Lecture 2

CP in a Nutshell
Outline

- Introduce notion of equivalence of CSP's
- Provide intuitive introduction to general methods of Constraint Programming
- Introduce basic framework for Constraint Programming
- Illustrate this framework by 2 examples
Projection

- Given: variables \(X := x_1, ..., x_n \) with domains \(D_1, ..., D_n \)
- Consider
 - \(d := (d_1, ..., d_n) \in D_1 \times \ldots \times D_n \)
 - subsequence \(Y := x_{i_1}, ..., x_{i_j} \) of \(X \)
- Denote \((d_{i_1}, ..., d_{i_j})\) by \(d[Y]\): projection of \(d \) on \(Y \)
- In particular: \(d[x_i] = d_i \)

- Note: For a CSP
 \[\mathcal{P} := \langle \mathcal{C} ; x_1 \in D_1, ..., x_n \in D_n \rangle \]
 \((d_1, ..., d_n) \in D_1 \times \ldots \times D_n\) is a solution to \(\mathcal{P} \) iff for each constraint \(C \) of \(\mathcal{P} \) on a sequence of variables \(Y \)
 \(d[Y] \in C \)
Equivalence of CSP's

- \mathcal{P}_1 and \mathcal{P}_2 are equivalent if they have the same set of solutions.

- CSP's \mathcal{P}_1 and \mathcal{P}_2 are equivalent w.r.t. X iff
 \[\{d[X] \mid d \text{ is a solution to } \mathcal{P}_1\} = \{d[X] \mid d \text{ is a solution to } \mathcal{P}_2\} \]

- Union of \mathcal{P}_1, ..., \mathcal{P}_m is equivalent w.r.t. X to \mathcal{P}_0 if
 \[\{d[X] \mid d \text{ is a solution to } \mathcal{P}_0\} = \bigcup_{i=1}^{m} \{d[X] \mid d \text{ is a solution to } \mathcal{P}_i\} \]
Solved and Failed CSP's

- C a constraint on variables y_1, \ldots, y_k with domains D_1, \ldots, D_k (so $C \subseteq D_1 \times \ldots \times D_k$):
 - C is solved if $C = D_1 \times \ldots \times D_k$

- CSP is solved if
 - all its constraints are solved, and
 - no domain of it is empty

- CSP is failed if
 - it contains the false constraint \perp, or
 - some of its domains is empty
CP: Basic Framework

procedure solve
var continue := true
begin
 while continue and not happy do
 Preprocess;
 Constraint Propagation;
 if not happy then
 if Atomic then continue := false
 else
 Split; Proceed by Cases
 end-if
 end-while
end
Preprocess

Bring to desired syntactic form

Example: Constraints on reals
Desired syntactic form: no repeated occurrences of a variable

\[ax^7 + bx^5 y + cy^{10} = 0 \]

\[\leftrightarrow ax^7 + z + cy^{10} = 0, \ bx^5 y = z \]
Happy

- Found a solution
- Found all solutions
- Found a solved form from which one can generate all solutions
- Determined that no solution exists (inconsistency)
- Found best solution
- Found all best solutions
- Reduced all interval domains to sizes $< \varepsilon$
Atomic and Split

- Check whether CSP is amenable for splitting, or
- whether search ‘under’ this CSP is still needed

Split a domain:
- \(D \) finite (Enumeration)
 \[
 x \in D \\
 x \in \{a\} \mid x \in D - \{a\}
 \]
- \(D \) finite (Labeling)
 \[
 x \in \{a_1, \ldots, a_k\} \\
 x \in \{a_1\} \mid \ldots \mid x \in \{a_k\}
 \]
- \(D \) interval of reals (Bisection)
 \[
 x \in [a..b] \\
 x \in [a..\left\lfloor \frac{a+b}{2} \right\rfloor] \mid x \in \left[\left\lfloor \frac{a+b}{2} \right\rfloor + 1..b\right]
 \]
Split, ctd

Split a constraint:

- Disjunctive constraints

\[
\frac{C_1 \lor C_2}{C_1 \mid C_2}
\]

- Constraints in “compound” form

Example:

\[
\frac{|p(\bar{x})|=a}{p(\bar{x})=a \mid p(\bar{x})=-a}
\]
Effect of Split

- Each Split replaces current CSP \mathcal{P} by CSP's $\mathcal{P}_1, \ldots, \mathcal{P}_n$ such that the union of $\mathcal{P}_1, \ldots, \mathcal{P}_n$ is equivalent to \mathcal{P}.

