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Abstract. We introduce Multimodal Logics of Normative Systems as a contribu-
tion to the development of a general logical framework for reasoning about nor-
mative systems over logics for Multi-Agent Systems. Given a multimodal logic L,
for every modality 2i and normative system η, we expand the language adding a
new modality 2

η
i with the intended meaning of 2

η
i φ being ”φ is obligatory in the

context of the normative system η over the logic L”. In this expanded language
we define the Multimodal Logic of Normative Systems over L, for any given set
of normative systems N , and we give a sound and complete axiomatisation for
this logic, proving transfer and model checking results. The special case when L
and N are axiomatised by sets of Sahlqvist or shallow modal formulas is studied.
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1 Introduction

Recent research on the logical foundations of Multi-Agent Systems (MAS) has cen-
tered its attention in the study of normative systems. The notion of electronic institution
is a natural extension of human institutions by permitting not only humans but also au-
tonomous agents to interact with one another. Institutions are used to regulate interac-
tions where participants establish commitments and to facilitate that these commitments
are upheld, the institutional conventions are devised so that those commitments can be
established and fulfilled (see [1] for a general reference of the role of electronic institu-
tions to regulate agents interactions in MAS). Over the past decade, normative systems
have been promoted for the coordination of MAS and the engineering of societies of
self-interested autonomous software agents. In this context there is an increasing need
to find a general logical framework for the study of normative systems over the logics
for MAS.

Given a set of states S and a binary accessibility relation R on S, a normative
system η on the structure (S, R) could be understood as a set of constraints η ⊆ R on
the transitions between states, the intended meaning of (x, y) ∈ η being “the transition
from state x to state y is not legal according to normative system η”. Several formalisms
have been introduced for reasoning about normative systems over specific logics, two
examples are worth noting: Normative ATL (NATL), proposed in [2] and Temporal



Logic of Normative Systems (NTL) in [3]. NATL is an extension to the Alternating-
Time Temporal Logic and contains cooperation modalities of the form << η : C >> φ
with the intended interpretation that “C has the ability to achieve φ within the context of
the normative system η”. NTL is a conservative generalization of the Branching-Time
Temporal Logic CTL. In NTL, the path quantifiers A (“on all paths...”) and E (“on
some path...”) are replaced by the indexed deontic operators Oη (“it is obligatory in the
context of the normative system η that..”) and Pη (“it is permissible in the context of
the normative system η that...”).

The Multimodal Logic of Normative Systems introduced in this article is a contribu-
tion to define a general logical framework for reasoning about normative systems over
logics for MAS, for this purpose we generalize to arbitrary logics the approaches taken
in [2] and [3]. At the moment, we are far from obtaining a unique formalism which
addresses all the features of MAS at the same time, but the emerging field of combining
logics is a very active area and has proved to be successful in obtaining formalisms
which combine good properties of the existing logics. In our approach, we regard the
Logic of Normative Systems over a given logic L, as being the fusion of logics obtained
from L and a set of normative systems over L, this model-theoretical construction will
help us to understand better which properties are preserved under combinations of log-
ics over which we have imposed some restrictions and to apply known transfer results
(for a general account on the combination of logics, we refer to [4] and [5], and as
a general reference on multimodal logic, to [6]). There are some advantages of using
these logics for reasoning about MAS: it is possible to compare whether a normative
system is more restrictive than the other, check if a certain property holds in a model
of a logic once a normative system has restricted its accessibility relation, model the
dynamics of normative systems in institutional settings, define a hierarchy of normative
systems (and, by extension, a classification of the institutions) or present a logical-based
reasoning model for the agents to negotiate over norms.

This paper is structured as follows. In Section 2 we present an example in order
to motivate the introduction of the general framework. In Section 3 we give a sound
and complete axiomatisation for the Multimodal Logic of Normative Systems, proving
transfer results and we address a complexity issue for model checking. In Section 4 we
restrict our attention to logics with normative systems that define elementary classes
of modal frames, we have called them Elementary Normative Systems (ENS) and we
prove completeness and canonicity results for them. Elementary classes include a wide
range of formalisms used in describing MAS, modelling different aspects of agenthood,
some temporal logics, logics of knowledge and belief, logics of communication, etc.
Finally, in Section 5 we come back to our first example in Section 2, showing how our
framework can be applied to multiprocess temporal structures, Section 6 is devoted to
future work.

