\mathcal{P}_0 \), then the union of \(\mathcal{P}_1, \ldots, \mathcal{P}_m \) is equivalent w.r.t. \(X \) to \(\mathcal{P}_0 \)
Labeling Trees

Specific search trees for finite CSP’s

- Splitting consists of labeling of the domain of a variable
- Constraint propagation consists of a domain reduction method
Complete Labeling Trees

Constraint propagation absent

Given:
- a CSP \mathcal{P} with non-empty domains
- x_1, \ldots, x_n the sequence of its variables linearly ordered by \prec

Complete labeling tree associated with \mathcal{P} and \prec:

- the direct descendants of the root are of the form (x_1, d)
- the direct descendants of a node (x_j, d), where $j \in [1..n - 1]$, are of the form (x_{j+1}, e)
- its branches determine all the instantiations with the domain $\{x_1, \ldots, x_n\}$
Examples

Consider
\[\langle x < y, y < z ; x \in \{1, 2, 3\}, y \in \{2, 3\}, z \in \{1, 2, 3\}\rangle\]

1. with the ordering \(x < y < z\)

2. with the ordering \(x < z < y\)
Sizes of Complete Labeling Trees

Given:
- a CSP with non-empty domains
- \(x_1, \ldots, x_n \) the sequence of its variables linearly ordered by \(<\)
- \(D_1, \ldots, D_n \) the corresponding variable domains
 - The number of nodes in the complete labeling tree associated with \(<\) is
 \[
 1 + \sum_{i=1}^{n} (\prod_{j=1}^{i} |D_j|)
 \]
 - \(|A|\): the cardinality of set \(A\)
 - The complete labeling tree has the least number of nodes if the variables are ordered by their domain sizes in increasing order
Examples

Tree in 1. (cf. Slide 7):
The cardinalities of the domains: 3, 2, 3
The tree has $1 + 3 + 3 \cdot 2 + 3 \cdot 2 \cdot 3$, i.e., 28 nodes

Tree in 2. (cf. Slide 7):
The cardinalities of the domains: 3, 3, 2
The tree has $1 + 3 + 3 \cdot 3 + 3 \cdot 3 \cdot 2$, i.e., 31 nodes

Both trees have the same number of leaves: 18
Reduced Labeling Trees

An instantiation \(l \) is along the ordering \(x_1, \ldots, x_n \) if its domain is \(\{ x_1, \ldots, x_j \} \) for some \(j \in [1..n] \).

Given:
- a CSP \(\mathcal{P} \) with non-empty domains
- \(x_1, \ldots, x_n \) the sequence of its variables linearly ordered by <

Reduced labeling tree associated with \(\mathcal{P} \) and <:
- the direct descendants of the root are of the form \((x_1, d) \)
- the direct descendants of a node \((x_j, d) \), where \(j \in [1..n-1] \), are of the form \((x_{j+1}, e) \)
- its branches determine all consistent instantiations along the ordering \(x_1, \ldots, x_n \)
Examples

Consider
\[\langle x < y, y < z ; x \in \{1, 2, 3\}, y \in \{2, 3\}, z \in \{1, 2, 3\}\rangle\]

1. with the ordering \(x < y < z\)

2. with the ordering \(x < z < y\)

Reduced labeling trees can have different number of nodes and different number of leaves.
Labeling Trees with Constraint Propagation

Given: \(\mathcal{P} := \langle C \; ; \; x_1 \in D_1, \ldots, x_n \in D_n \rangle \)

- Assume fixed form of constraint propagation \(\text{prop}(i) \) in the form of a domain reduction, where \(i \in [0..n-1] \)
- \(i \) determines the sequence \(x_{i+1}, \ldots, x_n \) of the variables to whose domains \(\text{prop}(i) \) is applied
- Given current variable domains \(E_1, \ldots, E_n \), constraint propagation \(\text{prop}(i) \) transforms only \(E_{i+1}, \ldots, E_n \)
- \(\text{prop}(i) \) depends on the original constraints \(C \) of \(\mathcal{P} \) and on the domains \(E_1, \ldots, E_i \)
prop Labeling Trees

prop labeling tree associated with \(\mathcal{P} \):

- its nodes are sequences of the domain expressions \(x_1 \in E_1, \ldots, x_n \in E_n \)
- its root is \(x_1 \in D_1, x_2 \in D_2, \ldots, x_n \in D_n \)
- each node at an even level \(2i \) with \(i \in [0..n] \) is of the form
 \[
 x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E_{i+1}, \ldots, x_n \in E_n
 \]
 If \(i = n \), this node is a leaf. Otherwise, it has exactly one direct descendant, obtained using \(\text{prop}(i) \):
 \[
 x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E'_{i+1}, \ldots, x_n \in E'_n
 \]
 where \(E'_j \subseteq E_j \) for \(j \in [i + 1..n] \)
prop Labeling Trees, ctd