- Example:
 Enumeration replaces
 \[\langle C \ ; \ \mathcal{DE}, \ x \in D \rangle \]
 by
 \[\langle C' \ ; \ \mathcal{DE}, \ x \in \{a\} \rangle \]
 and
 \[\langle C'' \ ; \ \mathcal{DE}, \ x \in D - \{a\} \rangle \]
 where C' and C'' are restrictions of the constraints from C to the new domains.
Heuristics

Which
- variable to choose
- value to choose
- constraint to split

Examples:
- Select a variable that appears in the largest number of constraints (most constrained variable)
- For a domain being an integer interval: select the middle value
Proceed by Cases

Various search techniques
- Backtracking
- Branch and bound
- Can be combined with Constraint Propagation
- Intelligent backtracking
Backtracking

- Nodes generated “on the fly”
- Nodes are CSP’s
- Leaves are CSP's that are solved or failed
Branch and Bound

- Modification of backtracking aiming at finding the optimal solution
- Takes into account objective function
- Maintain currently best value of the objective function in variable \(\text{bound} \)
- \(\text{bound} \) initialized to \(-\infty \) and updated each time a better solution found
- Used in combination with heuristic function
- Conditions on heuristic function \(h \):
 - If \(\psi \) is a direct descendant of \(\phi \), then
 \[h(\psi) \leq h(\phi) \]
 - If \(\psi \) is solved CSP with singleton set domains, then
 \[\text{obj}(\psi) \leq h(\psi) \]
- \(h \) allows us to prune the search tree
Illustration

$h(\psi) \leq \text{bound}$
Constraint Propagation

Replace a CSP by an equivalent one that is “simpler”

Constraint propagation performed by repeatedly reducing
- domains
and/or
- constraints
while maintaining equivalence
Reduce a Domain: Examples

- Projection rule:
 Take a constraint C and choose a variable x of it with domain D.
 Remove from D all values for x that do not participate in a solution to C.

- Linear inequalities on integers:

 \[
 \begin{align*}
 x &< y; x \in [50..200], y \in [0..100] \\
 x &< y; x \in [50..99], y \in [51..100]
 \end{align*}
 \]
Repeated Domain Reduction: Example

Consider
$$\langle x < y, y < z ; x \in [50..200], y \in [0..100], z \in [0..100] \rangle$$

Apply above rule to $x < y$:
$$\langle x < y, y < z ; x \in [50..99], y \in [51..100], z \in [0..100] \rangle$$

Apply it now to $y < z$:
$$\langle x < y, y < z ; x \in [50..99], y \in [51..99], z \in [52..100] \rangle$$

Apply it again to $x < y$:
$$\langle x < y, y < z ; x \in [50..98], y \in [51..99], z \in [52..100] \rangle$$
Reduce Constraints

Usually by introducing new constraints!

- Transitivity of \preceq:
 \[
 \begin{align*}
 &\begin{cases}
 x \prec y, y \prec z ; \mathcal{D}\mathcal{E} \\
 \end{cases} \\
 \hline
 &\begin{cases}
 x \prec y, y \prec z, x \prec z ; \mathcal{D}\mathcal{E} \\
 \end{cases}
 \end{align*}
 \]
 This rule introduces new constraint $x \prec z$

- Resolution rule:
 \[
 \begin{align*}
 &\begin{cases}
 C_1 \lor L, C_2 \lor \overline{L} ; \mathcal{D}\mathcal{E} \\
 \end{cases} \\
 \hline
 &\begin{cases}
 C_1 \lor L, C_2 \lor \overline{L}, C_1 \lor C_2 ; \mathcal{D}\mathcal{E} \\
 \end{cases}
 \end{align*}
 \]
 This rule introduces new constraint $C_1 \lor C_2$
Constraint Propagation Algorithms

- Deal with scheduling of atomic reduction steps
- Try to avoid useless applications of atomic reduction steps
- Stopping criterion for general CSP's: a local consistency notion

Example:
Local consistency criterion corresponding to the projection rule is Hyper-arc consistency:
For every constraint C and every variable x with domain D, each value for x from D participates in a solution to C.
Example: Boolean Constraints

Happy: found all solutions
Desired syntactic form (for preprocessing):
- \(x = y \)
- \(\neg x = y \)
- \(x \land y = z \)
- \(x \lor y = z \)

Preprocessing:

\[
\frac{x \land s = z}{x \land y = z, s = y}
\]

Constraint propagation:

\[
\frac{x \land y = z; x \in D_x, y \in D_y, z \in \{1\}}{; x \in D_x \cap \{1\}, y \in D_y \cap \{1\}, z \in \{1\}}
\]