2 Multiprocess Temporal Frames and Normative Systems

In a multi-agent institutional environment, in order to allow agents to successfully in-
teract with other agents, they share the dialogic framework. The expressions of the
communication language in a dialogic framework are constructed as formulas of the



type ι(αi : ρi, αj : ρj , φ, τ), where ι is an illocutionary particle, αi and αj are agent
terms, ρi and ρj are role terms and τ is a time term. An scene is specified by a graph
where the nodes of the graph represent the different states of the conversation and the
arcs connecting the nodes are labelled with illocution schemes.

Several formalisms for modelling interscene exchanges between agents have been
introduced using multimodal logics. For instance, in [7] the authors provide an alter-
nating offers protocol to specify commitments that agents make to each other when
engaging in persuasive negotiations using rewards. Specifically, the protocol details,
how commitments arise or get retracted as a result of agents promising rewards or mak-
ing offers. The protocol also standardises what an agent is allowed to say or what it can
expect to receive from its opponent. The multimodal logic presented in [7] introduces
modalities 2φ for expressions φ of the communication language.

More formally, given a finite set of propositional atomic formulas, we could define
the set of formulas of such a multimodal communication language in the following way:

φ ::= p |> |⊥ | ¬α | α ∧ α | 2φ1α | . . . | 2φk
α

where p is an atomic propositional formula, α is a propositional formula and φ1, . . . , φk

are formulas of the communication language.
The standard Kripke semantics of these logics can be given by means of multipro-

cess temporal frames. We say that Ξ = (S, Rφ0 , . . . , Rφk
) is a multiprocess temporal

frame if and only if S is a set of states and for every i ≤ k, Rφi is a binary relation on S
such that R =

⋃
i≤k Rφi is a serial relation (that is, for every s ∈ S there is t ∈ S such

that (s, t) ∈ R). A multiprocess temporal model is a Kripke model with a multiprocess
temporal frame.

Let M be a multiprocess temporal model and w ∈ M , the satisfiability relation for
the modalities 2φi is defined as usual:

M,w |= 2φiα iff for all w′ ∈ M such that wRφiw
′

M,w′ |= α

Some examples of the protocols introduced in [7] can be formalised by
formulas of the following form: 2φ1 . . .2φl

⊥. For instance, with the formula
2Offer(i,x)2Offer(i,y)⊥, with x 6= y, we can express that it is not allowed to agent i
to do two different offers one immediately after the other. Let us see now how formulas
like 2φ1 . . .2φl

⊥ can be understood as sets of constraints on the transitions between
states. Given a multiprocess temporal frame Ξ = (S, Rφ0 , . . . , Rφk

), consider the fol-
lowing set of finite sequences of elements of S:

∆Ξ = {(a0, . . . , am) : ∀j < m, ∃i ≤ k such that ajRφiaj+1}

Then, a normative system η on the frame Ξ could be defined as a subset of ∆Ξ . Intu-
itively speaking, a sequence (a0, . . . , am) ∈ η if and only if this sequence of transitions
is not legal according to normative system η. In our previous example, given a frame,
the formula 2Offer(i,x)2Offer(i,y)⊥, can be regarded as the following normative sys-
tem (that is, the following set of finite sequences of the frame):



{
(a0, a1, a2) : such that a0ROffer(i,x)a1 and a1ROffer(i,x)a2

}
Thus, any model satisfying the protocol introduced by 2Offer(i,x)2Offer(i,y)⊥ can
not include such sequences.

When defining an scene in an electronic institution we could be interested in com-
paring different protocols in order to show which of them satisfy some desired proper-
ties. In order to do so we could extend our multimodal language with additional modal-
ities 2

η
φi

, one for each normative system we want to consider. Next section is devoted
to the study of the logical properties of these languages and later on, we will come back
to our example applying this general framework.

