Answer Set Programming

@ Answer Set Programs
@ Answer Set Semantics
@ [mplementation Techniques

@ Using Answer Set Programming

V. Answer Set Programming

Example ASP: 3-Coloring

Problem: For a graph (V, E) find an assignment of one of 3 colors to each
vertex such that no adjacent vertices share a color.

clrd(Vv,1l) :— not clrd(V,2), not clrd(V,3), vtx(V).
clrd(V,2) :— not clrd(V,1l), not clrd(V,3), vtx (V).
clrd(V,3) :— not clrd(V,1l), not clrd(V,2), vtx (V).

:— edge(V,U), clrd(V,C), clrd(U,C).

vix(a). vtx(b). vtx(c). edge(a,b). edge(a,c).

V. Answer Set Programming

ASP in Practice

>

Problem
» Encoding N Logic
» Encoding / Program
Data

ASP
Solver

Model
>

(Solution)

@ Compact, easily maintainable representation

@ Roots: logic programming

@ Solutions = Answer sets to logic program

V. Answer Set Programming

Some Applications

@ Constraint satisfaction

@ Planning, Routing

@ Computer-aided verification
@ Security analysis

@ Configuration

@ Diagnosis

V. Answer Set Programming

ASP vs. Prolog

@ Prolog not directly suitable for ASP

- Models vs. proofs + answer substitiutions

- Prolog not entirely declarative

@ Answer set semantics: alternative semantics for negation-as-failure

@ Existing ASP Systems: CLINGO, SMODELS, DLV and others

V. Answer Set Programming

Answer Set Semantic

@ A logic program clause

A~B, .. B _ not C, .. not C, (m=0,n=0)

Is seen as constraint on an answer (model): if B,, ..., B, are in the
answer and none of C,, ..., C_is, then must A be included in the answer.

@ Answer sets should be minimal

@ Answer sets should be justified

V. Answer Set Programming

Answer Sets: Example (1)

P :— not Jg.
r :— p.
s :— r, not p.

The answer set is {p, r}

@ {p}is not an answer (because it's not a model)

@ {r, s}is not an answer (because r included for no reason)

V. Answer Set Programming

Answer Sets: Example (2)

:— (.

r.

Q O 'O
|

:— not r.

B
I

not (g.

There are two answers: {p, g} and {p, r}.

Note that in Prolog, p is not derivable.

V. Answer Set Programming

Answer Sets: Definition

Consider a program P of ground clauses

A<—B,, .. B not C,, ..., not C, (m=>=0,n=>=0)

Let S be a set of ground atoms.

® Reduct P°:<=>
- delete each clause with some not C;suchthat C.€ S

- delete each not C,;suchthat C. ¢ S

@ S answer set (also called stable model) :<=> S = least-model(P?)

V. Answer Set Programming

Properties

@ Programs can have multiple answer sets

p, :— not gj. dq, :— not p,.

p, :— not q.. q, :— not p,.

This program has 2 " answers

@ Programs can have no answers
p :— not g.

q := P,

V. Answer Set Programming

10

Properties (ctd)

@ A stratified program has a unique answer (= the standard model).
@ Checking whether a set of atoms is a stable model can be done in linear time.

@ Deciding whether a program has a stable model is NP-complete.

V. Answer Set Programming

11

Programs with Variables and Functions

@ Semantics:; Herbrand models

@ Clause seen as shorthand for all its ground instances

clrd(V,1) :— not clrd(V,2), not clrd(V,3), vtx (V).
stands for

clrd(a,l) :— not clrd(a,?2), not clrd(a,3), vtx(a).

clrd(b,1) :— not clrd(b,2), not clrd(b,3), vtx(b).

@ Constraint

—B,, .., B, not C,, ..., not C,

shorthand for false < B,, ..., B, not C,, ..., not C_, not false

V. Answer Set Programming

12

Example ASP: 3-Coloring

clrd(Vv,1l) :— not clrd(V,2), not clrd(V,3), vtx (V).
clrd(V,2) :— not clrd(V,1l), not clrd(V,3), vtx (V).
clrd(Vv,3) :— not clrd(V,1l), not clrd(V,2), vtx (V).