(write as \(x \land y = z, z = 1 \Rightarrow x = 1, y = 1 \))
Boolean Constraints, ctd

- \(x = y, x = 1 \iff y = 1 \)
- \(x = y, y = 1 \iff x = 1 \)
- \(x = y, x = 0 \iff y = 0 \)
- \(x = y, y = 0 \iff x = 0 \)
- \(x \land y = z, x = 1, y = 1 \iff z = 1 \)
- \(x \land y = z, x = 1, z = 0 \iff y = 0 \)
- \(x \land y = z, y = 1, z = 0 \iff x = 0 \)
- \(x \land y = z, x = 0 \iff z = 0 \)
- \(x \land y = z, y = 0 \iff z = 0 \)
- \(x \land y = z, z = 1 \iff x = 1, y = 1 \)
- \(\neg x = y, x = 1 \iff y = 0 \)
- \(\neg x = y, x = 0 \iff y = 1 \)
- \(\neg x = y, y = 1 \iff x = 0 \)
- \(\neg x = y, y = 0 \iff x = 1 \)
- \(x \lor y = z, x = 1 \iff z = 1 \)
- \(x \lor y = z, x = 0, y = 0 \iff z = 0 \)
- \(x \lor y = z, x = 0, z = 1 \iff y = 1 \)
- \(x \lor y = z, y = 0, z = 1 \iff x = 1 \)
- \(x \lor y = z, y = 1 \iff z = 1 \)
- \(x \lor y = z, z = 0 \iff x = 0, y = 0 \)
Boolean Constraints, ctd

Split:
- Choose the most constrained variable
- Apply the labeling rule:

\[
\begin{align*}
 x & \in \{0,1\} \\
 x & \in \{0\} \mid x \in \{1\}
\end{align*}
\]

Proceed by cases: backtrack
Example: Polynomial Constraints on Integer Intervals

Domains: integer intervals \([a..b]\)
\[
[a..b] := \{ x \in \mathbb{Z} | a \leq x \leq b \}
\]

Constraints:
\[
s = 0
\]
s is a polynomial (possibly in several variables) with integer coefficients

Example:
\[
2 \cdot x^5 \cdot y^2 \cdot z^4 + 3 \cdot x \cdot y^3 \cdot z^5 - 4 \cdot x^4 \cdot y^6 \cdot z^2 + 10 = 0
\]

Objective function: a polynomial
Example

Find a solution to
\[x^3 + y^2 - z^3 = 0 \]
in \([1..1000]\) such that
\[2 \cdot x \cdot y - z \]
is maximal.

Answer:
\[x = 112, \ y = 832, \ z = 128 \]
Polynomial Constraints on Integer Intervals, ctd

Desired syntactic form:

- \(\sum_{i=1}^{n} a_i x_i = b \)
- \(x \cdot y = z \)

Preprocess:

Use appropriate transformation rules

Example:

\[
\begin{align*}
\sum_{i=1}^{n} m_i = 0 & \quad ; \mathcal{DE} \\
\sum_{i=1}^{n} v_i = 0, m_1 = v_1, \ldots, m_n = v_n & \quad ; \mathcal{DE}, v_1 \in \mathbb{Z}, \ldots, v_n \in \mathbb{Z}
\end{align*}
\]

where

- some \(m_i \) is not of the form \(ax_i \)
- \(v_1, \ldots, v_n \) do not appear in \(\mathcal{DE} \)

Happy: found an optimal solution w.r.t. the objective function
Polynomial Constraints on Integer Intervals, ctd

Constraint propagation: uses interval arithmetic
X, Y sets of integers
- addition:
 \(X + Y := \{ x + y | x \in X, y \in Y \} \)
- subtraction:
 \(X - Y := \{ x - y | x \in X, y \in Y \} \)
- multiplication:
 \(X \cdot Y := \{ x \cdot y | x \in X, y \in Y \} \)
- division:
 \(X/Y := \{ u \in \mathbb{Z} | \exists x \in X \exists y \in Y \ u \cdot y = x \} \)
Interval Arithmetic, ctd

Given: X, Y integer intervals, a an integer
- $X \cap Y$, $X + Y$, $X - Y$ are integer intervals
- $X/\{a\}$ is an integer interval
- $X \cdot Y$ does not have to be an integer interval, even if $X = \{a\}$ or $Y = \{a\}$
- X/Y does not have to be an integer interval