3 Multimodal Logics of Normative Systems

We introduce first some notation and basic facts about multimodal languages. A finite
modal similarity type τ = 〈F, ρ〉 consists of a finite set F of modal operators and a
map ρ : F → ω assigning to each f ∈ F a finite arity ρ(f) ∈ ω. Finite propositional
modal languages of type τ are defined in the usual way by using finitely many propo-
sitional variables, the operators in F and the boolean connectives ∧,∨,¬,→,↔,>,⊥.
For monadic modalities we use the usual notation 2f .

A modal finitary structural consequence relation ` of similarity type τ is a relation
between sets of formulas and formulas of the finite propositional modal language of
type τ satisfying:

– φ ∈ Γ ⇒ Γ ` φ
– If Γ ⊆ ∆ and Γ ` φ, then ∆ ` φ
– If Γ ` ∆ and ∆ ` φ, then Γ ` φ
– Γ ` φ ⇒ sΓ ` sφ, for all substitutions s
– If Γ ` φ, then there exist a finite subset Γ0 of Γ with Γ0 ` φ
– ` φ, for every classical tautology φ
– p, p → q ` q
– For every f ∈ F ,

p0 ↔ q0, . . . , pρ(f) ↔ qρ(f) ` f(p0, . . . , pρ(f)) ↔ f(q0, . . . , qρ(f))

And we say that a subset Λ of modal formulas is a classical modal logic of similarity
type τ iff there exists a modal finitary structural consequence relation ` of similarity
type τ such that Λ = Λ(`), where Λ(`) = {φ : ∅ ` φ}. It is said that that Λ is consistent
if ⊥ /∈ Λ.

Given a type τ = 〈F, ρ〉, a Kripke frame of type τ is an structure (S, Rf )f∈F ,
where S is nonempty and for every f ∈ F , Rf is a binary relation on S.

Definition 1 A normative system over a Kripke frame (S, Rf )f∈F is a subset of the
following set of finite sequences of S:

{(a0, . . . , am) : ∀j < m, ∃f ∈ F such that ajRfaj+1}



Observe that Definition 1 extends to the multimodal setting the definition of normative
system introduced in Section 2 of [3]. Examples of classical modal logics with seman-
tics based on Kripke frames are Propositional Dynamic Logic (PDL), Alternating-Time
Temporal Logic (ATL) and Computational Tree Logic (CTL), but CTL*, the Full Com-
putational Tree Logic is not a classical modal logic because it is not closed under uni-
form substitution.

Now we introduce in the language a new finite set of symbols N to denote normative
systems. Given a finite propositional modal language of type τ = 〈F, ρ〉, for every
normative system η ∈ N , let τη be the type whose modalities are {fη : f ∈ F} and
τN =

⋃
η∈N τη. For every set of formulas Γ , let us denote by Γ η the set of formulas of

type τη obtained from Γ by substituting every occurrence of the modality f by fη. The
monadic operators 3f are defined in the usual way as abbreviations 3fφ ≡ ¬2f¬φ
and we have also the corresponding 3

η
f .

Given a classical modal logic L with semantics based on Kripke frames, we define
the Multimodal Logic of Normative Systems over L, denoted by LN , as being the
smallest classical modal logic in the expanded language τN which contains L and Lη,
for every η ∈ N .

Theorem 2 Let L be a consistent classical modal logic axiomatised by a set Γ of for-
mulas. Then,

1. ΓN = Γ ∪
⋃
{Γ η : η ∈ N} is an axiomatisation of LN .

2. LN is a conservative extension of L.
3. If L is a decidable logic, then LN is decidable.

Proof: Since we have introduced a finite set of disjoint similarity types {τη : η ∈ N},
we can define the fusion

⊕
< Lη : η ∈ N > of disjoint copies of the logic L. Observe

that, so defined, LN =
⊕

< Lη : η ∈ N > and ΓN is an axiomatisation of LN . Then,
by an early result of Thomason [8], LN is a conservative extension of L. Finally we can
apply Theorem 6.11 of [9], to obtain the corresponding transfer result. 2

In [10] a weak notion of normality is introduced to prove some additional transfer
results for the fusion of logics. Let us assume that our classical modal logics satisfy the
two conditions of Definition 2.5 of [10]:

1. For every f ∈ F , the semantics of f(p0, . . . , pρ(f)) is a monadic first-order for-
mula.

2. For each Rf , there is a derived connective 2f such that the formula 2fp expresses
∀x(yRfx → Px) and is closed under the necessitation rule: If φ ∈ Λ, then 2fφ ∈
Λ.

