Answer Set Programming

@ Answer Set Programs
@ Answer Set Semantics
@ [mplementation Techniques

@ Using Answer Set Programming
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Example ASP: 3-Coloring

Problem: For a graph (V, E) find an assignment of one of 3 colors to each
vertex such that no adjacent vertices share a color.

clrd(Vv,1l) :— not clrd(V,2), not clrd(V,3), vtx(V).
clrd(V,2) :— not clrd(V,1l), not clrd(V,3), vtx (V).
clrd(V,3) :— not clrd(V,1l), not clrd(V,2), vtx (V).

:— edge(V,U), clrd(V,C), clrd(U,C).

vix(a). vtx(b). vtx(c). edge(a,b). edge(a,c).
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ASP in Practice

>

Problem
» Encoding N Logic
» Encoding / Program
Data

ASP
Solver

Model
>

(Solution)

@ Compact, easily maintainable representation

@ Roots: logic programming

@ Solutions = Answer sets to logic program
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Some Applications

@ Constraint satisfaction

@ Planning, Routing

@ Computer-aided verification
@ Security analysis

@ Configuration

@ Diagnosis
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ASP vs. Prolog

@ Prolog not directly suitable for ASP

- Models vs. proofs + answer substitiutions

- Prolog not entirely declarative

@ Answer set semantics: alternative semantics for negation-as-failure

@ Existing ASP Systems: CLINGO, SMODELS, DLV and others
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Answer Set Semantic

@ A logic program clause

A~B, .. B _ not C, .. not C, (m=0,n=0)

Is seen as constraint on an answer (model): if B,, ..., B, are in the
answer and none of C,, ..., C_is, then must A be included in the answer.

@ Answer sets should be minimal

@ Answer sets should be justified
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Answer Sets: Example (1)

P :— not Jg.
r :— p.
s :— r, not p.

The answer set is {p, r}

@ {p}is not an answer (because it's not a model)

@ {r, s}is not an answer (because r included for no reason)
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Answer Sets: Example (2)

:— (.

r.

Q O 'O
|

:— not r.

B
I

not (g.

There are two answers: {p, g} and {p, r}.

Note that in Prolog, p is not derivable.
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Answer Sets: Definition

Consider a program P of ground clauses

A<—B,, .. B not C,, ..., not C, (m=>=0,n=>=0)

Let S be a set of ground atoms.

® Reduct P°:<=>
- delete each clause with some not C;suchthat C.€ S

- delete each not C,;suchthat C. ¢ S

@ S answer set (also called stable model) :<=> S = least-model(P?)
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Properties

@ Programs can have multiple answer sets

p, :— not gj. dq, :— not p,.

p, :— not q.. q, :— not p,.

This program has 2 " answers

@ Programs can have no answers
p :— not g.

q := P,
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Properties (ctd)

@ A stratified program has a unique answer (= the standard model).
@ Checking whether a set of atoms is a stable model can be done in linear time.

@ Deciding whether a program has a stable model is NP-complete.
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Programs with Variables and Functions

@ Semantics:; Herbrand models

@ Clause seen as shorthand for all its ground instances

clrd(V,1) :— not clrd(V,2), not clrd(V,3), vtx (V).
stands for

clrd(a,l) :— not clrd(a,?2), not clrd(a,3), vtx(a).

clrd(b,1) :— not clrd(b,2), not clrd(b,3), vtx(b).

@ Constraint

—B,, .., B, not C,, ..., not C,

shorthand for false < B,, ..., B, not C,, ..., not C_, not false

V. Answer Set Programming
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Example ASP: 3-Coloring

clrd(Vv,1l) :— not clrd(V,2), not clrd(V,3), vtx (V).
clrd(V,2) :— not clrd(V,1l), not clrd(V,3), vtx (V).
clrd(Vv,3) :— not clrd(V,1l), not clrd(V,2), vtx (V).

:— edge(V,U), clrd(Vv,C), clrd(U,C).

vix(a). vtx(b). vtx(c). edge(a,b). edge(a,c).

Each answer set is a valid coloring, for example:

{clrd(a,1),clrd(b,2), clrd(c,2)}

V. Answer Set Programming
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Generalization: Classical Negation

@ Rules built using classical literals (not just atoms)

@ Answers are sets of literals

» Example:
P :— not g
g :— not p

An answer is {—~q}

V. Answer Set Programming
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Generalization: Classical Negation (ctd)

@ C(Classical negation can be handled by normal programs:

- treat —A as a new atom (renaiming)

- add the constraint <— A, -A

@ Example:
p :— not g'
q' :— not p
- p, P!
- d, g

has the answer {g'}

V. Answer Set Programming
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Generalization: Disjunction

@ Rules can have disjunctions in the head

@ Direct generalization of answer set semantics

@ Example:
P Vg :— not p
has the only answer {g}

@ Another example:

p V. g :— not p
P -~ g

has no answer

V. Answer Set Programming
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ASP Solver: Architecture

Two challenging tasks: handle complex data; search
Two-layer architecture:

@ Grounding handles complex data: A set of ground clauses is generated
which preserves the models

@ Model search uses special-purpose search procedures

V. Answer Set Programming
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Grounding: Domain Restrictions

@ Domain-restricted programs guarantee decidability.