Examples:
$[2..4] + [3..8] = [5..12]$
$[3..7] - [1..8] = [- 5..6]$
$[3..3] \cdot [1..2] = \{3, 6\}$
$[3..5]/[-1..2] = \{-5, -4, -3, 2, 3, 4, 5\}$
$[-3..5]/[-1..2] = \mathbb{Z}$
Turning Sets to Intervals

\[\text{int}(X) := \begin{cases} \text{smallest int. interval} \supseteq X & \text{if } X \text{ finite} \\ \mathbb{Z} & \text{otherwise} \end{cases} \]

Examples:
- \(\text{int}([3..3] \cdot [1..2]) = [3..6] \)
- \(\text{int}([3..5]/[-1..2]) = [-5..5] \)
- \(\text{int}([-3..5]/[-1..2]) = \mathbb{Z} \)
Rule for Linear Equality

\[
\begin{align*}
\sum_{i=1}^{n} a_i x_i &= b \mid x_1 \in D_1, \ldots, x_n \in D_n \\
\sum_{i=1}^{n} a_i x_i &= b \mid \ldots, x_j \in D_j, \ldots
\end{align*}
\]

where \(j \in [1..n] \), and

\[
D_j' := D_j \cap \frac{b - \sum_{i \in [1..n]-\{j\}} \text{int} (a_i; D_i)}{a_j}
\]
Multiplication Rules

Multiplication 1

\[
\begin{align*}
\langle x \cdot y = z ; x \in D_x, y \in D_y, z \in D_z \rangle \\
\langle x \cdot y = z ; x \in D_x, y \in D_y, z \in D_z \cap \text{int}(D_x \cdot D_y) \rangle
\end{align*}
\]

Multiplication 2

\[
\begin{align*}
\langle x \cdot y = z ; x \in D_x, y \in D_y, z \in D_z \rangle \\
\langle x \cdot y = z ; x \in D_x \cap \text{int}(D_x / D_y), y \in D_y, z \in D_z \rangle
\end{align*}
\]

Multiplication 3

\[
\begin{align*}
\langle x \cdot y = z ; x \in D_x, y \in D_y, z \in D_z \rangle \\
\langle x \cdot y = z ; x \in D_x, y \in D_y \cap \text{int}(D_z / D_x), z \in D_z \rangle
\end{align*}
\]
Effect of Multiplication Rules

Consider

\[x \cdot y = z \ ; \ x \in [1..20], \ y \in [9..11], \ z \in [155..161] \]

Using Multiplication Rules we can transform this to

\[x \cdot y = z \ ; \ x \in [16..16], \ y \in [10..10], \ z \in [160..160] \]
Polynomial Constraints on Integer Intervals, ctd

Split:
- Choose the variable with the smallest interval domain
- Apply the bisection rule:

\[
x \in \left[a..b \right]
\]

\[
x \in \left[a..\left\lfloor \frac{a+b}{2} \right\rfloor \right] \quad \text{or} \quad x \in \left[\left\lceil \frac{a+b}{2} \right\rceil+1..b \right]
\]

where \(a < b \)
- Proceed by cases: branch and bound
More on Interval Arithmetic

Given objective function obj.

obj^+: extension of obj to function from sets of integers to sets of integers.

Example: $obj(x,y) := x^2 \cdot y - 3x \cdot y^2 + 5$

Then $obj^+(X,Y) = X \cdot X \cdot Y - 3 \cdot X \cdot Y \cdot Y + 5$

Lemma

Consider integer intervals $X_1, ..., X_n$

- $obj^+(X_1, ..., X_n)$ is a finite set of integers
- For all $a_i \in X_i$, $i \in [1..n]$
 \[obj(a_1, ..., a_n) \in obj^+(X_1, ..., X_n) \]
- For all $Y_i \subseteq X_i$, $i \in [1..n]$
 \[obj^+(Y_1, ..., Y_n) \subseteq obj^+(X_1, ..., X_n) \]
Heuristic Function

Take
- \(\mathcal{P} := \langle C ; x_1 \in D_1, \ldots, x_n \in D_n \rangle \), with \(D_1, \ldots, D_n \) integer intervals
- \textit{obj}: polynomial with variables \(x_1, \ldots, x_n \)

Define
\[
\text{h}(\mathcal{P}) := \max(\text{obj}^+(D_1, \ldots, D_n))
\]

Thanks to the preceding lemma, \(h \) satisfies the conditions for the heuristic function (cf. Slide 15).
Objectives

- Introduce notion of equivalence of CSP's
- Provide intuitive introduction to general methods of Constraint Programming
- Introduce a basic framework for Constraint Programming
- Illustrate this framework by 2 examples