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Abstract. We present a dynamic electronic institutions approach for
teamwork. In this model, agent teams are designed and deployed on-the-
fly so as to met the requirements of the task at hand. The result is a new
form of electronic institution that is created dynamically out of existing
components. We also introduce a case-based learning mechanism to form
new agent teams by reusing complete or partial team-designs used in the
past for similar problems.

1 Introduction

Cooperative problem solving (CPS) is a form of social interaction in which a
group of agents work together to achieve a common goal. Several models have
been proposed to account for this form of interaction from different perspectives:
distributed artificial intelligence, economics, philosophy, organization science and
social sciences. From the artificial intelligence perspective there are two main ap-
proaches to cooperation: a micro-level –agent-centered– view, which is focused
on the internal architecture or the decision-making model of individual agents,
and a macro-level –social– view, which is focused on the societal and organiza-
tional aspects of cooperation. Most of the models and theories of cooperation
proposed for MAS have adopted the agent-centered view, typically based on
some refinement of the beliefs, desires and intentions (BDI) paradigm, such as
the Joint Intentions model [12] and the SharedPlans theory [9].

Some of the most challenging issues faced by the MAS community are re-
lated to the creation of open MAS [11]. Closed systems are typically designed
by one team for one homogeneous environment, while in open MAS the partici-
pants (both human and software agents) are unknown beforehand, may change
over time and may be developed by different parties. Therefore, those infrastruc-
tures that adopt a social view on cooperation seem more appropriate that those
adopting a micro-level view, for the former do not enforce a particular agent
architecture.

In addition, some aspects of complex system development become more diffi-
cult by adopting an agent-centered approach: since agents are autonomous, the
patterns and the effects of their interactions are uncertain, and it is extremely
difficult to predict the behavior of the overall system based on its constituent
components, because of the strong possibility of emergent behavior [10]. These
problems can be circumvented by restraining interactions and imposing preset



organizational structures, which are characteristic of the social view. The Civil
Agent Societies framework [2] and the electronic institutions formalism [13, 15,
5] are good examples of this approach; many others can be found in the COIN
international workshop series on coordination, organizations, institutions, and
norms [1].

An electronic institution (or e-Institution) refers to a sort of “virtual place”
that is designed to support and facilitate certain goals to the human and software
agents concurring to that place by establishing explicit conventions. Since these
goals are achieved by means of the interaction of agents, an e-institution provides
the social mediation layer required by agents to achieve a successful interaction:
interaction protocols, shared ontologies, communication languages and social
behavior rules.

All in all, a main issue arises when trying to use preset organizational struc-
tures to operationalize CPS: the need for different team structures to deal with
different problem types. The e-institutions formalism was originally conceived to
formalize and implement static organizations of agents; therefore, at first glance
it seems inadequate to use such a formalism for flexible teamwork. In this paper
we introduce a proposal that uses the e-institution formalism in a novel way: dy-
namic institutions for teamwork. These institutions are created on-the-fly out of
existing components that capture the communication and coordination aspects
of teamwork.

The paper is structured as follows: Section §2 puts our institutional model
of teamwork in context by introducing the framework this model is part of, §3
describes our proposal to model teamwork using the e-Institutions formalism [4],
§4 describes a technique to improve team design by using case-based reasoning,
and finally, §5 summarizes our contributions.

2 The ORCAS framework

In this paper we present an institutional approach to CPS that is part of the
ORCAS framework for developing and deploying cooperative MAS [6]. The main
contributions of this framework are:

– An agent capability description language (ACDL) that supports all the ac-
tivities required to cooperate in open environments, from the discovery and
invocation of capabilities, to their composition and coordination.

– A model of CPS that is driven by the specification of requirements for every
instance of a problem to be solved

– An agent platform for developing and deploying cooperative MAS in open
environments

Figure 1 depicts the main components of the ORCAS ACDL, and the activ-
ities enabled by each component. An agent provides one or more capabilities.
There are two types of capability: skill and task-decomposer. Skills are primitive,
non decomposable capabilities, while task-decomposers decompose a problem (a
task) into more elementary problems (subtasks), so as to solve complex problems



that primitive capabilities cannot accomplish alone. The knowledge-level descrip-
tion of a capability specifies features such as the input, output, preconditions,
and postconditions, which can be used by middle agents to discover and compose
capabilities. However, in order to interact with the provider of a given capability
(to invoke the capability, pass input data and get the results back), the requester
agent must use an interaction protocol that is compatible with the capability
of interest and is supported by its provider. In ORCAS this interaction protocol
is referred to as the communication of a capability (take note that the same
capability could be invoked using different protocols). Finally, the information
required to coordinate multiple agents that are cooperating to solve a problem
together is specified by the operational description of a task decomposer, which
describes the control flow among subtasks (sequencing, parallelism, choices, etc.)
in terms of agent roles.
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Fig. 1. Overview of the ORCAS ACDL