@ Domain-restricted programs consist of two parts:
1. Domain predicate definitions (a stratified clause set), where
each variable occurs in a positive domain predicate defined in an
earlier stratum;
2. Clauses where each variable occurs in a positive domain predicate in
the body.

@ The domain predicate definitions have a unique answer, which is subset
of every solution to the program.

@ Only those ground instances of clauses need to be generated where the
domain predicates in the body are true.
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Example: Domain Predicate Definitions

r(a,b) r(a,c)

d(U) :—= r(Vv,U)

tr(Vv,U) := r(Vv,U)

tr(VvV,U) = r(V,%2), tr(Z,U), d(U).

edge (Lt (V), t(U)) :—= tr(Vv,U), not tr(U,U), not tr(Vv,V).
vtx (V) :— edge(V,U).

vix (U) :— edge(V,U).

V. Answer Set Programming
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Example: Domain-Restricted Clauses

clrd(V,1l) :— not clrd(V,2), not clrd(V,3), vtx (V).
clrd(V,2) :— not clrd(V,1l), not clrd(V,3), vtx (V).
clrd(Vv,3) :— not clrd(V,1l), not clrd(V,2), vtx (V).

:— edge(V,U), col(C), clrd(Vv,C), clrd(U,C).
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Example: Grounding

Suppose that the unique stable model for the definition of the domain
predicate vtx (V) contains vtx (v,), ..., vEx (v )

n

Then for the clause

clrd(V,1l) :— not clrd(V,2), not clrd(V,3), vtx (V).

grounding produces

clrd(v,,1) := not clrd(vl,Z), not clrd(vl,B).

clrd(vn,l) :— not clrd(vn,Z), not clrd(vn,3).
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Search

@ Backtracking over truth-values for atoms

stable

@ Each node consists of a model candidate (set of literals)

@ Propagation rules are applied after each choice
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Propagation Rules

@ A propagation rule extends a model candidate by one or more new
literals.

» Example: Given q < p,, not p, and candidate {p,,not q}: derive p,

@ Propagation rules need to be correct: If L is derived from model
candidate A then L holds in every stable model compatible with A.

V. Answer Set Programming
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Example: Propagation Rule “Upper Bound”

Consider program P and candidate model A
Let P'be all clauses in P

@ whose body is not false under A

@ without negative body literals

If p & least-model (P’) derive not p

P: p, :- p,, not q,. A:{a,} P:p, :— p,.
Pq Y not d; P4 - by
p, :— not g,.

Derive: not p,, not p,, not g, not q,
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Schema of Local Propagation Rules

Only clauses for g Candidate Derive
(R;) q < p,, hot p, p,, not p, q
q (_p']a nOt p2
(R,) p,, not p not
2 q <p,, not p, 2 3 q
(R;) q <p4, not p, q p4, not p,
(R,) q <P, not p, not q, p, Py

V. Answer Set Programming
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f := not g,
g :— not f,
£ :-g

V. Answer Set Programming

Example

not h (R,)
aW\f-
(R,) g not g
(Ry)  f stable

(R,)
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Lookahead

Given a program P and a candidate model A.

If, for a literal L, propagate(P, A U { L}) contains a conflict (some p

together with not p), derive the complement of L.

V. Answer Set Programming
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Search Heuristics

Heuristics to select the next atom for splitting the search tree:
@ an atom with the maximal number of occurrences in clauses of minimal size
@ an atom with the maximal number of propagations after the split

@ an atom with the smallest remaining search space after split + propagation

V. Answer Set Programming
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Using ASPs (Example 1): Hamiltonian Cycles

@ A Hamiltonian cycle: a closed path that visits all vertices of a graph
exactly once

@ |nput: a graph
- vtx(a),

— edge (a,b),
— 1nitialvtx(a)

@ Weight atoms in ASP:
m{p:d(x)}n

means that an answer contains at least m and at most n different

p-instances which satisfy d(x). If m is omitted, there is no lower
bound; if n is omitted, there is no upper bound.
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Hamiltonian Cycles (ctd)

@ (Candidate answer sets: subsets of edges

@ (Generator (using a weight atom):

{ hc(X,Y) } :— edge(X,Y)

@ Answer sets for the generator given a graph:

input graph
+ a subset of the ground facts hc (a,b) for which thereis edge (a, b)

V. Answer Set Programming
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Hamiltonian Cycles (ctd)

Tester(1): Each vertex has at most one chosen incoming and one
outcoming edge

. hC(X/Y)/ ’ ’ ’ « T L.
:— hc(Y,X), hc(z,X), edge(Y,X), edge(z,X), Y!=7Z.