This second condition corresponds to the notion of normality, but it is weaker than the
usual normality requirement. Observe that the operators U and S (until and since) of
Temporal Logic are only normal in the first position and not in the second. However,
they satisfy conditions 1. and 2., the binary ordering < can be associated with U and the
binary ordering > can be associated with S, thus condition 1. is satisfied. The monadic
modalities H and G are derivable connectives, that satisfy the requirement of condition
2.



Following the lines of the proof of Theorem 2, by using Theorems 3.6 and 3.10 of
[10], we can obtain the following transfer theorem:

Theorem 3 Let L be a consistent classical modal logic axiomatised by a set Γ of for-
mulas and such that satisfies conditions 1. and 2. above. Then, If L is complete and
sound over the class of frames C, then LN is also complete and sound over the class of
frames

⊕
< Cη : η ∈ N >.

As an application of Theorems 2 and 3 we obtain that the Multimodal Logic of
Normative Systems over the logics CTL and PDL, has a sound and complete axioma-
tisation, is decidable and has the Finite Model Property, because CTL and PDL are
decidable and complete over the class of finite frames.

We end this section by introducing a model checking result. Given a frame
Ξ = (S, Rf )f∈F , we say that a subset of S is connected if for every s, t ∈ S,

(s, t) ∈ (
⋃ {

(Rf ∪R−1
f : f ∈ F

}
)∗, where for any relation R, R∗ denotes the transi-

tive closure of R. We say that the frame Ξ is connected if its domain S is a connected
set. Observe that, for every classical modal logic L that satisfies conditions 1. and 2.
stated above and it is complete with respect to a class of connected frames, by Theorem
3, the Multimodal Logic of Normative Systems over L is also complete with respect to
a class of connected frames.

Theorem 4 Let L be a classical modal logic in a finite similarity type τ = 〈F, ρ〉 and
let (S, Rη

f )f∈F,η∈N be a finite model of the Multimodal Logic of Normative Systems
over L such that the restriction of the model (S, Rη

f )f∈F,η∈N to the similarity type τη

is connected. Then, the complexity of model checking a formula φ of type τN is

O(
∑

η∈N mη + n · k) +
∑

η∈N ((O(k) + O(n)) · CL(mη, n, k))

where mη =
∑

f∈F

∣∣∣Rη
f

∣∣∣, n = |S|, k is the length of the formula φ and CL(mη, n, k)
is the complexity of model checking for logic L as a function of mη, n and k.

Proof: By Theorem 2, LN is a conservative extension of L and for every η ∈ N the
restriction of the model (S, Rη

f )f∈F,η∈N to the similarity type τη is a model of L and is
connected by assumption. This fact allows us to generalize the result on temporal logics
of Theorem 5.2 of [11]. We can express the complexity of a combined model checker
for LN in terms of a model checker for L. 2

For example, in the case of the Multimodal Logic of Normative Systems over CTL,
the overall cost of the model checker for this logic is linear in the size of the model and
in the length of the formula.

4 Elementary Normative Systems

There are some advantages of using Multimodal Logics of Normative Systems for rea-
soning about MAS: it is possible to compare whether a normative system is more re-
strictive than the other, check if a certain property holds in a model of a logic once a



normative system has restricted its accessibility relation, model the dynamics of norma-
tive systems in institutional settings, define a hierarchy of normative systems (and, by
extension, a classification of the institutions) or present a logical-based reasoning model
for the agents to negotiate over norms. Up to this moment we have introduced an exten-
sional definition of normative system (see Definition 1), in this section we present our
first attempt to classify normative systems, we restrict our attention to normative sys-
tems defined by certain sets of first-order formulas, but only over some class of normal
multimodal logics with standard Kripke semantics.