- each node at an odd level $2i + 1$ with $i \in [0..n - 1]$ is of the form
 \[x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E_{i+1}, \ldots, x_n \in E_n \]
 If $E_j = \emptyset$ for some $j \in [i + 1..n]$, this node is a leaf. Otherwise, it has direct
descendants of the form
 \[x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in \{d\}, x_{i+2} \in E_{i+2}, \ldots, x_n \in E_n \]
 for all $d \in E_{i+1}$ such that the instantiation \{(x_1, d_1), \ldots, (x_i, d_i), (x_{i+1}, d)\} is consistent
Intuition

Given: node $x_1 \in E_1$, ..., $x_n \in E_n$ at level $2i - 1$ or $2i$

- if $i \in [2..n - 1]$, we call x_1, ..., x_{i-1} its past variables
- if $i \in [1..n]$, we call x_i its current variable
- if $i \in [0..n - 1]$, we call x_{i+1}, ..., x_n its future variables

$prop(i)$ affects only the domains of the future variables.
Example of a prop Labeling Tree

Consider a CSP with three variables, \(x_1, x_2, x_3 \)

\[
\begin{array}{cccc}
\text{past levels} & \text{current variable} & \text{future variables} \\
0 & & \\
1 & x_1 & x_2, x_3 \\
2 & x_1 & x_2, x_3 \\
3 & x_1 & x_2 & x_3 \\
4 & x_1 & x_2 & x_3 \\
5 & x_1, x_2 & x_3 \\
6 & x_1, x_2 & x_3 \\
\end{array}
\]

\(A, B, C, \) and \(D \) are failed nodes. \(E \) and \(F \) are success nodes.
Example: SEND + MORE = MONEY

Complete Labeling Tree:

Reduced Labeling Tree:
SEND + MORE = MONEY, ctd

Use as prop the domain reduction rules for linear constraints over integer intervals from Chapter 5.

prop Labeling Tree:

```
constraint propagation

<table>
<thead>
<tr>
<th>levels</th>
<th>current variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
</tr>
<tr>
<td>15</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>Y</td>
</tr>
</tbody>
</table>
```

failure failure failure...

......

success
Sizes of Generated Trees

For SEND + MORE = MONEY:

- Complete labeling tree
 Total number of leaves: $9^2 \cdot 10^6 = 81000000$

- Reduced labeling tree
 Total number of leaves: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 - 2 \cdot (9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4) = 483840$
 Gain: 99.4% with respect to the complete labeling tree

- prop labeling tree
 Total number of leaves: 4
Instances of \textit{prop} Labeling Trees

- forward checking
- partial look ahead
- maintaining arc consistency (MAC) (aka full look ahead)
Forward Checking Search Tree

Recall from the definition of *prop* labeling trees:
- Each node at an even level $2i$ with $i \in [0..n]$ is of the form
 \[x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E_{i+1}, \ldots, x_n \in E_n \]
 If $i = n$, this node is a leaf. Otherwise, it has exactly one direct descendant, obtained using *prop(i)*:
 \[x_1 \in \{d_1\}, \ldots, x_i \in \{d_i\}, x_{i+1} \in E'_{i+1}, \ldots, x_n \in E'_n \]
 where $E'_j \subseteq E_j$ for $j \in [i+1..n]$

Define
\[E'_j := \{ e \in E_j \mid \{(x_1, d_1), \ldots, (x_i, d_i), (x_j, e)\} \text{ is consistent}\} \]
Example: 5 Queens Problem

Take the standardized CSP corresponding to 5 Queens Problem. Interpretation: the variables x_1, x_2, x_3, x_4, x_5 correspond to the columns a, b, c, d, e

First queen placed at a1:

Effect of forward checking:
Partial Look Ahead Search Tree

- Impose forward checking
- Impose directional arc consistency, e.g. using the DARC algorithm

Example: 5 Queens Problem
Effect of partial look ahead in the example:
MAC Search Tree

- Impose forward checking
- Impose arc consistency, e.g. using the ARC algorithm

Example: 5 Queens Problem
Effect of MAC in the example:
Search Algorithms for Labeling Trees

- Backtrack-free search
- Backtrack-free search with constraint propagation
- Backtrack search
- Backtrack search with constraint propagation
 - forward checking
 - partial look ahead
 - MAC

Search algorithms for constrained optimization problems:
- Branch and bound search
- Branch and bound with constraint propagation search
Declarations

\[
\text{cons}(\text{inst}, j, d) \equiv \text{“the instantiation } \{(x_1, \text{inst}[1]), \ldots, (x_{j-1}, \text{inst}[j - 1]), (x_j, d)\text{ is consistent”}
\]

\textbf{type} domains = \textbf{array} [1..n] \textbf{of} \text{domain};
\quad \text{instantiation} = \textbf{array} [1..n] \textbf{of} \text{elements};