Only subsets of chosen edges hc (a,b) forming paths (possibly
closed) pass this test

V. Answer Set Programming
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Hamiltonian Cycles (ctd)

@ Tester(2): Every vertex is reachable from a given initial vertex through
chosen hc (a,b) edges

:— vEx (X), not r(X).

r(Y) :— hc(X,Y), edge(X,Y) initialvtx (X) .

r(Y) :— hc(X,Y), edge(X,Y), r(X), not initialvtx(X).

@ Only Hamiltonian cycles pass both tests

V. Answer Set Programming
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Hamiltonian Cycles (ctd)

@ Using more weight atoms enables even more compact encoding

@ Tester(1) using 2 variables:

:— 2 { hc(X,Y) : edge(X,Y) }, vtx(X).
2 { hc(X,Y) : edge(X,Y) }, vtx(Y).

V. Answer Set Programming
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Hamiltonian Cycles (ctd): Undirected Cycles

@ Instance (V,E):

vix (v) .
edge (v, u) . % one fact for each edge in E

@ Generator:

2 { hc(Vv,U) : edge(V,U),
hc (W,V) : edge(W,V) } 2 :— vtx (V).
@ Tester

r(V) :— initialvtx (V).

r(v) := hc(Vv,U), edge(V,U), r(U).
r(v) :—= hv(U,V), edge(U,V), r(U).
- vtx(V), not r (V).
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Using ASPs (Example 2): Verification

@ Verify, on the basis of a given formal specification, that a dynamic
system satisfies desirable properties

@ Example:

X

X

Given a formal specification of Tic-Tac-Toe, ASP can be used to
verify that it is a turn-taking game and that no cell ever contains
two symbols.
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Formal Specification: Initial State

V. Answer Set Programming

init(cell(1l,1,b)).
init (cell(1l,2,b)).
init (cell (1, 3,b)).
init(cell(2,1,b)).
init (cell(2,2,b)).
init (cell(2,3,b)).
init (cell (3,1,b)).
init (cell(3,2,b)).
init (cell (3,3,b)).

init (control (xplayer)) .
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Formal Specification: State Transitions

legal (P, mark(X,Y)) :— true(cell(X,Y,b)),
true (control (P)) .

legal (xplayer,noop) :— true(cell (X,Y,b)),
true (control (oplayer)) .

legal (oplayer,noop) :— true(cell (X,Y,b)),
true (control (xplayer)) .
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Formal Specification: State Change

next (cell (M, N, X))

next (cell (M,N, 0))

next (cell (M,N, W) )

next (cell (M, N, b))

next (cell (M, N, b))

next (control (xplayer)) :— true(control (oplayer)).

next (control (oplayer)) :— true(control (xplayer)).

V. Answer Set Programming

does (xplayer,mark (M, N) ) .

does (oplayer,mark (M, N) ) .

true (cell (M,N,W)), W!=b.

true (cell (M, N, b)),
does (P, mark (J,K) ),
M!=J.

true (cell (M, N, b)),
does (P, mark (J,K) ),
N!=K.
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Verification (ctd)

@ Properties of dynamic systems are verified inductively

@ |nduction base:

player (xplayer) .

player (oplayer) .

t0 := 1 { init(control (X)) : player (X) } 1.
:— tO0.

@ This program has no answer set, which proves the fact that initially
exactly one player has the control.

V. Answer Set Programming

39



Verification (ctd)

@ State generator for the induction step:

coordinate (1..3).
symbol (x) . symbol (o). symbol (b) .

tdomain(cell (X,Y,C)) :— coordinate (X), coordinate (
symbol (C) .

tdomain (control (X)) :— player (X).

{ true(T) : tdomain(T) }.

@ Transition generator for the induction step:

ddomain (mark (X,Y)) :— coordinate (X), coordinate(Y).

ddomain (noop) .

1 { does(P,M) : ddomain(M) } 1 :- player(P).

V. Answer Set Programming

Y),

4(



Verification (ctd)

Tester(1): Every transition must be legal

:— does (P,M), not legal(P,M).

Tester(2): Induction hypothesis

t0 = 1 { true(control (X)) : player(X) } 1.
:— not tO0.

Induction step

t :— 1 { next(control (X)) : player (X) } 1.
— t.

This program has no answer, which proves the claim that in every
reachable state exactly one player has the control.

V. Answer Set Programming
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Verification (ctd)

@ [nduction base to prove that cells have unique contents:

t0(X,Y) := 1 { init(cell(X,Y,Z)) : symbol (Z)
t0 :— not tO(X,Y).
:— not tO.

@ This program has no answer set, which proves the claim.

V. Answer Set Programming

}

1.
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Verification (ctd)

@ |nduction hypothesis

t0(X,Y) :—= 1 { true(cell(X,Y,Z)) : symbol(Z) } 1.
t0 :— not tO(X,Y).
:— tO0.

@ |nduction step to prove that cells have unique contents

t(X,Y) := 1 { next(cell(X,Y,Z)) : symbol(Z) } 1.
t :— not t(X,Y).
:— not t.

@ This program has an answer set! Need to add uniqueness-of-control:

p :— 1 { true(control (X)) : player(X) } 1.
:— not p.

Now the program has no answer set, which proves the claim.

V. Answer Set Programming
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