The choice of Sahlqvist formulas in this section is due, on the one hand, to the fact
that a wide range of formalisms for MAS can be axiomatised by a set of such formulas
(see next section). On the other hand, for the good logical properties of these logics
(canonicity, transfer results, etc.). In Section 3 we have presented a general setting for
dealing with any classical modal logic. Now, we focus only on some particular kind
of logics. We want to study the specific properties of their normative systems that can
be proved by using only the fact that these logics are axiomatised by sets of Sahlqvist
formulas.

Given a set of modal formulas Σ, the frame class defined by Σ is the class of all
frames on which each formula in Σ is valid. A frame class is modally definable if there
is a set of modal formulas that defines it, and it is said that the frame class is elementary
if it is defined by a first-order sentence of the frame correspondence language (the first-
order language with equality and one binary relation symbol for each modality). An
Elementary Normative System (ENS) is a propositional modal formula that defines an
elementary class of frames and a normative system in any frame.

Throughout this and next section we assume that our modal languages have standard
Kripke semantics and their modal similarity types have only a finite set of monadic
modalities {2f : f ∈ F} and a finite set of propositional variables. Given a classical
modal logic L and a set of Elementary Normative Systems N over L, for every η ∈ N
we generalize the notion introduced in Section 3 by defining the Multimodal Logic
of Normative Systems over L and N , denoted by LN , as being the smallest normal
logic in the expanded language which contains L, N and every Lη. We now present a
sound and complete axiomatisation and prove some transfer results in the case that L
is axiomatised by a set of Sahlqvist formulas and N is a set of Sahlqvist formulas. We
denote by L(η) the smallest normal logic of similarity type τη which includes Lη∪{η}.

Definition 5 (Sahlqvist formulas) A modal formula is positive (negative) if every oc-
currence of a proposition letter is under the scope of an even (odd) number of negation
signs. A Sahlqvist antecedent is a formula built up from >,⊥, boxed atoms of the form
2i1 . . .2il

p, for ij ∈ I and negative formulas, using conjunction, disjunction and dia-
monds. A Sahlqvist implication is a formula of the form φ → ϕ, when φ is a Sahlqvist
antecedent and ϕ is positive. A Sahlqvist formula is a formula that is obtained from
Sahlqvist implications by applying boxes and conjunction, and by applying disjunctions
between formulas that do not share any propositional letters.

Observe that ⊥ and > are both Sahlqvist and ENS formulas. Intuitively speaking,
⊥ is the trivial normative system, in⊥ every transition is forbidden in every state and in
> every action is legal. In the sequel we assume that for every set N of ENS, > ∈ N .



Theorem 6 Let L be a classical normal modal logic axiomatised by a set Γ of Sahlqvist
formulas and N a set of ENS Sahlqvist formulas, then:

1. ΓN = Γ ∪N ∪
⋃
{Γ η : η ∈ N} is an axiomatisation of LN .

2. LN is complete for the class of Kripke frames defined by ΓN .
3. LN is canonical.
4. If L and Lη are consistent, for every η ∈ N , and P is one of the following proper-

ties:
– Compactness
– Interpolation Property
– Halldén-completeness
– Decidability
– Finite Model Property1

then LN has P iff L and L(η) have P, for every η ∈ N .

Proof: 1 − 3 follows directly from the Sahlqvist’s Theorem. The main basic idea of
the proof of 4 is to apply the Sahlqvist’s Theorem to show first that for every η ∈ N ,
the smallest normal logic of similarity type τη which includes Γ η ∪ {η} is L(η), is a
complete logic for the class of Kripke frames defined by Γ η ∪{η} and is canonical (ob-
serve that this logic is axiomatised by a set of Sahlqvist formulas). Now, since for every
Elementary Normative System η ∈ N we have introduced a disjoint modal similarity
type τη, we can define the fusion of the logics

⊕
< L(η) : η ∈ N >. It is enough

to check that LN =
⊕

< L(η) : η ∈ N > (remark that L> = L) and using trans-
fer results for fusions of consistent logics (see for instance [12] and [10]) we obtain
that LN is a conservative extension and that decidability, compactness, interpolation,
Hállden-completeness and the Finite Model Property are preserved. 2