:— edge(V,U), clrd(Vv,C), clrd(U,C).

vix(a). vtx(b). vtx(c). edge(a,b). edge(a,c).

Each answer set is a valid coloring, for example:

{clrd(a,1),clrd(b,2), clrd(c,2)}

V. Answer Set Programming

13

Generalization: Classical Negation

@ Rules built using classical literals (not just atoms)

@ Answers are sets of literals

» Example:
P :— not g
g :— not p

An answer is {—~q}

V. Answer Set Programming

14

Generalization: Classical Negation (ctd)

@ C(Classical negation can be handled by normal programs:

- treat —A as a new atom (renaiming)

- add the constraint <— A, -A

@ Example:
p :— not g'
q' :— not p
- p, P!
- d, g

has the answer {g'}

V. Answer Set Programming

15

Generalization: Disjunction

@ Rules can have disjunctions in the head

@ Direct generalization of answer set semantics

@ Example:
P Vg :— not p
has the only answer {g}

@ Another example:

p V. g :— not p
P -~ g

has no answer

V. Answer Set Programming

16

ASP Solver: Architecture

Two challenging tasks: handle complex data; search
Two-layer architecture:

@ Grounding handles complex data: A set of ground clauses is generated
which preserves the models

@ Model search uses special-purpose search procedures

V. Answer Set Programming

17

Grounding: Domain Restrictions

@ Domain-restricted programs guarantee decidability.

@ Domain-restricted programs consist of two parts:
1. Domain predicate definitions (a stratified clause set), where
each variable occurs in a positive domain predicate defined in an
earlier stratum;
2. Clauses where each variable occurs in a positive domain predicate in
the body.

@ The domain predicate definitions have a unique answer, which is subset
of every solution to the program.

@ Only those ground instances of clauses need to be generated where the
domain predicates in the body are true.

V. Answer Set Programming 18

Example: Domain Predicate Definitions

r(a,b) r(a,c)

d(U) :—= r(Vv,U)

tr(Vv,U) := r(Vv,U)

tr(VvV,U) = r(V,%2), tr(Z,U), d(U).

edge (Lt (V), t(U)) :—= tr(Vv,U), not tr(U,U), not tr(Vv,V).
vtx (V) :— edge(V,U).

vix (U) :— edge(V,U).

V. Answer Set Programming

16

Example: Domain-Restricted Clauses

clrd(V,1l) :— not clrd(V,2), not clrd(V,3), vtx (V).
clrd(V,2) :— not clrd(V,1l), not clrd(V,3), vtx (V).
clrd(Vv,3) :— not clrd(V,1l), not clrd(V,2), vtx (V).

:— edge(V,U), col(C), clrd(Vv,C), clrd(U,C).

V. Answer Set Programming 2(

Example: Grounding

Suppose that the unique stable model for the definition of the domain
predicate vtx (V) contains vtx (v,), ..., vEx (v)

n

Then for the clause

clrd(V,1l) :— not clrd(V,2), not clrd(V,3), vtx (V).

grounding produces

clrd(v,,1) := not clrd(vl,Z), not clrd(vl,B).

clrd(vn,l) :— not clrd(vn,Z), not clrd(vn,3).

V. Answer Set Programming 21

Search

@ Backtracking over truth-values for atoms

stable

@ Each node consists of a model candidate (set of literals)

@ Propagation rules are applied after each choice

V. Answer Set Programming

22

Propagation Rules

@ A propagation rule extends a model candidate by one or more new
literals.

» Example: Given q < p,, not p, and candidate {p,,not q}: derive p,

@ Propagation rules need to be correct: If L is derived from model
candidate A then L holds in every stable model compatible with A.