The ORCAS platform provides all the infrastructure required by agents to
successfully cooperate according to the ORCAS model for CPS, which is depicted
in Figure 2. The problem specification process produces a specification of problem
requirements to be met by a team, including a description of the application
domain (a collection of domain models) and the problem data to be used during
teamwork. The team design process uses the problem requirements to build a
task-configuration, which is a knowledge-level specification of: (1) the tasks to
solve, (2) the capabilities to apply, and (3) the domain knowledge required by
a team of agents in order to solve a given problem according to its specific
requirements. The resulting task-configuration is used during team formation to
allocate tasks and subtasks to agents, and to instruct agents on how solve the
problem cooperatively. Finally, during teamwork, team members try to solve the
problem together by following the instructions received during team formation,
thus complying with the specific requirements of the problem at hand. To note
that the ORCAS model for CPS should not be understood as a fixed sequence of



steps, instead, we have implemented strategies that interleave team design and
team formation with teamwork. These strategies enable the reconfiguration of
agent teams dynamically so as to react to agent failure and other changes in the
environment.
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Fig. 2. The ORCAS model for the cooperative problem solving process.

It should be remarked that, within the ORCAS framework, the e-institutions
formalism is used in two ways: on the one hand, we use concepts adapted from
the ISLANDER e-institutions formalism [4, 3] for specifying some elements of
the ORCAS ACDL (the communication and the operational description); on the
other hand, the ORCAS agent platform is itself an e-institution that provides me-
diation services for both providers and requesters of problem solving capabilities
to successfully cooperate.

The knowledge-level description of a capability and the mechanisms used
in ORCAS to discover and compose capabilities (which are part of the team
design process) have been described elsewhere [7]. The ORCAS agent platform
is described in [8]. In this paper we focus on those aspects of the ORCAS ACDL
that are based on the e-institutions formalism, namely the communication and
the operational description, and how are these elements used to represent the
interaction and coordination requirements of teamwork. These are the subjects
of the following section.

3 Dynamic institutions for hierarchical teamwork

The ORCAS ACDL specifies the communication and operational description of
capabilities using elements from the ISLANDER formalism in a novel way, so it
seems appropriate to briefly review the main concepts of this formalism before
describing their use in ORCAS:

1. Agent roles: agents are the players in an e-institution, interacting by the
exchange of speech acts, whereas roles are standardized patterns of behavior
required by agents playing part in given functional relationships.



2. Dialogic framework: determines the valid illocutions that can be exchanged
among agents, including the vocabulary (ontology) and the agent communi-
cation language.

3. Scenes: a scene defines an interaction protocol among a set of agent roles,
using the illocutions allowed by a given dialogic framework.

4. Performative structure: a network of connected scenes that captures the
relationships among scenes; a performative structure constrains the paths
agents can traverse to move from one scene to another, depending on the
roles they are playing.

In ORCAS the specification of capabilities at the knowledge level enables
the automated discovery and composition of capabilities, without taking into
account neither the communication aspects required to invoke a capability, nor
the operational aspects required to coordinate the behavior of several agents.
These features are specified in the ORCAS ACDL adapting concepts from IS-
LANDER, as follows:

Communication: specifies one or several interaction protocols that can be used
to interact with agent to invoke a given capability and get back the result
of applying it. This feature is specified using the notion of scene taken from
the e-institutions formalism.

Operational Description: specifies the control flow among the subtasks in-
troduced by a task-decomposer, using a modified version of the performative
structure concept from the e-institutions formalism.

A team in ORCAS is designed to solve a problem represented by a knowledge-
level structure referred to as a task-configuration (the reader is referred to [7] for
a more detailed description). Figure 3 shows an example of a task-configuration
for a task called Information-Search. This task is decomposed into four tasks by
the Meta-search task-decomposer: Elaborate-query, Customize-query, Retrieve
and Aggregate, which is further decomposed by the Aggregation capability into
two subtasks: Elaborate-items and Aggregate-items. The example includes some
skills requiring domain knowledge: the Query-expansion-with-thesaurus requires
a thesaurus (e.g. MeSH, a medical thesaurus), and the Retrieval and Query-
customization skills require a description of information sources.

Any ORCAS team follows the hierarchical structure of a task-configuration,
with one team-role per task. In particular, each team role includes the following
elements: a team-role identifier (the same task could appear multiple times in
the same task-configuration, so a unique team-role identifier is required), the
identifier of a task to be solved, the identifier of a capability to apply, the domain
knowledge to be used by the selected capability (if needed), and optionally, if the
capability is a task decomposer, the information required to delegate subtasks
to other team-members, which includes, for each subtask: the team member
selected to play the task (or several agents in the case of tasks to be performed
multiple times in parallel), a collection of reserve agents to use in case that the
selected team member fails, and a communication protocol that is compatible
with the selected capability and shared by both the agent assigned to the parent
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Fig. 3. Task-configuration example

task, and the agent or agents assigned to the subtask. Next subsections address,
respectively, the specification of the communication and operational description
of a capability in ORCAS.