We study now the relationships between normative systems. It is interesting to see
how the structure of the set of all the ENS over a logic L (we denote it by N(L)) inherits
its properties from the set of first-order counterparts. A natural relationship could be
defined between ENS, the relationship of being one less restrictive than another, let us
denote it by �. Given η, η′, it is said that η � η′ iff the first-order formula φη′ → φη is
valid (when for every η ∈ N , φη is the translation of η). The relation � defines a partial
order on N(L) and the pair (N(L),�) forms a complete lattice with least upper bound
⊥ and greatest lower bound > and the operations ∧ and ∨.

Now we present an extension of the Logic of Elementary Normative Systems over a
logic L with some inclusion axioms and we prove completeness and canonicity results.
Given a set N of ENS, let IN+

be the following set of formulas:{
2i1 . . .2il

p → 2
η
i1

. . .2η
il
p : ij ∈ I, η ∈ N

}
and IN∗

the set:{
2

η′

i1
. . .2η′

il
p → 2

η
i1

. . .2η
il
p : ij ∈ I, η � η′, η, η′ ∈ N

}
1 For the transfer of the Finite Model Property it is required that there is a number n such that

each L(η) has a model of size at most n.



Corollary 7 Let L be a normal modal logic axiomatised by a set Γ of Sahlqvist formu-
las and N a set of ENS Sahlqvist formulas, then:

1. ΓN+
= ΓN ∪ IN+

is an axiomatisation of the smallest normal logic with contains
LN and the axioms IN+

, is complete for the class of the Kripke frames defined by
ΓN+

and is canonical. We denote this logic by LN+
.

2. ΓN∗
= ΓN ∪ IN∗ ∪ IN+

is an axiomatisation of the smallest normal logic with
contains LN and the axioms IN∗ ∪ IN+

, is complete for the class of the Kripke
frames defined by ΓN∗

and is canonical. We denote this logic by LN∗
.

3. If LN is consistent, both LN+
and LN∗

are consistent.

Proof: Since for every ij ∈ I every η, η′ ∈ N , the formulas 2i1 . . .2il
p →

2
η
i1

. . .2η
il
p and 2

η′

i1
. . .2η′

il
p → 2

η
i1

. . .2η
il
p are Sahlqvist, we can apply Theorem 6.

In the case that LN is consistent, consistency is guaranteed by the restriction to pairs
η � η′ and for the fact that η and η′ are ENS. 2

Observe that for every frame (S, Rf , Rη
f )f∈F,η∈N of the logic LN∗

,

Rη
i1
◦ . . . ◦Rη

il
⊆ Ri0 ◦ . . . ◦Ril

,

and for η � η′, Rη
i1
◦ . . . ◦Rη

il
⊆ Rη′

i1
◦ . . . ◦Rη′

i1
, where ◦ is the composition relation.

We end this section introducing a new class of modal formulas defining elementary
classes of frames, the shallow formulas (for a recent account of the model theory of
elementary classes and shallow formulas we refer the reader to [13]).

Definition 8 A modal formula is shallow if every occurrence of a proposition letter is
in the scope of at most one modal operator.

It is easy to see that every closed formula is shallow and that the class of Sahlqvist
and shallow formulas don’t coincide: 21(p∨ q) → 32(p∧ q) is an example of shallow
formula that is not Sahlqvist. Analogous results to Theorem 6 and Corollary 7 hold
for shallow formulas, and using the fact that every frame class defined by a finite set
of shallow formulas admits polynomial filtration, by Theorem 2.6.8 of [13], if L is a
normal modal logic axiomatised by a finite set Γ of shallow formulas and N is a finite
set of ENS shallow formulas, then the frame class defined by ΓN has the Finite Model
Property and has a satisfiability problem that can be solved in NEXPTIME.