V. Answer Set Programming

23

Example: Propagation Rule “Upper Bound”

Consider program P and candidate model A
Let P'be all clauses in P

@ whose body is not false under A

@ without negative body literals

If p & least-model (P’) derive not p

P: p, :- p,, not q,. A:{a,} P:p, :— p,.
Pq Y not d; P4 - by
p, :— not g,.

Derive: not p,, not p,, not g, not q,

V. Answer Set Programming

Schema of Local Propagation Rules

Only clauses for g Candidate Derive
(R;) q < p,, hot p, p,, not p, q
q (_p']a nOt p2
(R,) p,, not p not
2 q <p,, not p, 2 3 q
(R;) q <p4, not p, q p4, not p,
(R,) q <P, not p, not q, p, Py

V. Answer Set Programming

25

f := not g,
g :— not f,
£ :-g

V. Answer Set Programming

Example

not h (R,)
aW\f-
(R,) g not g
(Ry) f stable

(R,)

26

Lookahead

Given a program P and a candidate model A.

If, for a literal L, propagate(P, A U { L}) contains a conflict (some p

together with not p), derive the complement of L.

V. Answer Set Programming

27

Search Heuristics

Heuristics to select the next atom for splitting the search tree:
@ an atom with the maximal number of occurrences in clauses of minimal size
@ an atom with the maximal number of propagations after the split

@ an atom with the smallest remaining search space after split + propagation

V. Answer Set Programming

28

Using ASPs (Example 1): Hamiltonian Cycles

@ A Hamiltonian cycle: a closed path that visits all vertices of a graph
exactly once

@ |nput: a graph
- vtx(a),

— edge (a,b),
— 1nitialvtx(a)

@ Weight atoms in ASP:
m{p:d(x)}n

means that an answer contains at least m and at most n different

p-instances which satisfy d(x). If m is omitted, there is no lower
bound; if n is omitted, there is no upper bound.

V. Answer Set Programming 26

Hamiltonian Cycles (ctd)

@ (Candidate answer sets: subsets of edges

@ (Generator (using a weight atom):

{ hc(X,Y) } :— edge(X,Y)

@ Answer sets for the generator given a graph:

input graph
+ a subset of the ground facts hc (a,b) for which thereis edge (a, b)

V. Answer Set Programming

30

Hamiltonian Cycles (ctd)

Tester(1): Each vertex has at most one chosen incoming and one
outcoming edge

. hC(X/Y)/ ’ ’ ’ « T L.
:— hc(Y,X), hc(z,X), edge(Y,X), edge(z,X), Y!=7Z.

Only subsets of chosen edges hc (a,b) forming paths (possibly
closed) pass this test

V. Answer Set Programming

31

Hamiltonian Cycles (ctd)

@ Tester(2): Every vertex is reachable from a given initial vertex through
chosen hc (a,b) edges

:— vEx (X), not r(X).

r(Y) :— hc(X,Y), edge(X,Y) initialvtx (X) .

r(Y) :— hc(X,Y), edge(X,Y), r(X), not initialvtx(X).

@ Only Hamiltonian cycles pass both tests

V. Answer Set Programming

32

Hamiltonian Cycles (ctd)

@ Using more weight atoms enables even more compact encoding

@ Tester(1) using 2 variables:

:— 2 { hc(X,Y) : edge(X,Y) }, vtx(X).
2 { hc(X,Y) : edge(X,Y) }, vtx(Y).

V. Answer Set Programming

33

Hamiltonian Cycles (ctd): Undirected Cycles

@ Instance (V,E):

vix (v) .
edge (v, u) . % one fact for each edge in E

@ Generator:

2 { hc(Vv,U) : edge(V,U),
hc (W,V) : edge(W,V) } 2 :— vtx (V).
@ Tester

r(V) :— initialvtx (V).

r(v) := hc(Vv,U), edge(V,U), r(U).
r(v) :—= hv(U,V), edge(U,V), r(U).
- vtx(V), not r (V).