3.1 Communication

Agent capabilities should be specified independently of other agents in order to
maximize their reuse and facilitate their specification by third party agent devel-
opers. In the general case, agent developers do not know a priori the tasks that
could be achieved by a particular capability, neither the domains they could be
applied to. As a consequence, the team roles an agent could play using a capabil-
ity are not known in advance, thus the scenes used to specify the communication
requirements of an agent over certain capability cannot be specified in terms of
specific team-roles, but in terms of abstract, generic problem solving roles. Since
ORCAS teams are designed in terms of a hierarchical decomposition of tasks into
subtasks, teamwork is organized as a hierarchy of team-roles.
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w4 w5

w0

1. request (?x Coordinator) (?y Operator) (perform ?team-role ?input)
2. agree !y !x (!team-role !Input)
3. inform !y !x (?team-role ?output)
4. refuse !y !x (!team-role !Input)
5. error !y !x! (team-role !Input)

Fig. 4. Example of a communication scene



Some positions within a team (team-roles) are bound to a task-decomposer,
thus the agents playing those team-roles are responsible of delegating subtasks to
other agents, receiving the results, and performing intermediate data processing
between subtasks. In such an scenario, we establish an abstract communication
model with two basic roles: coordinator, which is adopted by an agent willing
to decompose a task into subtasks, and operator, which is adopted by the agent
having to perform a task on demand, using the data provided by another agent
that acts as coordinator of a top-level task

Figure 4 shows a scene depicting the communication requirements of an agent
over a capability by using a typical request-inform protocol in terms of our two
generic roles: Coordinator and Operator. Symbol ? denotes a new bind for a
variable, while ! denotes a variable that has been already bound to a value.

3.2 Operational description

The operational description of a task decomposer is used to specify the coordi-
nation among agents in terms of the role-flow policy and the control flow among
subtasks. Figure 5 depicts some of the control flow constructions allowed by a
performative structure: (a) tasks performed consecutively, in sequence; (b) choice
between alternative courses of action; (c) tasks performed in parallel; and (d)
tasks that can be executed multiple times.
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Fig. 5. Control flow among subtasks used in operational descriptions

In ORCAS the operational description of a task-decomposer is based on per-
formative structures, with some distinctive features: as in the e-institutions for-
malism, each ORCAS scene within a performative structure must be instantiated
by a communication protocol (except the Start and End scenes). However, in
ORCAS the scenes within a performative structure are not instantiated before-
hand; that is to say, they are not bound to a specific communication protocol.
Instead, the scenes of an operational description are instantiated during team



formation, using as a source the set of communication protocols shared by the
agents having to interact.

After instantiation, each scene in an operational description corresponds to
the communication required to solve a subtask, which implies an agent act-
ing as coordinator invoking the capability provided by another agent acting as
operator (or several operators in the case of multiple-instantiated tasks). The
coordinator and the operators must use the same communication protocol in
order to successfully communicate. Consequently, the instantiation of the scenes
in an operational description is done using only those communication protocols
shared by the agents involved in a scene. To note that team members are selected
during team formation, and thus the set of shared communication protocols is
not known until the team members are decided.

Aggregate 
Items

Start

End

Elaborate 
Items

Aggregate 
Items

x

y

x, y

x, zx, y, z

z: Operator

x: Coordinator
y: Operator

x,z

Fig. 6. Example of an operational description

Figure 6 shows an example of an operational description for a task-decomposer
called Aggregation. This task-decomposer introduces two subtasks: Elaborate-
items (EI) and Aggregate-items (AI). Thus, the operational description has two
main scenes, one for each subtask, and three role variables: x is a coordinator
role, to be played by the agent applying the task-decomposer; y and z are both
operator roles; y participates in EI, and z participates AI. Notice that the coor-
dinator (x) is the same in both scenes; it enters EI first and moves to AI only
after EI ends.

Since each task-decomposer has an operational description, and the ORCAS
organization of a team follows the hierarchical decomposition of tasks into sub-
tasks that results of applying task-decomposers, we can model the operational
description of a complete team as nested structure of operational descriptions.

Figure 7 depicts the operational description of a team. The top team-role,
associated to the Information Search task, is bound to a task-decomposer (Meta-
Serach) that introduces three subtasks: Customize Query, Retrieve and Aggregate.
Therefore, the top team-role will follow an operational description that contains
three scenes, one for each subtask. In addition, the last of these subtasks is
bound to another task-decomposer, Aggregation, which in turn introduces a new
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operational description. The new operational description is nested to the team
leader’s operational description, and has scenes, one for every subtask: Elaborate-
Items and Aggregate-Items.