5 Some examples

Different formalisms have been introduced in the last twenty years in order to model
particular aspects of agenthood (temporal Logics, logics of knowledge and belief, log-
ics of communication, etc). We show in this section that several logics proposed for de-
scribing Multi-Agents Systems are axiomatised by a set of Sahlqvist or shallow formu-
las and therefore we could apply our results to the study of their normative systems. Let
us come back to our previous example of Section 2, the multiprocess temporal frames.
We have introduced first this basic temporal logic of transition systems, not because it is



specially interesting in itself, but because is the logic upon which other temporal logics
are built and because it is a clear and simple example of how our framework can work.

Remember that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal frame if and only
if S is a set of states, for every i ≤ k, Ri is a binary relation on S such that R =

⋃
i≤k Ri

is a serial relation (that is, for every s ∈ S there is t ∈ S such that (s, t) ∈ R). It is
easy to see that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal frame if and only if
the formula of the corresponding multimodal language

30> ∨ . . . ∨3k> (MPT)

is valid in Ξ . Let us denote by MPTL the smallest normal logic containing axiom
(MPT). For every nonempty tuple (i1, . . . , il) such that for every j ≤ l, ij ≤ k, consider
the formula 2i1 . . .2il

⊥. Observe that every formula of this form is shallow and ENS.
We state now without proof a result on the consistency of this kind of normative systems
over MPTL that will allow us to use the logical framework introduced in the previous
section.

Proposition 9 Let N be a finite set of normative systems such that for every η ∈ N ,
there is a finite set X of formulas of the form 2i1 . . .2il

⊥ such that η is the conjunction
of all the formulas in X , ⊥ /∈ X and the following property holds:

If 2i1 . . .2il
⊥ /∈ X , there is j ≤ k such that 2i1 . . .2il

2j⊥ /∈ X .

Then, the logic MPTLN is consistent, complete, canonical, has the Finite Model Prop-
erty and has a satisfiability problem that can be solved in NEXPTIME.

In general, a normal multimodal logic can be characterized by axioms that are added
to the system Km, the class of Basic Serial Multimodal Logics is characterized by
subsets of axioms of the following form, requiring that AD(i) holds for every i,

– 2ip → 3ip AD(i)
– 2ip → p AT(i)
– 2ip → 2jp AI(i)
– p → 2i3jp AB(i,j)
– 2ip → 2j2kp A4(i,j,k)
– 3ip → 2j3kp A5(i,j,k)

An example of a Kripke frame of MPTL in which none of the previous axioms
is valid is Ξ = ({0, 1, 2} , {(0, 1), (2, 0)} , {(1, 2)}). In particular, our example shows
that the Multimodal Serial Logic axiomatised by {AD(i) : i ≤ k}, is a proper exten-
sion of MPTL. Observe that any logic in the class BSML is axiomatised by a set of
Sahlqvist formulas, therefore we could apply the framework introduced before to com-
pare elementary normative systems on these logics.

Another type of logics axiomatised by Sahlqvist formulas are many Multimodal
Epistemic Logics. Properties such as positive or negative introspection can be expressed
by 2ip → 2i2kp and ¬2ip → 2i¬2ip respectively. And formulas like 2ip → 2jp
allow us to reason about multi-degree belief.



The Minimal Temporal Logic Kt is axiomatised by the axioms p → HFp and
p → GPp which are also Sahlqvist formulas. Some important axioms such as linear-
ity Ap → GHp ∧ HGp, or density GGp → Gp, are Sahlqvist formulas, and we can
express the property that the time has a beginning with an ENS. By adding the next-
time modality, X , we have an ENS which expresses that every instant has at most one
immediate successor.

6 Future work

Along this work, in Sections 4 and 5, we have dealt only with multimodal languages
with monadic modalities, but by using the results of Goranko and Vakarelov in [14] on
the extension of the class of Sahlqvist formulas in arbitrary polyadic modal languages to
the class of inductive formulas, it would be possible to generalize our results to polyadic
languages.

We will proceed to apply our results to different extended modal languages, such as
reversive languages with nominals (in [14], the elementary canonical formulas in these
languages are characterized) or Hybrid Logic (in [13], Hybrid Sahlqvist formulas are
proved to define elementary classes of frames). Future work should go beyond Elemen-
tary Normative Systems and consider the study of sets of normative systems expressed
by other formal systems.
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