\textbf{var} \text{inst}: \text{instantiation};
\quad \text{failure: boolean}
Backtracking

procedure backtrack(j: integer; D: domains; var success: boolean);
begin
 while D[j] ≠ ∅ and not success do
 choose d from D[j];
 D[j] := D[j] \ {d};
 if cons(inst, j, d) then
 inst[j] := d;
 success := (j = n);
 if not success then backtrack(j + 1, D, success)
 end-if
 end-while
end

begin
 success := false;
 backtrack(1, D, success)
end
Backtracking with Constraint Propagation

procedure backtrack_prop(j: integer; D: domains; var success: boolean);
begin
 while D[j] ≠ ∅ and not success do
 choose d from D[j];
 D[j] := D[j] − {d};
 if cons(inst, j, d) then
 inst[j] := d;
 success := (j = n);
 if not success then
 prop(j, D, failure);
 if not failure then backtrack_prop(j + 1, D, success)
 end-if
 end-if
 end-while
end

begin
 success := false;
 prop(0, D, failure);
 if not failure then backtrack_prop(1, D, success)
end
Forward Checking

procedure revise(j, k: integer; var D: domains);
begin
 D[k] := \{d ∈ D[k] | \{(x_1, \text{inst}[1]), ..., (x_j, \text{inst}[j]), (x_k, d)\} is a consistent instantiation\}
end

procedure prop(j: integer; var D: domains; var failure: boolean);
var k: integer;
begin
 failure := false;
 k := j + 1;
 while k < n + 1 and not failure do
 revise(j, k, D);
 failure := (D[k] = \{\});
 k := k + 1
 end-while
end
Partial Look Ahead

\textbf{procedure} prop(\textit{j: integer}; \textbf{var} D: domains; \textbf{var} failure: boolean);
\textbf{var} k: integer;
begin
 failure := \textbf{false};
 k := j + 1;
 \textbf{while} k < n + 1 \textbf{and not} failure \textbf{do}
 revise(\textit{j}, k, D);
 failure := (D[k] = \emptyset);
 k := k + 1
 \textbf{end-while}
 \textbf{if} not failure \textbf{then} darc(\textit{j} + 1, D, failure)
end
MAC (Full Look Ahead)

procedure prop(j: integer; var D: domains; var failure: boolean);
...
 if not failure then arc(j + 1, D, failure)
end
Finite Constrained Optimization Problems

- \(\mathcal{P} := \langle C ; x_1 \in D_1, \ldots, x_n \in D_n \rangle \)
- \(\text{obj} : \text{Sol} \rightarrow \text{IR} \) from the set \(\text{Sol} \) of all solutions to \(\mathcal{P} \) to \(\text{IR} \)
- Heuristic function \(h : \mathcal{P}(D_1) \times \ldots \times \mathcal{P}(D_n) \rightarrow \text{IR} \cup \{ \infty \} \)

Monotonicity: If \(\bar{E}_1 \subseteq \bar{E}_2 \), then \(h(\bar{E}_1) \leq h(\bar{E}_2) \)

Bound: \(\text{obj}(d_1, \ldots, d_n) \leq h(\{d_1\}, \ldots, \{d_n\}) \)

procedure \(\text{obj}(\text{inst} : \text{instantiation}) : \text{real} ; \)

procedure \(h(\text{inst} : \text{instantiation} ; j : \text{integer} ; D : \text{domains}) : \text{real} ; \)

\(h(\text{inst}, j, D) \) returns the value of \(h \) on \((\{\text{inst}[1]\}, \ldots, \{\text{inst}[j]\}, D[j+1], \ldots, D[n]) \)
Branch and Bound with Constraint Propagation

procedure branch_and_bound_prop(j: integer; D: domains; var solution: instantiation; var bound: real);
begin
 while D[j] ≠ ∅ do
 choose d from D[j];
 D[j] := D[j] − {d};
 if cons(inst, j, d) then
 inst[j] := d;
 if j = n then
 if obj(inst) > bound then
 bound := obj(inst); solution := inst
 end-if
 else
 prop(j, D, failure);
 if not failure and h(inst, j, D) > bound then
 branch_and_bound_prop(j + 1, D, solution, bound)
 end-if
 end-if
 end-while
 end
end
Branch and Bound with Constraint Propagation, ctd

begin
 solution := \texttt{nil};
 bound := -\infty;
 prop(0, D, failure);
 if not failure then
 branch_and_bound_prop(1, D, solution, bound)
end
Heuristics for Search Algorithms

Variable Selection
- Select a variable with the smallest domain
- Select a most constrained variable
- (For numeric domains) Select a variable with the smallest difference between its domain bounds

Value Selection
- Select a value for the heuristic function that yields the highest outcome
- Select the smallest value
- Select the largest value
- Select the middle value
Objectives

- Introduce search trees
- Discuss various types of labeling trees, in particular trees for
 - forward checking
 - partial look ahead
 - maintaining arc consistency (MAC)
- Discuss various search algorithms for labeling trees
- Discuss search algorithms for constrained optimization problems
- Introduce various heuristics for search algorithms