Teamwork follows the control flow and the communication scenes estab-
lished by the nested structure of operational descriptions associated to task-
decomposers (already instantiated during team formation). Each scene within
an operational description refers to a communication protocol to be played by
two agents, one applying a task-decomposer and playing the coordinator role,
and one assigned to the corresponding subtask playing the operator role. When
an agent playing an operator role has to apply itself a task-decomposer, it will
follow the associated operational description playing itself the coordinator role.
The execution of an operational description does not finish until all the nested
operational descriptions are executed.

Each time a new team is formed according to a task-configuration, a new
structure of nested operational descriptions is composed and their scenes instan-
tiated. We regard this structure as a dynamic institution, since it is configured
on-the-fly, out of the communication protocols and the operational descriptions
supported by the selected team members.

4 Learning Team Designs

The ORCAS description of team designs allows that reasoning and learning pro-
cesses may be applied to them by an agent capable of convening a team. For this
purpose, an agent-oriented case-based reasoning (CBR) technique called CoopCA
has been developed based on the notion of compositional cases [14]. In team de-
sign, a case is a pair (P, S), where the problem P is the specification of the task
a team should be able to achieve and the solution S is the task-configuration of
the team; a case is a compositional case when the solution is a configuration of



components —as the ORCAS ACDL components in team design. Notice that a
task basically specifies two conditions: the assumptions (those properties that
are assumed to be true in the world) and goals (those properties that are to be
achieved by the team).

Learning in CBR allows agents to solve much faster routine and easy tasks.
An agent using CoopCA will store in its case base those team designs the agent
has convened in the past. Since in a real environment regularities are common,
an agent will encounter both routine tasks and novel tasks. When a new task
that needs a team to be convened is equal or similar to tasks the agent has
solved in the past using specific team designs, case-based reasoning will reuse
the solutions of the past to fit the current situation: a previous team design will
be used, possibly with a few alterations to adapt the new team to the differences
(in assumptions and/or goals) between the old task and the current task.

When a new task is novel, in the sense that it is rather different from any
other task previously solved by the agent, CoopCA is capable of achieving a new
team design from scratch. However, CoopCA derives a new task-configuration
in a search process that is guided by the past cases, and is able to find, for
instance, that a specific subtask was solved in the past by a particular team,
and will incorporate it as a subteam for that subtask in the overall team design.
Thus, the agent playing the role of convener can learn from experience about the
particular team institutions that achieve certain tasks. Notice that this learning
is developed at the institutional level: the agent learns that a specific team insti-
tution is able to achieve a certain task — does not learn about the performance
of a specific team with concrete agents performing the institution’s roles.

Finally, CBR is used for dynamic reconfiguration when some event precludes
the usability of the current team institution. For instance, imagine that and agent
that was supposed to perform team-role Rj goes offline or refuses to satisfy its
previous commitment; and imagine there is no other available agent capable of
satisfying the requirements of that role: under this conditions the task associated
to Rj could not be achieved and the task-configuration that shaped the current
team is no longer viable. The CBR process however can continue its search
process to find another task-configuration (if it exists) that achieves the same
overall task. There is no need to stick to a fixed design when several possible
solutions are available.

5 Conclusions

In this paper, we have presented a novel approach to teamwork specification
using concepts adapted from the e-Institutions formalism. In this approach the
communication and coordination aspects required for teamwork are reusable
components that are used by agents to specify their problem solving capabilities.
By doing so, middle agents such as brokers and matchmakers can reason about
the communication and coordination aspects of individual agents to dynamically
build an e-Institution that supports flexible teamwork.



We adapt the electronic formalism to handle the dynamics of teamwork.
While e-institutions are supposed to be static structures characterized by a pre-
defined network of scenes (a performative structure), we conceive teamwork as
a dynamic institution that is build on the fly out of existing components: oper-
ational descriptions and communication protocols. The operational description
of a task-decomposer describes the control flow among subtasks using a spe-
cific kind of performative structure in which the communication scenes are not
instantiated beforehand. The instantiation of those scenes is done at runtime
by selecting communication protocols that are shared by the agents involved
in a given scene. The result is a hierarchical model of teamwork represented
by nested performative structures instantiated and composed on-the-fly during
team formation.

By adapting the e-Institutions formalism for teamwork, we expect to bring
in some of the benefits of the social-approach in general, and the e-institutions
approach in particular: promoting the development of agents by third parties
by avoiding the imposition of a specific agent architecture (favors openness);
increasing the degree of control over the global system behavior; and making the
system more predictable, which in turn fosters trustiness.

Finally, by introducing a case-based reasoning approach to team design we
have enabled a learning process that speeds up the configuration of new teams
by reusing previous team designs for solving new problems
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