V. Answer Set Programming

34

Using ASPs (Example 2): Verification

@ Verify, on the basis of a given formal specification, that a dynamic
system satisfies desirable properties

@ Example:

X

X

Given a formal specification of Tic-Tac-Toe, ASP can be used to
verify that it is a turn-taking game and that no cell ever contains
two symbols.

V. Answer Set Programming 35

Formal Specification: Initial State

V. Answer Set Programming

init(cell(1l,1,b)).
init (cell(1l,2,b)).
init (cell (1, 3,b)).
init(cell(2,1,b)).
init (cell(2,2,b)).
init (cell(2,3,b)).
init (cell (3,1,b)).
init (cell(3,2,b)).
init (cell (3,3,b)).

init (control (xplayer)) .

36

Formal Specification: State Transitions

legal (P, mark(X,Y)) :— true(cell(X,Y,b)),
true (control (P)) .

legal (xplayer,noop) :— true(cell (X,Y,b)),
true (control (oplayer)) .

legal (oplayer,noop) :— true(cell (X,Y,b)),
true (control (xplayer)) .

V. Answer Set Programming 37

Formal Specification: State Change

next (cell (M, N, X))

next (cell (M,N, 0))

next (cell (M,N, W))

next (cell (M, N, b))

next (cell (M, N, b))

next (control (xplayer)) :— true(control (oplayer)).

next (control (oplayer)) :— true(control (xplayer)).

V. Answer Set Programming

does (xplayer,mark (M, N)) .

does (oplayer,mark (M, N)) .

true (cell (M,N,W)), W!=b.

true (cell (M, N, b)),
does (P, mark (J,K)),
M!=J.

true (cell (M, N, b)),
does (P, mark (J,K)),
N!=K.

38

Verification (ctd)

@ Properties of dynamic systems are verified inductively

@ |nduction base:

player (xplayer) .

player (oplayer) .

t0 := 1 { init(control (X)) : player (X) } 1.
:— tO0.

@ This program has no answer set, which proves the fact that initially
exactly one player has the control.

V. Answer Set Programming

39

Verification (ctd)

@ State generator for the induction step:

coordinate (1..3).
symbol (x) . symbol (o). symbol (b) .

tdomain(cell (X,Y,C)) :— coordinate (X), coordinate (
symbol (C) .

tdomain (control (X)) :— player (X).

{ true(T) : tdomain(T) }.

@ Transition generator for the induction step:

ddomain (mark (X,Y)) :— coordinate (X), coordinate(Y).

ddomain (noop) .

1 { does(P,M) : ddomain(M) } 1 :- player(P).

V. Answer Set Programming

Y),

4(

Verification (ctd)

Tester(1): Every transition must be legal

:— does (P,M), not legal(P,M).

Tester(2): Induction hypothesis

t0 = 1 { true(control (X)) : player(X) } 1.
:— not tO0.

Induction step

t :— 1 { next(control (X)) : player (X) } 1.
— t.

This program has no answer, which proves the claim that in every
reachable state exactly one player has the control.

V. Answer Set Programming

41

Verification (ctd)

@ [nduction base to prove that cells have unique contents:

t0(X,Y) := 1 { init(cell(X,Y,Z)) : symbol (Z)
t0 :— not tO(X,Y).
:— not tO.

@ This program has no answer set, which proves the claim.

V. Answer Set Programming

}

1.

42

Verification (ctd)

@ |nduction hypothesis

t0(X,Y) :—= 1 { true(cell(X,Y,Z)) : symbol(Z) } 1.
t0 :— not tO(X,Y).
:— tO0.

@ |nduction step to prove that cells have unique contents

t(X,Y) := 1 { next(cell(X,Y,Z)) : symbol(Z) } 1.
t :— not t(X,Y).
:— not t.

@ This program has an answer set! Need to add uniqueness-of-control:

p :— 1 { true(control (X)) : player(X) } 1.
:— not p.

Now the program has no answer set, which proves the claim.

V. Answer Set Programming

43

V. Answer Set Programming

Objectives

Answer Set Programs
Answer Set Semantics
Implementation Techniques

Using Answer Set Programming

44

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

