Seabiscuit

The 2009 University of Bath Autonomous Underwater Vehicle

Student Autonomous Underwater Challenge Europe July 2009

Summer Sea Trials – Pacific Coast, BC, Canada July-October 2009

Benjamin Williamson, Sarah-Jane Bailey,
Thomas Ruckser, Andrew Webster,
William Megill, Martin Balchin, Stephen Dolan

Design Evolution

Design Evolution

Mechanical Design

- Hydrodynamic fibreglass shell
- Aluminium frame supports dual pressure vessels and peripherals
- Student designed, student built in-house

Mechanical Design: Pressure Vessels

Reliability and ease of access

Seabiscuit

Motor housings

- Built in-house
- Materials
- Blind bore
 - One O-ring
- Double lip seal
 - Bilge
 - Pressure gradient
 - Oil filled
- Tapered housing
 - Efficiency

Holonomic Propulsion

- 6 fixed thrusters
 - 70W Maxon motors
- Holonomic movement in the horizontal plane
 - Benefits to sensing, mapping and stationholding
- Holonomic control
 - Benefits of inertial navigation
- Electrical power
 - 24V SLA battery pack
 - Reversible PWM motor controllers
 - Auto-tuning PID Controller

Design Brief

- Student Autonomous Underwater Challenge Europe (SAUC-E)
 - DSTL and Industry sponsored competition
 - Held in Portsmouth, UK
 - Submarine test tank (120m*60m*6m deep)
 - Designed to advance the field of AUVs
 - Foster the development of new ideas and techniques

SAUC-E Competition

- Competition tasks designed to simulate real life tasks and challenges facing AUVs, including:
 - Searching & identifying objects in the midwater and on the floor
 - Passing through gates, navigating confined passages
 - Sonar and visual surveys
 - Mapping the environment and object location
 - Tracking moving targets
 - Autonomous docking into 1*1m docking bay

Background

- Multi-purpose:
 - SAUC-E Competition
 - Canada Field Trials

Background

Grey whale conservation

Sensing

- Vision (dual cameras)
- Sonar (dual sonars)
 - Mapping
- Inertial Measurement Unit, Pressure, Compass
 - 6-axis INS to benefit holonomic movement
- Machine health
 - Battery status (voltage, current, SoC)
 - Motor current consumption
 - Temperature
 - Internal pressure
 - Humidity & leak detection

Buoy Bottom Target

Bottom Target

Colour

Shape

Tracking

Send Information to AI

Gate Finder

- 360° Sonar –Horizontal Plane
- 120° Sonar –Vertical Plane
- Image analysis through LabVIEW

Sonar - Mapping

- The same principle applies to wall detection
- Gathered information can be used for mapping

Wall detected

Sonar - Identifying Objects

OBJECT FILTERS

- Nearest Neighbour

If a particle has ONE close neighbour then the program classifies the two particles as one object.

If a particle has TWO close neighbours then the program classifies the particle as noise.

Sonar - Identifying Objects

360° Sonar Scan of Dock Pilings

Right: Survey area, the piling dock and shoreline

Below: Forward-facing profiling sonar of repeated dock pilings

Sonar - Object Tracking

Two key parameters are used to track objects from one frame to the next; particle location and area.

The framework used for the tracking part of the program is shown below:

Sensor Fusion & Mission Planning

Sonar

- 360° Scanning Sonar
- DeltaT Profiling Sonar

Navigation Sensors

- 6 DoF Inertial Measurement Unit
- 3 DoF Magnetometer
- Gimballed Compass

Vision

- Forward camera
- Downward camera

Overall position estimate

Environmental sensors

- Depth Pinger
- Water Pressure Sensor

Sensor Fusion

- Combines positional estimates from a variety of sensors, each with different characteristics
 - e.g. update frequency, noise, accuracy, etc.
- Each sensors positional estimate is assigned a reliability estimate;
 - this determines its weighting (influence) on the overall positional estimate when combining conflicting data.
- As environmental conditions change, the weightings are adjusted, e.g.:
 - turbid water (murky so lower weighting of vision)
 - turbulent water (increased sonar noise)
 - magnetic disturbances (reduced magnetometer accuracy)
- Provides an overall position estimate and accuracy estimate

Program Structure

- Hierarchical Program
 - Overall mission plan runs subtasks
 - Allows for mission variation, either for competition or for difference ocean tasks
- Artificial Intelligence
 - React to unforeseen circumstances e.g. object found / not found, allows mission to continue

Flexible program structure - Control as ROV (fly by wire)

Future Design

- Sensor fusion
- Navigation in the near-shore environment
- Station keeping in unsteady flows
- Mechanical design for deepwater operation

Sponsors & Acknowledgements

To get involved...

- SAUC-E Competition July 2010
- Canadian Field Trials July-October 2010

- Come and visit the lab
 - 4 East 1.24
- □ Email
 - b.j.williamson@bath.ac.uk